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Abstract

Practitioners use Trauma and Injury Severity Score (TRISS) models for pre-
dicting the survival probability of an injured patient. The accuracy of TRISS
predictions is acceptable for patients with up to three typical injuries, but
unacceptable for patients with a larger number of injuries or with atypi-
cal injuries. Based on a regression model, the TRISS methodology does
not provide the predictive density required for accurate assessment of risk.
Moreover, the regression model is difficult to interpret. We therefore consider
Bayesian inference for estimating the predictive distribution of survival. The
inference is based on decision tree models which recursively split data along
explanatory variables, and so practitioners can understand these models. We
propose the Bayesian method for estimating the predictive density and show
that it outperforms the TRISS method in terms of both goodness-of-fit and
classification accuracy. The developed method has been made available for
evaluation purposes as a stand-alone application.

Keywords: Bayesian prediction, survival probability, Markov chain Monte
Carlo, classification tree, trauma care.
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1. Introduction

For patients alive on arrival at a hospital, the probability of survival is
calculated by using a logistic regression model that employs the Trauma and
Injury Severity Score (TRISS) system [5, 4, 27, 12, 28]. TRISS-based models
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consider up to three most severe injuries which a patient can obtain in six
regions of the body: head, face, chest, abdomen, extremities, and external
(skin, subcutaneous tissue and burns). The model includes both continuous
and categorical screening tests: the first type includes age, systolic blood
pressure, and respiratory rate, while the second type includes the severity
scores of injuries a patient can obtain in the six body regions, as well as
Glasgow Coma Scale (GCS) and type of injury. The screening tests are
performed on the patient’s arrival by a trained scorer. The calculation of
survival probabilities has been made available online as a TRISS Calculator
[7].

The screening tests are used to form two aggregated predictors, Injury
Severity Score (ISS), and Revised Trauma Score (RTS). The use of such
aggregated predictors has revealed unexplained fluctuations of ISS over ob-
served (or actual) probabilities of survival, and some researchers have raised
a concern about its predictive ability [38, 4, 28, 1, 39].

The TRISS determines the probability of survival, Ps, using the following
logistic regression model:

Ps = 1/(1 + e−b), (1)

where b = b0 + b1 ×RTS + b2 × ISS + b3 ×A. Here b0, b1, b2, and b3 are the
regression parameters, and A is is the dichotomised age: A = 0, if age < 55,
and A = 1, otherwise. The regression parameters were defined for blunt and
penetrating injuries in [5].

The analysis of actual survival against predicted probabilities is defined as
calibration, and a visualized relationship between values of these probabilities
is a calibration curve, see e.g. [22, 53]. An ideal calibration curve is a 45
degree line with zero intercept. In this light the calibration curve for TRISS
models has been found to deviate significantly from the ideal [28, 44].

It has been shown that the accuracy of TRISS models can be improved
by updating the model parameters on new data, see e.g. [8, 36]. This ap-
proach can be implemented efficiently when an appropriate model structure
is known. However in practice such a model is difficult to identify. When
goodness or fitness of a model can be measured in terms of its likelihood,
the model can be fitted to data with the likelihood maximization method.
In practice, this approach requires much effort to overcome the optimization
problems while the desired improvement cannot be guaranteed [16, 23, 2, 37].

Despite the problems, the accuracy of TRISS predictions has been found
acceptable when the types and severities of patients injuries are typical. How-
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ever, for cases with four or more injuries as well as with some atypical com-
binations of injuries, the accuracy could be improved [8, 27, 28].

It is highly desirable for practitioners to estimate the uncertainty in pre-
dictions of survival. In general, estimates of uncertainty are required to min-
imize risks of mistaken decisions and, in particular, to estimate confidence
intervals. These intervals can be accurately estimated when a predictive
probability density is fully known, but the desired estimates cannot be pro-
vided within a concept such as TRISS which employs a maximum likelihood
method to fit a logistic regression to data [43, 1].

The above problems motivated us to develop a Bayesian method for pre-
diction of survival. In our research we used the US National Trauma Data
Bank (NTDB) which is the major data source of records of injured patients
admitted to hospitals and emergency units; these data are available for re-
search from [12]. The NTDB data include information about a patients age,
gender, type and regions of injuries along with some clinical and background
information about a patients state. The NTDB also includes information
about TRISS prediction and outcome of care, alive or died, for each patient.
In our research we use well-known Decision Tree (DT) models which are
induced from given data in such a way that features which make a distin-
guishable contribution to the model outcome are selected. These features
make axis-parallel partitions, and as a result users find the DT models inter-
pretable [6, 18].

We tested the proposed Bayesian method on a set of patients registered
in the NTDB with multiple injuries. We expected that in such cases the
proposed method would significantly outperform the TRISS method. How-
ever, in this research we did not generalize our method to the entire NTDB
population including about 2 millions of patients because such a general-
ization would require much more intensive computational experiments. For
evaluation of our method, we developed a Bayesian calculator of survival as
a stand-alone application available from [51].

2. Related Work

In the related literature we found a number of machine learning and sim-
ulation methods which are competitive to conventional statistical methods.
Simulation was principally via Markov chain Monte Carlo (MCMC) meth-
ods, while ML methods included artificial neural networks and support vector
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machines which are well known for providing non-linear fitting of models to
data [3, 56].

The goodness-of-fit or calibration of predictive models produced by these
methods was measured in terms of least square error. As for conventional
statistical methods, the performance was measured in term of the receiver
operating characteristic curve (ROC), or more specifically, by the area under
this curve (AUC), see e.g. [18, 31]. The performance was also assessed in
terms of accuracy of classification or discrimination measured as the ability
of a model to discriminate survived patients from ones that died [27].

2.1. Machine Learning Methods

The study by Sujin et al[55] compared the mortality prediction models
built with different Machine Learning methods on a data set collected by the
University of Kentucky Hospital. The authors of this study compared the ar-
tificial neural networks, support vector machines, DT, and conventional logis-
tic regression models. The data set used for the experiments included 38,474
patients, information about which was represented by 41 variables. It was
reported that only 15 out of these variables made a significant contribution
to the prediction, including blood pressure, respiration rate, GCS, comor-
bidity, and blood serum composition. The best performance was achieved
with the DT model, AUC = 0.892, whilst the AUC for the artificial neu-
ral networks, support vector machines, and logistic regression models were
0.874, 0.876, and 0.871, respectively. All the methods were implemented in
the SPSS Clementine software [24].

In [52], an artificial neural network-based approach was described. This
approach was compared with a logistic regression model on 13,164 patients
whose physiological information was represented by 17 variables. Both the
neural networks and the regression models were built to provide non-linear
fits to the data, and their goodness-of-fit (or calibration) was evaluated in
terms of least square error. It was reported that the resultant neural network
model slightly outperformed the logistic regression in terms of AUC.

The authors of study [25] employed a probabilistic artificial neural net-
work for predicting mortality in emergency room. The network with 10 input
variables was trained with a genetic algorithm. The calibration was evalu-
ated using Hosmer-Lemeshow statistic. The study conducted on a data set
of 533 patients revealed that the performances of the neural network and
logistic regression models were comparable.
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In [40], such machine learning methods as Naive Bayesian classifier, DT,
support vector machine and artificial neural network were used for predicting
survival of burn patients. The authors reported that the prediction accuracies
of these methods were comparable. All the methods were implemented in
the Weka software [21]. The data were represented by 10 features, namely
age, gender, and percentages of burn in the eight body regions. The DT was
induced with the C4.5 algorithm [41].

The study by Clermont et al [11] compared an artificial neural network
method with a logistic regression model for predicting mortality in the in-
tensive care units. The study was carried out on 1,647 patient cases repre-
sented by 24 input features. The features included patient’s age, the values
of 16 physiologic variables including temperature, heart rate, blood pres-
sure, respiratory rate, oxygenation, composition of the blood serum, GCS,
as well as binary indicators for the absence or presence of chronic conditions.
The goodness-of-fit was evaluated using Hosmer-Lemeshow statistics, and
the comparisons were made in terms of classification accuracy as well as
in terms of AUC value. It was shown that the both methods had similar
performances.

In [2], an artificial neural network was compared against a TRISS model
on the UK Trauma data represented by 16 anatomical and physiological pre-
dictor variables. Both models provided the similar accuracy of classification,
but the TRISS model showed better performance in terms of AUC, 0.941 ver-
sus 0.921. The neural network model provided a better calibration in terms
of Hosmer-Lemeshow statistics, 58.3 versus 105.4. It was also found that the
head injury, age, and chest injury made the most important contribution to
the outcome, while respiration rate, heart rate, and systolic blood pressure
were underestimated (their contribution was less important). The authors
concluded that the TRISS model was adequate but not optimal.

A Bayesian belief network described in [54] was built to predict morbidity
and outcomes in wounded patients. Bayesian belief networks are known as
graphical models capable of explaining relationships between predictor vari-
ables; such models cannot be developed with conventional logistic regression
methods. The study conducted on a data set of 22 patients revealed that
the logistic regression outperformed the Bayesian belief networks in terms of
AUC. The described Bayesian belief network was developed to estimate one
of three types of outcomes: likelihood of infection, requirement for intensive
care, and impaired wound healing. The relationships between clinical vari-
ables and outcomes were identified using DecisionQ FasterAnalytics Bayesian
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modelling software[13]. It was found that the likelihood of infection could be
estimated using serum albumin, injury severity score, and initial requirement
for blood transfusion. The likelihood of intensive care admission was esti-
mated using the blood transfusion requirement, physiological variables and
serum biomarkers. Impaired wound healing was estimated using the indi-
cator of intensive care admission, serum biomarkers and estimated hospital
length of stay. The network consisted of 12 nodes, with two-to-three states
per node.

2.2. Simulation

The authors of review [30] found that conventional modelling techniques
used in critical care could be improved by simulation methods such as MCMC.
They analysed the usefulness and limitations of applications of these methods
presented in the related literature and concluded that simulation provided
practitioners with additional information on risks.

In [33], conventional and Bayesian logistic random effects regression mod-
els were compared for predicting outcomes on a data set of 8,509 patients
with Traumatic Brain Injury. The Bayesian method has been implemented in
statistical packages such as WinBUGS [34], MLwiN [42], MCMCglmm [20],
and SAS [46]. It was reported that both methods provided similar prediction
accuracy. The results of the Bayesian method were critically dependant on
the chosen priors as well as on the sampler’s settings which can affect the
convergence of the Markov Chain if given inappropriately.

3. Bayesian Predictions

When Bayesian inference is employed for predictions, it is typically as-
sumed that there exist a number of models which can appropriately approx-
imate the relationship between predictor variables and output variable (or
outcome) observed in given data. Given models with parameters, we can fit
them to the data. It is most often the case that none of the models describes
the true relationship between input and output variables. However, we as-
sume that averaging over the models could result in more accurate approxi-
mation to the true relationship. The most efficient averaging over models is
achieved within the Bayesian methodology. However, when Bayesian meth-
ods are applied to real data, a number of problems are raised. One specific
problem we address in the paper is associated with Bayesian averaging over
hierarchical models, such as DTs.
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When DT models are collected in an ensemble, for interpretation purpose
a single DT model with Maximum a Posterior likelihood can be selected as
described in [10]. However our technique proposed in [47] for interpretation
of an ensemble of DT models has been capable of finding a single DT model
providing a better accuracy of predicting survival probabilities.

The methodology of Bayesian averaging over DT models has been made
computationally feasible with the MCMC method [9, 14]. This method aims
to explore a posterior density of model parameters by making random walk
proposals. The desired density is approximated by drawing samples from
areas with high posterior density of the model parameters (so-called areas of
interest).

In the case of DT models, a model parameter space is often of variable
size, and the MCMC method is extended to Reversible Jump (RJ) [19]. The
desired approximation is then achieved when the RJ MCMC algorithm can
explore all areas of the posterior density in a model parameter space of a
variable size. However, a posterior density function is often multimodal and
the detailed exploration of the areas of interest cannot be achieved in a
reasonable time, see e.g. [43]. This affects the accuracy of approximation as
the Bayesian model averaging tends to act more as model selection [17, 14].

In practice, when DT models (and hence a model parameter space) are
large, results of Bayesian averaging are critically dependent on prior informa-
tion as shown in [14, 43]. When prior information is available, the averaging
is mostly done over areas of high posterior, and the estimates of the desired
predictive density are likely to be accurate. However, when prior information
is absent, the areas of possible interest cannot be specified and hence detailed
exploration may not be possible in a reasonable time [14, 45]. As a result, the
MCMC sampler cannot explore all possible areas of interest proportionally
to the posterior density of the parameters.

One possible reason for the above disproportion is that the RJ MCMC
algorithm tends to simulate samples from an oversized model parameter space
[9, 14]. In our previous work we attempted to reduce factors that cause the
RJ MCMC to sample from overgrown DT models and proposed a sweeping
strategy [48]. In the experiments on the benchmark problems, we described
in [49], this strategy has been shown more efficient than the restarting [9]
and restricting [14] MCMC strategies. In these experiments the proposed
strategy also outperformed the conventional random forest [15].

In our previous research, we also observed that when prior information
on predictors was absent, the posterior density cannot be explored in detail,
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and some DT models were disproportionally sampled [26]. When in the
post-analysis phase we evaluated the frequencies of using predictor variables
in the DT models, we found that some predictors were employed rarely. We
assumed that these predictors made a weak contribution to the outcome.
When we removed DT models which explored such weak predictors from the
ensemble, we observed a decrease in entropy of the model mix. The fact of
decreasing entropy has been proven as an indicator of improving estimates
of the predictive density, see e.g. [32].

The above analysis motivated us to extend the methodology of Bayesian
averaging over DT models for predicting survival probabilities. We attempt
to improve the RJ MCMC method used for implementation of the Bayesian
methodology. We are also interested in exploring the importance of the pre-
dictive variables within the proposed method, and expect that the posterior
information on predictors can be useful to optimize existing procedures of
scoring injury severities.

The methodology of Bayesian averaging over DT models is well developed
and described in the literature (see e.g. [9, 14]). The details of the Bayesian
method and the proposed MCMC strategy are described in the Appendix.

In the following sections we explore the proposed strategy on a data set of
patients from the NTDB. We attempt to improve the accuracy of estimates
of predictive density.

4. Trauma Data

We used data on patients registered in the NTDB who were alive on ar-
rival at hospitals, and whose survival probabilities have been calculated with
the TRISS method. Table 1 shows the screening tests denoted as variables
x1, . . . , x17 which were used for the TRISS predictions. Variables x1 (age),
x4 (blood pressure), and x5 (respiration rate) are continuous, and the others
are categorical. The predicted output is the discharge status, y = {0, 1}.

Figure 1 shows that the TRISS predictions and the observed survival
probabilities progressively decrease with the number of injuries ranging from
1 to 20.

The actual survival of patients with one injury was 0.98 while for patients
with 20 injuries it was 0.71. The proportions of these patients were 0.17 and
0.0002, respectively. We see that the predicted values are below the actual
frequencies and that the difference between their values, or prediction error,
tends to increase with the number of injuries obtained by a patient.

8



Table 1: Screening Tests

Test Name Range

x1 Age 0-99
x2 Gender female, male
x3 Injury type penetrating, blunt, burn
x4 Blood pressure 0-299
x5 Respiration rate 0-59
x6 GCS Eye 1-5
x7 GCS Verbal 1-5
x8 GCS Motor 1-6
x9 Head severity 0-6
x10 Face severity 0-6
x11 Neck severity 0-6
x12 Thorax severity 0-6
x13 Spine severity 0-6
x14 Abdomen severity 0-6
x15 Upper extremity severity 0-6
x16 Lower extremity severity 0-6
x17 External severity 0-6
y Discharge status alive, dead

The majority of patients were registered with 1 to 3 injuries and the
TRISS predictions for this largest group of patients are close to the observed
survival. The proportions of patients with a larger number of injuries are
smaller and so the TRISS model does not fit these data well. In our research
we attempt to improve the accuracy of predictions for such groups of pa-
tients. In particular, we target a group which includes all the 14,840 patients
registered in the NTDB with 11 to 15 injuries. This set does not include
about 2% of patient’s records we found with one or more missing values as
we did not attempt to fill the absent values in this research.

Figure 2 shows the calibration curve of the TRISS model for this group of
patients. We see that the observed probabilities are significantly higher than
the predicted values. The difference is largest for patients with predicted
survival between 0.1 to 0.5.

We can evaluate quantitatively the goodness-of-fit (or calibration) of the
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Figure 1: Observed and predicted survival probabilities for patients with differ-
ent numbers of injuries. The TRISS predictions and the observed survival probabilities

progressively decrease with the number of injuries ranging from 1 to 20.

TRISS model for this group of patients by using the Hosmer-Lemeshow (HL)
statistic used in the related literature [27, 4, 53]. When we split the data
into 30 equally sized subsets, its value was 3680.5.

5. Experiments

We used the above data to test the proposed MCMC simulation strat-
egy. The experiments were run within 3-fold cross-validation. We compared
the TRISS and Bayesian predictions in terms of classification accuracy, and
Hosmer-Lemeshow statistic.

The results were obtained using settings which allowed us to achieve a
stationary distribution of the Markov chain and an efficient acceptance rate,
while DT models were of a reasonable size. These settings are described in
the Appendix.

Figure 3 shows the calibration curve for the proposed Bayesian model.
We can see that the Bayesian predictions are much closer to the observed
survival rate than the TRISS predictions shown in Figure 2. The value of the
Hosmer-Lemeshow statistic was significantly reduced from 3680.5 to 93.4.

We compared the classification accuracies of the Bayesian and TRISS
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Figure 2: Calibration curve for TRISS model for patients with 11-15 injuries.
The observed probabilities of survival are significantly higher than the predicted values.

The difference is largest for patients with predicted survival between 0.1 to 0.5.

methods. Table 2 shows the classification accuracy (AC), true positive (TP),
false negative (FN), true negative (TN), false positive (FP), sensitivity (SE),
and specificity (SP) which were calculated by assigning the outcome alive if
a patient’s survival prediction is higher than 0.5. We can observe that the
accuracy of the Bayesian method is higher by 6%. Having a significantly
higher FN rate (0.129 versus 0.024), the TRISS model provides the better
TN rate (0.121 versus 0.078). Using the standard bootstrap method, we
found that the p-values were less than 0.001 for all the statistical tests.

Table 2 shows that the accuracy of the proposed Bayesian method is
higher than that of the TRISS method by approx 6%. This part of classi-
fication error is reducible, and this error appears when a decision threshold
t used for classification differs from the optimal and thus becomes biased.
Setting threshold t below the optimal value decreases the FP and increases
the FN rates and, vice versa, setting the t above the optimal value increases
the false positive and decreases the false negative rates. Therefore a value of
t can be set so as to find a compromise between the SE and SP of a diag-
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Figure 3: Calibration curve for the proposed Bayesian model. The Bayesian

predictions are much closer to the observed survival rate than the TRISS predictions.

nostic method, calculated as SE=TP/(TP+FN) and SP = TN/(TN+FP).
The sensitivity, SE, shows how the diagnostic method is sensitive to posi-
tive results, and the specificity, SP, shows how the method specifies negative
results. In our case, positive results are associated with the conditions of a
”died” patient, and negative with those of an ”alive” patient.

The sensitivity of the Bayesian method shown in Table 2 for the threshold
t = 0.5 is 0.4868, that is less than the 0.7588 provided by the TRISS method.
To achieve a similar sensitivity rate, we can increase the threshold t. For
example, we can set t = 0.74 to increase the sensitivity to 0.7496, accepting
a small decrease in the accuracy from 0.8936 to 0.8671, as shown in the third
line of Table 2. In this case the differences between the values of confusion
matrices for the Bayesian and TRISS methods remain significant with p-value
< 0.001.

We also tested the restarting MCMC strategy of sampling DT models
[9, 14] on the same set of patients. The Hosmer-Lemeshow statistic was 17%
higher on average than that for the proposed method. The classification
accuracy was not significantly lower, however the uncertainty of estimates
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Table 2: Performances of the TRISS and Bayesian Model (BM) with thresholds
t

Model AC TP FN TN FP SE SP

TRISS 0.832 0.121 0.038 0.708 0.129 0.759 0.846
BM, t = 0.50 0.894 0.078 0.082 0.816 0.024 0.487 0.971
BM, t = 0.74 0.867 0.120 0.040 0.747 0.093 0.750 0.890

of the predictive density in terms of entropy of model mixing was signifi-
cantly higher than that for the proposed method. This allows us to conclude
that the proposed MCMC simulation strategy is capable of providing better
conditions for Bayesian averaging over DT models.

6. Importance of Screening Tests

The ensemble of DT models collected during MCMC simulation allows
us to estimate the contribution of the predictive variables (screening tests)
to the outcome. The importance of the variables can be estimated in terms
of frequencies of using them in the ensemble. These frequencies (or posterior
probabilities) are shown in Table 3.

We can see that the most important contribution is made by the variables
x4 (Blood pressure), x9 (Head severity), and x15 (Upper extremity severity).
By contrast, the variables x5 (Respiration rate), x11 (Neck severity), and x17

(External severity) are least important, and therefore their contribution can
be insignificant for predicting the survival of patients in the target group.

7. Bayesian Calculator of Survival Probabilities

For evaluating the proposed Bayesian method, we developed a Calculator
for predicting survival and tested it on the target data set described in Sec-
tion 4. The Calculator allows the user to compare the Bayesian and TRISS
predictions for a random patient drawn from the data set. The comparison
is made in terms of prediction accuracy as described in Section 5. The user
can also input new values of the screening tests to make predictions.

It is important that the Calculator allows the user to estimate the pre-
dictive probability density in order to assess the confidence intervals, which
are associated with risk of making mistaken decisions. These estimates are
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Table 3: Importance of Screening Tests

Test Name Importance

x4 Blood pressure 0.157
x9 Head severity 0.122
x15 Upper extremity severity 0.115
x1 Age 0.107
x13 Spine severity 0.093
x12 Thorax severity 0.081
x16 Lower extremity severity 0.064
x2 Gender 0.053
x10 Face severity 0.052
x8 GCS Motor 0.050
x14 Abdomen severity 0.045
x6 GCS Eye 0.018
x7 GCS Verbal 0.014
x3 Injury type 0.014
x5 Respiration rate 0.006
x11 Neck severity 0.004
x17 External severity 0.003

made individually for each patient, whilst the TRISS method is unable to
provide such estimates.

Figure 4 presents a screenshot of the calculator interface. The first column
in the table Screening Tests shows the 17 screening tests that are described
in Table 1. The second column shows the ranges of these tests. The third
column displays values which the user can input or edit within the specified
ranges.

The graph Predicted Probabilities of Survival displays the probabilities
of survival for a patient with the given screening tests. Each of the predicted
probabilities can be interpreted as a hypothesis which is tested on the data
set in the context of Bayesian inference. The bars on the graph show the
observed probabilities of these hypotheses. The estimates of the predictive
density shown in the graph provide all the information required to calculate
the confidence intervals.

Consider the example shown in Figure 4 for patient No 11311 with TRISS
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Figure 4: Bayesian Calculator Screenshot. The table Screening Tests shows the 17

screening tests and the values of these tests which the user can input or edit within the

specified ranges. The graph Predicted Probabilities of Survival shows the probabilities of

survival for a patient. The estimates of the predictive density shown in the graph provide

the information required to calculate the confidence intervals.

survival probability 0.680 and outcome alive. For this patient, the Calcula-
tor predicts a survival probability of 0.605. As this value exceeds 0.5, the
predicted outcome is alive. The locations and heights of the bars shown in
the graph present the estimates of predictive density. All the bars on the
left from the 0.5 mark on the x-axis represent low probabilities of survival
associated with the outcome died whereas all the bars on the right represent
high probabilities of survival. Observing these probabilities, the user can
analyse the risk for this patient.

In this example, the sum over the first bars (on the left from 0.5) is
smaller than the sum over the bars on the right. The substantial proportion
of the former bars warns the user about a high death risk attached to this
prediction. These bars make the predicted probability distribution wider and
the uncertainty interval larger.

In addition to a predicted probability of survival, the user can analyse the
confidence interval calculated for a given patient. The lengths of the intervals
can be associated with the difficulty of treatment for patients – the larger the
interval, the more difficult is the case. We also observed some bars with unex-
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pectedly low values of the observed probabilities, see the bar located around
0.51 in the graph, which is a case of a multimodal distribution. The user can
conclude that patients with such predictions require special attention, and
an investigation of similar cases could provide additional information about
possible causes of the uncertainty.

The Calculator can be downloaded from a web page [51] to be installed
and run on a Windows XP 32-bit or Linux 64-bit machine The Bayesian
risk assessments are computationally expensive, and so a high performance
machine with a 64-bit processor and 4 GB memory is recommended. The
Calculator can be used for evaluation purposes and allows users to observe
both the predictive distribution and the calculated confidence intervals.

8. Discussion

In the related publications reviewed in Section 2, the main Machine Learn-
ing methods (Artificial Neural Networks, Support Vector Machines, and De-
cision Trees) have not been found to outperform the TRISS method in terms
of accuracy of predicting survival on the trauma data. In the Introduction
we noted that the Machine Learning methods cannot provide an assessment
of the predictive posterior distribution as proposed in our work. None of
these methods is currently used in emergency care. It is important to note
also that the use of Machine Learning methods (in particular Support Vec-
tor Machines) requires careful and accurate setting of parameters (such as
kernels) as well as of a proper model structure. The use of Artificial Neural
Networks requires using a proper back-propagation algorithm and its learn-
ing parameters. Finding proper settings typically requires the analysis of
results of experiments run with different parameters of a machine Learning
method and a model structure. However when such experiments are done,
one might question whether the settings were explored within only a limited
range of possible values. This is what we called the problem of likelihood
maximization.

In particular, we found that a single classification tree model [6], con-
structed with the Matlab Statistics Toolbox [35], can provide only the fre-
quentist estimation of survival, although its discrimination performance was
comparable with that of the proposed method.

As we discussed in the Introduction, when a model structure is defined
properly we can use the likelihood maximization method to fit the model to
a given data set. Optimal results will be guaranteed if the model likelihood
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function is unimodal. However, often we do not know whether our model
structure is given properly or whether its likelihood function is unimodal. A
more practical scenario is when we have a few models, each of which provides
a suitable goodness-of-fit in a particular area of the model parameter space.
The use of Bayesian methodology in such cases allows us to average outcomes
of the models according to their likelihood values and given prior information.
The Bayesian average has been shown improving results even if there is no
prior information on models and the so-called uniform (or flat) prior is used,
see e.g. [14]. The improvement is, however, achievable if the models do not
suffer from the overfitting problem as discussed in [17]. Therefore the average
provides a practical way to combine prior information (if available) with a
set of models which the user could consider competitive to a single model
believed to be of a suitable structure. In this context, the strength of the
Bayesian method is in averaging over possible models regardless of how much
we know about a proper model structure and its parameters.

When a single DT model is built, its likelihood is estimated for a new
split made by an assigned feature. If the likelihood is increased, the new
split is included in the model, and the assigned feature is assumed making
a distinguishable contribution to the classification. Otherwise, the new split
is unlikely included in the model as the splitting feature is unable to make a
significant contribution. Therefore, a resultant DT model includes only fea-
tures that make a significant contribution. The importance of these features
cannot be evaluated within a single DT. However, the MCMC method allows
us to generate DT models of different configurations, and so we can calculate
the frequencies of using the features in these models; these frequencies allow
us to estimate the desired feature importance.

9. Conclusion

We analysed conventional TRISS-based regression models for predicting
survival probabilities of injured patients. In the related literature we found
firstly that the prediction accuracy of the TRISS method can be improved
and secondly that such attempts have been made by employing the ML and
simulation methods. However, we have not found evidences that any of these
attempts significantly improved the TRISS method.

Based on a regression model, the TRISS method cannot provide the esti-
mates of predictive probability density that is required to evaluate confidence
intervals. The ISS, which is used as an aggregated predictor for TRISS, is ob-
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served with unexplainable fluctuations and so may be misleading. Moreover
practitioners find that the TRISS models are difficult to interpret. This moti-
vated us to explore Bayesian model averaging over DT models for predicting
survival.

In this paper, we analysed the implementation of the Bayesian method-
ology with RJ MCMC simulation and found that in the burn-in simulation
phase DT models tend to grow excessively. The existing MCMC strategies
were unable to manage the excessive growth efficiently in terms of diversity
of model mixing. Moreover these strategies require additional settings which
have to be adjusted experimentally.

To provide better conditions for detailed exploration of the posterior den-
sity during the simulation, we proposed a sweeping strategy. This strategy
was tested on a large set of patients registered in the NTDB with multi-
ple injuries. The results showed that Bayesian model averaging significantly
outperforms the TRISS-based model in terms of goodness-of-fit and classifi-
cation accuracy. Moreover, the proposed strategy has slightly outperformed
the conventional MCMC strategy.

The use of DT models for the Bayesian averaging allowed us to estimate
the contribution of each screening test to the outcome. This is a reasonable
argument for practitioners to use the DT models discussed in Section 3 in the
context of the transparency of models and their ability to select important
explanatory variables.

The above results allow us to conclude that the proposed method is ca-
pable of improving the accuracy of predictions for survival of a patient with
multiple injuries. The desired confidence intervals can be accurately esti-
mated for each patient. Information about the importance of screening tests
could be useful for cost analysis and for further improvement of the prediction
accuracy.
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Appendix. Bayesian Averaging over Decision Trees

MCMC implementation of the Bayesian Method

When averaging is made over DT models, the Bayesian formalism can be
outlined as follows [14]. First we specify the parameters Θ of a DT model
we aim to induce from the labelled data D represented by an m-dimensional
input vector x. The outcome of a DT model is y = 1, . . . , C, where C ≥ 2 is
the number of categories to one of which a DT model assigns a given input
x.

Given models M1, . . . ,ML with parameters Θ1, . . . ,ΘL, we can write the
desired predictive distribution as an integral over the extended parameter
vector Θ = (Θ1, . . . ,ΘL):

p(y|x,D) =

∫

Θ

p(y|x,Θ)p(Θ|D)dΘ =

L
∑

i=1

p(y|x,Θi)p(Θi|Mi,D)p(Mi), (2)

were p(Mi) is the prior distribution of model Mi, p(Θi|Mi,D) is the posterior
density of Θi given model Mi and data D, and p(y|x,Θi) is the posterior
predictive density given the parameters Θi.

The above integral is analytically tractable only in trivial cases when the
distribution p(Θ|D) is known. In practice, we can estimate this distribution
by drawing N random samples Θ(1), . . . ,Θ(N) from the posterior distribution
p(Θ|D), and then we can write:

p(y|x,D) ≈
N
∑

i=1

p(y|x,Θ(i),D)p(Θ(i)|D) =
1

N

N
∑

i=1

p(y|x,Θ(i),D). (3)

The above approximation is achieved with the MCMC method of simula-
tion or stochastic integration. The accurate approximation is achieved when
a Markov chain becomes a random sequence with a stationary probability
distribution. Then according to Eq. (3), we can draw the random samples
and calculate the desired predictive density.

Figure 5 shows an example of a DT model consisting of two splitting
nodes, s1 and s2, and three terminal nodes t1, . . . , t3. The first node, s1,
called the root, splits the entire data into two disjoint subsets so that data
samples from one subset fall into node s2 via the left branch, and samples
from the other subset fall into the terminal node t2 via the right branch. The
node s2 further partitions the data samples which fall into the terminals t2 or
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Figure 5: An example of DT model. The DT consists of two splitting nodes s1, s2
and three terminal nodes t1, . . . , t3.

t3 via the left and right branches. Finally one of the terminal nodes assigns
the given input to one of the given classes.

In general, a binary DT with k terminals consists of (k − 1) splitting
nodes, si, i = 1, . . . , (k − 1). The node si, has parameters including: the
node position in the DT model, spi , p = 1, . . . , (k − 1), an input variable
svi , v = 1, . . . , m, and a threshold sqi , q ∈ (min(xv), max(xv)). The node si
tests the vth variable against the threshold q and assigns the input x to the
left branch if xv < q, or to the right one otherwise. A terminal node ti assigns
the input x to class c with a probability P c

i , i = 1, . . . , k.
Consequently, a DT model is described by a vector of parameters, Θ,

consisting of two parts. The first part includes the following parameters of
nodes si: positions spi , variables svi , and thresholds sqi , i = 1, . . . , (k − 1).
The second part includes the probabilities P c

i , c = 1, . . . , C for each terminal
node i, i = 1, . . . , k.

DT models whose nodes split data into two disjoint subsets are called
binary. The number of possible configurations of binary DTs with k terminal
nodes, Sk, is determined by the Catalan number, see e.g. [29].

The number Sk grows exponentially with k and becomes very large for
DTs with relatively small k. For example, for k = 25, Sk becomes a number
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to the power of 12.
In practice, to explain data we need to induce DT models of a reasonable

size; the size of a DT model is defined by the number of its terminal nodes, k.
Oversized DT models are difficult to interpret, and moreover they are prone
to overfit data.

The size of DT models is dependent on the number of data points, pmin,
allowed to be in terminal nodes – setting a smaller pmin increases the size,
while setting a greater pmin decreases the size. In most cases, prior informa-
tion on the size of DT models is unavailable, and a suitable pmin has to be
found empirically.

In practice, the size of DT models is unknown or can be given within a
range. In such cases, areas of interest (high posterior density of parameters
Θ), which have to be explored in Eq. 3, are of variable size, and MCMC has
to be extended to Reversible Jump (RJ) proposed in [19].

Prior information about input variables, such as importance of variables
x1, . . . , xm, is also often unknown. In such cases, we can assign a variable v for
the the node si to be drawn randomly from the uniform discrete distribution,
v ∼ U(1, m). Similarly, a threshold q can be drawn from the uniform discrete
distribution, q ∼ U(min(xv), max(xv)).

It has been shown that the above priors are sufficient in order to build and
explore DT models of different configurations within the RJ MCMC method
[9, 14]. For binary DT models, the number of possible configurations, Sk,
is defined by Eq. ??. From this equation, we see that the larger the k, the
larger is the number Sk. So we expect that MCMC algorithm will explore
possible DT configurations of size k with probabilities proportional to Sk.

RJ MCMC for Averaging over DT Models

The RJ MCMC method has been implemented for Bayesian averaging
over DT models of variable size [9, 14, 50]. To explore DT models it has
been proposed to use the birth, death, change-split, and change-rule moves
made with Metropolis-Hastings (MH) sampler.

The first two, birth and death, moves were proposed to reversibly change
the number of nodes in a DT model (or the dimensionality of the model pa-
rameter vector Θ). The third and fourth moves, change-split and change-rule,
were aimed at changing the parameters Θ within a current dimensionality.
The change-split move replaces a variable v in a chosen DT node si, while
the change-rule move modifies a threshold q in node si.
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The change-split moves are aimed at making large changes in the model
parameters in order to potentially increase the chance of sampling from ar-
eas of interest. Such moves are intended to disrupt a long sequence of the
posterior samples drawn from a local area of interest.

In contrast, the change-rule moves are aimed at making small changes in
the parameters to let MCMC explore a surrounding area in detail. These
moves are made more frequently than the others.

The MH sampler starts with a DT consisting of one splitting node whose
parameter Θ is assigned within the predefined priors. Making the above
moves, the sampler attempts to grow the DT model to a reasonable size
by fitting its parameters Θ to the data. The fitness or likelihood of DT
models is gradually increased and then becomes oscillatory around some
value. This phase, named the burn-in, has to be preset sufficiently long in
order to achieve a stationary distribution of the Markov chain. When the
Markov chain becomes stationary, the samples of the posterior distribution
are collected to approximate the desired predictive distribution – this phase
is called post burn-in.

The above moves are made with the given proposal probabilities. Their
values are dependent on the complexity of a classification problem – more
complex problems require larger DT models. To grow such models, the
proposal probabilities for the death and birth moves are set to larger values.
In general, there is no guidance for setting proper parameters of the MH
sampler, and their values have to be found empirically [9, 14, 50].

The proposed change is accepted according to the MH rule, see e.g. [14]:

α = min

(

1,
p(D|Θp)p(Θp)

p(D|Θ)p(Θ)

q(Θ|Θp)

q(Θp|Θ)

)

, (4)

where p(D|Θp) and p(D|Θ) are the likelihoods of DT models with the pro-
posed and current parameters Θp and Θ, respectively; p(Θp) and p(Θ) are
the prior distributions of the parameters; q(Θp|Θ) is the conditional distri-
butions of moving from the current parameter Θ to a proposed parameter Θp

(so-called transition distribution); and q(Θ|Θp) is the density of the reverse
transition.

When the birth or death move changes a dimensionality of a DT model,
the acceptance rule needs to count a proposal ratio, R. This ratio is de-
pendent on the number of possible configurations of DT models, Sk, and so
we need to count R to keep the Markov chain reversible during the MCMC
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simulation. According to [14], the reversibility is kept when the following
condition is met:

p(Θp|D)q(Θ|Θp) = p(Θ|D)q(Θp|Θ). (5)

The above density p(Θ|D) is

p(Θ|D) =

[

k−1
∏

i

1

N(svi )

1

m

]

k

Sk

1

K
, (6)

where N(svi ) is the total number of possible splitting rules for variable svi ;
K is the maximal number of terminals allowed for DT models induced from
data.

The transition distributions in Eq. 5 can be written as follows:

q(Θp|Θ) =
bk
k

1

N(svi )

1

m
, (7)

q(Θ|Θp) =
dk+1

DQ

, (8)

where dk and bk are the proposal probabilities of death and birth moves,
respectively, and DQ is the number of splitting nodes whose both branches
are terminals.

For the birth move, the Θp is a (k+ 1)-dimensional vector, and therefore
the reversibility is kept when Rb is

Rb =
p(Θp|D)q(Θ|Θp)

p(Θ|D)q(Θp|Θ)
, (9)

The above definitions Eq. 7 and Eq. 8 allow us to rewrite the ratio Rb as
follows:

Rb =
dk+1

bk

k

DQ+1

Sk

Sk+1

. (10)

Taking into account that DQ < k and Sk < Sk+1, we see that the ratio Rb

ranges between 0 and 1 ,
Similarly, we can write the ratio Rd for the death move:

Rd =
bk
dk−1

DQ

k − 1

Sk

Sk−1
. (11)
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For the above DQ, the ratio Rb : Rb ≥ 1.
We can see that the ratios Rb and Rd take different values when a model

parameter space is of variable dimensionality. This allows the MH sampler to
keep the desired reversibility and explore a parameter space proportionally
to the numbers of configurations Sk.

Problems of Sampling DT models

DT models are multilevel hierarchical structures, as shown in Figure 5.
Nodes located at a lower hierarchical level are strongly dependent on the pre-
decessor nodes located at upper level. In such hierarchical structures, changes
proposed by the MH sampler can significantly redistribute data points falling
into DT terminal nodes. The change made in a node close to the DT root is
most influential on the distribution. The changes in terminal nodes can be
so significant that the likelihood of the DT model is decreased – the closer
the node is to the root, the more significant is the change in distribution of
data points. In most cases such proposals are rejected. In contrast, a change
proposed in a node close to DT terminals is most likely to be accepted as such
a change will insignificantly redistribute data samples in the DT terminals.
As a result, the MH sampler will only explore limited configurations of DT
models [9, 14].

Another problem occurs when the MH algorithm aims to sample large DT
models. When a DT model is small and consists of a small number of terminal
nodes, the number of data samples falling into the nodes is expected to be
much larger than the given minimal number of points, pmin. However, when
a DT has grown large, the number of data points is decreased so that further
partitions become unavailable. This means that birth moves cannot be made
until a death move merges two terminal nodes into one node. As a result the
MH algorithm will sample a series of DT models with similar distributions of
data samples over terminal nodes. Such series affect the diversity of samples
from the posterior distribution and, therefore, the accuracy of approximation
of the predictive distribution [14, 48].

Another negative effect is that unavailable moves degrade the given pro-
posal probabilities of birth and change moves. When a move is unavailable,
the MH algorithm will repeat the current sample, which reduces the diversity
of model mixing [14].

In most cases, the number pmin is found from experiments – complex
problems typically require a small pmin to allow growth of large DT mod-
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els. However, an inappropriately small pmin leads to excessive growth of DT
models.

Growing a DT model, the MH algorithm makes birth moves and almost
each birth move increases the likelihood of the model. The MH algorithm
accepts these moves and the DT model grows rapidly. The growth of the
model continues while the number of data samples in its terminal nodes
exceeds pmin and the likelihood of a proposed model remains acceptable.
During this period, the dimensionality of the DT model increases rapidly,
and the sampler cannot explore the posterior within each dimensionality
in detail. It is unlikely that samples will be drawn from areas of highest
posterior density [9, 14].

The growth of DT models is typically monitored, and the modeller can
reduce excessive growth by increasing pmin as well as by setting a smaller
value of the proposal probability for the birth moves.

To mitigate the negative effect of fast growing DT models, Chipman et al
[9] have proposed a restarting strategy. This strategy allows a DT model to
grow within a limited period in multiple runs. The average over all models
grown in these runs produces a better approximation accuracy when the
duration of the growth period and the number of the runs are properly set.

A similar idea of restricting the growth of DT models has been proposed
by Denison et al [14]. The growth is restricted within a given interval to
allow the MH sampler to explore a model parameter space in detail. Both
strategies require additional settings for the MH sampler, which have to be
found experimentally.

Sweeping Strategy

As an alternative to the restricting strategies, the RJ MCMC method
could be modified so as to reduce the number of replications of samples from
the posterior density. In our previous work [48], we proposed a sweeping
strategy aimed at reducing the number of unavailable moves.

For making a change-split move, the sweeping strategy assigns a new
variable xv, v ∼ U(1, m), and a threshold q:

q ∼ U(a, b), (12)

where U(a, b) is a uniform distribution on the interval between a = min(xv,j)
and b = max(xv,j) defined by Np data points falling into the chosen node,
where j = 1, . . . , Np.

30



For making change-rule moves, a new threshold q′ is drawn from a re-
stricted Gaussian distribution:

q′ ∼ N ′(q, σ2, a, b), (13)

with mean q and given proposal variance σ2 on the interval (a, b).
The proposed move can be made so that one or more terminal nodes in

a DT model will contain fewer data points than pmin. If this happens in
terminal nodes with a common parent node, these terminals are recombined
into one terminal node, and the MH sampler counts such a move as a death
move. If however there are two or more such terminals with different par-
ents, the algorithm will assign the proposal unavailable in order to keep the
reversibility of the Markov chain.

Similarly to a change move, a birth move assigns a new splitting node
with parameters drawn from the given prior. A new splitting variable xv is
drawn from a uniform distribution, v ∼ U(1, m), and a new threshold q is
assigned as described by Eq. 12.

In our experiments, we observed that a MH sampler using the above
prior on change moves proposes fewer unavailable moves and, therefore, the
sampler accepts fewer replications of a current parameter vector Θ. Taking
this into account, we hypothesise that a reduced number of the replications
collected during the MCMC simulation will improve the diversity of model
mixing.

In support of this hypothesis, in our previous experiments [49] on the
benchmark problems, we observed that the MH sampler using the above
prior significantly reduced the dimensionality of parameter vector Θ as well
as the uncertainty in estimates of predictive density. The above strategy,
named sweeping in [48], is applied to the Markov chain in both burn-in and
post burn-in phases.

Let a MH sampler make the birth, death, and change moves as described
in Section 9. Then we can describe the main steps of the sweeping strategy
as follow.

• Birth move:

1. Select a random terminal node i ∼ U(1, k) and count the number
of data samples, p, in this node

2. If p > 2pmin then assign a variable, v ∼ U(1, m) and threshold
given by Eq. 12 to a new splitting node
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3. Count the numbers of data samples, p1 and p2, split by the new
node

4. If (p1 ≥ pmin)&(p2 ≥ pmin) let the MH sampler check the accep-
tance of the proposal

• Change move (change-split or change-rule):

1. Select a random splitting node i ∼ U(1, k−1) and read its variable
v and threshold q

2. For change-split assign a new variable, v′ ∼ U(1, m)

3. For change-rule assign a new threshold q′ defined by Eq. 13

4. Apply the proposed change to the DT

5. Count the number of terminal nodes, n0, with pi < pmin

6. If n0 == 1, then apply the death move

7. If n0 > 1, then assign the proposal unavailable and draw a new
sample

8. Let MH sampler check acceptance of the proposal

Here, n0 =
∑k

i I(pi ≤ pmin), where I(·) =

{

1 if pi ≤ pmin,

0 otherwise.

Setting for the Metropolis-Hastings Sampler

The settings include the following parameters of the sampler:

1. the proposal probabilities for birth, death, change-split, and change-
rule moves, Pr

2. the proposal distribution, a Gaussian distribution with the zero mean
and standard deviation s

3. the numbers of burn-in and post burn-in samples, nb and np, respec-
tively

4. the sampling rate of the Markov chain, sr

5. the minimal number of data points allowed in terminal nodes, pmin

The parameters Pr, s, and nb were the most significant factors that im-
pact on the convergence of the Markov chain, and so we tested a number
of variants of these parameters to achieve an acceptable convergence. The
sampling rate sr was used to elevate the independence of samples drawn from
the Markov chain during the post burn-in phase. At the second stage, the
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settings s and pmin have been refined to let the MCMC algorithm efficiently
sample the posterior distribution of Θ keeping the size of DT models rea-
sonably small; the efficient sampling is achieved when the acceptance rate
ranges between 0.25 and 0.5. The use of such a two-stage technique allowed
us to reduce the number of possible combinations of the settings to a realistic
number not exceeding 10.

The best results were obtained with the following settings. The proba-
bilities for the birth, death, change-split and change-rule moves were Pr =
(0.2, 0.2, 0.1, 0.5), respectively. The proposal distribution was a Gaussian
with s = 1.0. The numbers of samples were nb = 20, 000 and np = 5, 000,
and the number of data points was pmin = 10.
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