54,255 research outputs found

    On the use of artificial neural networks for the analysis of survival data

    Get PDF
    Artificial neural networks are a powerful tool for analyzing data sets where there are complicated nonlinear interactions between the measured inputs and the quantity to be predicted. We show that the results obtained when neural networks are applied to survival data depend critically on the treatment of censoring in the data. When the censoring is modeled correctly, neural networks are a robust model independent technique for the analysis of very large sets of survival data

    Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models

    Get PDF
    In the field of renewable energy, reliability analysis techniques combining the operating time of the system with the observation of operational and environmental conditions, are gaining importance over time. In this paper, reliability models are adapted to incorporate monitoring data on operating assets, as well as information on their environmental conditions, in their calculations. To that end, a logical decision tool based on two artificial neural networks models is presented. This tool allows updating assets reliability analysis according to changes in operational and/or environmental conditions. The proposed tool could easily be automated within a supervisory control and data acquisition system, where reference values and corresponding warnings and alarms could be now dynamically generated using the tool. Thanks to this capability, on-line diagnosis and/or potential asset degradation prediction can be certainly improved. Reliability models in the tool presented are developed according to the available amount of failure data and are used for early detection of degradation in energy production due to power inverter and solar trackers functional failures. Another capability of the tool presented in the paper is to assess the economic risk associated with the system under existing conditions and for a certain period of time. This information can then also be used to trigger preventive maintenance activities

    Learning Rich Geographical Representations: Predicting Colorectal Cancer Survival in the State of Iowa

    Full text link
    Neural networks are capable of learning rich, nonlinear feature representations shown to be beneficial in many predictive tasks. In this work, we use these models to explore the use of geographical features in predicting colorectal cancer survival curves for patients in the state of Iowa, spanning the years 1989 to 2012. Specifically, we compare model performance using a newly defined metric -- area between the curves (ABC) -- to assess (a) whether survival curves can be reasonably predicted for colorectal cancer patients in the state of Iowa, (b) whether geographical features improve predictive performance, and (c) whether a simple binary representation or richer, spectral clustering-based representation perform better. Our findings suggest that survival curves can be reasonably estimated on average, with predictive performance deviating at the five-year survival mark. We also find that geographical features improve predictive performance, and that the best performance is obtained using richer, spectral analysis-elicited features.Comment: 8 page

    Medical analysis and diagnosis by neural networks

    Get PDF
    In its first part, this contribution reviews shortly the application of neural network methods to medical problems and characterizes its advantages and problems in the context of the medical background. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic systems. Then, paradigm of neural networks is shortly introduced and the main problems of medical data base and the basic approaches for training and testing a network by medical data are described. Additionally, the problem of interfacing the network and its result is given and the neuro-fuzzy approach is presented. Finally, as case study of neural rule based diagnosis septic shock diagnosis is described, on one hand by a growing neural network and on the other hand by a rule based system. Keywords: Statistical Classification, Adaptive Prediction, Neural Networks, Neurofuzzy, Medical System

    Prediction of survival probabilities with Bayesian Decision Trees

    Get PDF
    Practitioners use Trauma and Injury Severity Score (TRISS) models for predicting the survival probability of an injured patient. The accuracy of TRISS predictions is acceptable for patients with up to three typical injuries, but unacceptable for patients with a larger number of injuries or with atypical injuries. Based on a regression model, the TRISS methodology does not provide the predictive density required for accurate assessment of risk. Moreover, the regression model is difficult to interpret. We therefore consider Bayesian inference for estimating the predictive distribution of survival. The inference is based on decision tree models which recursively split data along explanatory variables, and so practitioners can understand these models. We propose the Bayesian method for estimating the predictive density and show that it outperforms the TRISS method in terms of both goodness-of-fit and classification accuracy. The developed method has been made available for evaluation purposes as a stand-alone application
    • …
    corecore