12,039 research outputs found

    The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI

    Get PDF
    After generalizing the Archimedean property of real numbers in such a way as to make it adaptable to non-numeric structures, we demonstrate that the real numbers cannot be used to accurately measure non-Archimedean structures. We argue that, since an agent with Artificial General Intelligence (AGI) should have no problem engaging in tasks that inherently involve non-Archimedean rewards, and since traditional reinforcement learning rewards are real numbers, therefore traditional reinforcement learning probably will not lead to AGI. We indicate two possible ways traditional reinforcement learning could be altered to remove this roadblock

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    amsrpm: Robust Point Matching for Retention Time Aligment of LC/MS Data with R

    Get PDF
    Proteomics is the study of the abundance, function and dynamics of all proteins present in a living organism, and mass spectrometry (MS) has become its most important tool due to its unmatched sensitivity, resolution and potential for high-throughput experimentation. A frequently used variant of mass spectrometry is coupled with liquid chromatography (LC) and is denoted as "LC/MS". It produces two-dimensional raw data, where significant distortions along one of the dimensions can occur between different runs on the same instrument, and between instruments. A compensation of these distortions is required to allow for comparisons between and inference based on different experiments. This article introduces the amsrpm software package. It implements a variant of the Robust Point Matching (RPM) algorithm that is tailored for the alignment of LC and LC/MS experiments. Problem-specific enhancements include a specialized dissimilarity measure, and means to enforce smoothness and monotonicity of the estimated transformation function. The algorithm does not rely on pre-specified landmarks, it is insensitive towards outliers and capable of modeling nonlinear distortions. Its usefulness is demonstrated using both simulated and experimental data. The software is available as an open source package for the statistical programming language R.

    Sparse Matrix Approach in Neural Networks for Effective Medical Data Sets Classifications

    Get PDF
    In this paper, a hybrid intelligent system that consists of the sparse matrix approach incorporated in neural network learning model as a decision support tool for medical data classification is presented. The main objective of this research is to develop an effective intelligent system that can be used by medical practitioners to accelerate diagnosis and treatment processes. The sparse matrix approach incorporated in neural network learning algorithm for scalability, minimize higher memory storage capacity usage, enhancing implementation time and speed up the analysis of the medical data classification problem. The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same time, alleviate their limitations. The proposed intelligent classification system maximizes the intelligently classification of medical data and minimizes the number of trends inaccurately identified. To evaluate the effectiveness of the hybrid intelligent system, three benchmark medical data sets, viz., Hepatitis, SPECT Heart and Cleveland Heart from the UCI Repository of Machine Learning, are used for evaluation. A number of useful performance metrics in medical applications which include accuracy, sensitivity, specificity. The results were analyzed and compared with those from other methods published in the literature. The experimental outcomes positively demonstrate that the hybrid intelligent system was effective in undertaking medical data classification tasks

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    corecore