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Abstract

Proteomics is the study of the abundance, function and dynamics of all proteins present
in a living organism, and mass spectrometry (MS) has become its most important tool
due to its unmatched sensitivity, resolution and potential for high-throughput experimen-
tation. A frequently used variant of mass spectrometry is coupled with liquid chromatog-
raphy (LC) and is denoted as “LC/MS”. It produces two-dimensional raw data, where
significant distortions along one of the dimensions can occur between different runs on
the same instrument, and between instruments. A compensation of these distortions is
required to allow for comparisons between and inference based on different experiments.
This article introduces the amsrpm software package. It implements a variant of the
Robust Point Matching (RPM) algorithm that is tailored for the alignment of LC and
LC/MS experiments. Problem-specific enhancements include a specialized dissimilarity
measure, and means to enforce smoothness and monotonicity of the estimated transfor-
mation function. The algorithm does not rely on pre-specified landmarks, it is insensitive
towards outliers and capable of modeling nonlinear distortions. Its usefulness is demon-
strated using both simulated and experimental data. The software is available as an open
source package for the statistical programming language R.

Keywords: registration, alignment, sequence alignment, dynamic time warping, monotone
regression, retention time, elution, LC/MS, robust point matching, chromatogram warping.

1. Introduction

In many Proteomics mass spectrometry (MS) experiments, mass analyzers are operated in
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line with liquid chromatography (LC) systems. LC systems use an organic solvent gradient
to separate a biological sample based on the chemical properties of its constituents before
subjecting it to ionization and mass analysis, thus decreasing sample complexity by improving
analyte separation. Research on many biological questions involves comparative analysis
of LC/MS data acquired from samples which have been exposed to different environmental
conditions. An undesirable feature of LC separation techniques is the introduction of a random
time shift, i.e. a nonlinear distortion in the retention time domain, leading to significant run-
to-run variability, thus compromising comparability of experiments. Hence, in order to allow
for differential analysis, the acquired data has to be aligned/registered.

Alignment/registration problems have a long history in chromatography: straightforward shift
correction based on regression and/or correlation methods include Reiner et al. (1979) who
proposed piecewise linear interpolation. Wang and Isenhour (1987) introduced Dynamic Time
Warping (DTW) into the chromatography field. Originally developed by Itakura (1975) and
Sakoe and Chiba (1978) for speech signals, DTW calculates a nonlinear mapping between two
samples using constrained dynamic programming (Dreyfus 2002). Recent applications and
analyses have been carried out by Pravdova et al. (2002) and Ramaker et al. (2003), all of
which also focus on Correlation Optimized Warping (COW), a signal segment-wise correlation
optimization procedure introduced by Nielsen et al. (1998). Eilers (2004) introduced Para-
metric Time Warping (PTW), a landmark-free iterative least-squares approach estimating
three parameters for a quadratic warping function. Although susceptible to noise effects, the
hierarchical clustering method of Tibshirani et al. (2004) was the first approach to overcome
the missing correspondence problem, subsequently addressed in the fuzzy warping approach
of Walczak and Wu (2005). Listgarten et al. (2005) propose the Continuous Profile Model
(CPM), a generative model where each observed time series is considered a sub-sampled re-
alization of a latent trace. Sample registration in the full LC/MS domain has been carried
out by Listgarten et al. (2007), following their earlier CPM approach but cutting down the
computational burden with a spline approximation technique. Fischer et al. (2006) propose a
semi-supervised alignment algorithm incorporating chemical information available from tan-
dem mass spectrometry (MS2) into a nonlinear ridge regression model. They subsequently
use a least predictive variance self-training scheme to iteratively improve their warping es-
timates. Krebs et al. (2006) advocate peak picking prior to chromatogram registration by
landmark selection and assessment in high intensity elution regions. Comprehensive reviews
on the topic include Tomasi et al. (2004) and van Nederkassel et al. (2006).

The Robust Point Matching (RPM) procedure by Chui and Rangarajan (2002) was developed
in the context of medical image processing where image registration problems are commonly
encountered. The difficulty of this task is largely determined by the amount of information
that is available: if landmarks are known, finding the warping function often is straightfor-
ward, if correspondences (homologies) still have to be determined, i.e. if one has to deal with
unlabeled features, the problem becomes considerably harder. Also, when considering chro-
matograms as point sets (e.g. after peak picking), their cardinality need not be equal, hence
calling for outlier detection and rejection methods. Based on earlier work of Rangarajan
et al. (1996), and Rangarajan et al. (1999), RPM provides functionality to deal with each of
these problems. Inheriting from the Iterative Closest Point (ICP) algorithm, the Softassign
Procrustes Matching (Rangarajan et al. 1997), and employing deterministic annealing, RPM
is an iterative EM-style correspondence and transformation estimation scheme using gradu-
ally stabilizing quasi-probabilistic correspondences which serve as basis for the calculation of
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gradually refining Thin Plate Spline (TPS Bookstein 1989) warping functions.

The amsrpm package has been developed with quantitative mass spectrometry data process-
ing in mind. In this field, to date, available registration/alignment information is often limited
to retention time, mass-to-charge ratio and peak intensity. In general, there is no MS2 infor-
mation available, due to the necessity of high sampling rates, which are severely downgraded
by MS2 sampling. It is important to note that this is the very reason that forces us to use
notions of “proximity” to estimate correspondences instead of using chemical information that
can help establish true correspondences.

Section 2 introduces the data format generally associated with LC/MS experiments. Section 3
details the amsrpm algorithm and its relations to RPM. Section 4 shows the application of
the algorithm to a simulated and a real-world data set. Finally, conclusions and an outlook
are offered in section 5.

2. Data

LC/MS experiments yield two-dimensional intensity distributions. The mass analyzer records
count/intensity values which are indexed by their elution time (the time required by an analyte
to pass through the LC column) and their molecular mass/electric charge ratio. Due to the
sheer amount of data (≥ 2 · 106 points in our experimental data set Pho4), and since a
single analyte typically accounts for more than one detected event, raw peak data are usually
preprocessed by a peak picking method, aimed at extracting the relevant peaks from the raw
data, thus producing a succinct, more manageable LC/MS peak list. A mere LC recording
can be obtained by integrating the raw data over the mass/charge domain, yielding the Total
Ion Current (TIC) chromatogram. In both cases, we can consider a data set as a point set

A = {ai|i = 1, . . . , NA}, NA ∈ N. (1)

For TIC chromatograms each point is defined by its retention time ai1 and TIC intensity ai2

(cf. Figures 1 and 2). With LC/MS peak lists, each point has coefficients ai1, ai2, and ai3

being retention time, mass/charge ratio, and intensity, respectively (cf. Figure 3). Hence,
registration/alignment deals with the point sets A and B, where A is defined as in eq. (1),
B = {bi|i = 1, . . . , NB}, NB ∈ N, a = (a1i, a2i, . . . , adi)T , and b = (b1i, b2i, . . . , bdi)T , with
d ∈ {2, 3}.
The amsrpm package can be used for the registration of either chromatograms or peak lists
acquired in different experiments. To demonstrate both functionalities, section 4 shows re-
sults for both types of data. While the TIC chromatograms used in the demonstration were
extracted from the raw LC/MS data, we would like to point out that the use of full peak lists
is recommended whenever possible, since these contain much more information than the TIC
chromatograms obtained from them.

3. Methods

In analogy to Chui and Rangarajan (2002), we can view the alignment problem as a point
set registration task split up into repetitive EM-style correspondence and transformation
estimation steps, coupled to a deterministic annealing scheme. On convergence, this yields a
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nonlinear transformation, providing an estimate for transforming B onto A: Â = F(B), with
|Â| = |B| = NB.

In the alignment of either TIC chromatograms or LC/MS peak lists, the observed intensities
can help in the estimation of correspondences, but should not be modified in the alignment,
since it is the information that is of interest for a differential analysis. In the case of LC/MS
experiments, shifts in the mass/charge domain between different experiments are non-existent
or negligible if the mass analyzer has been properly calibrated. Hence, it is sufficient in either
case to limit oneself to the estimation of a nonlinear distortion f(·) in the retention time
domain, yielding a one-dimensional regression problem.

Similar to Fischer et al. (2006) and Eilers (2004), we consider chromatographic retention
time distortions to generally be nonlinear but smooth and thus confine the transformation
function space to smooth functions. More precisely, definingDn as the nth temporal derivative
operator, we expect

∫
D2f(x)dx to be bounded. Also, distortions reversing the order in which

analytes elute off the column are rare, motivating a monotonicity constraint on the warping
function f(·). In the following, we will deal with each of these points in turn.

Correspondence Estimation. We adapt fuzzy correspondences from Chui and Rangarajan
(2002) similar to Walczak and Wu (2005) leading to a NA × NB correspondence matrix
M = {mij} with

mij =
1
T

exp
{
− 1

2T
ψ(ai,F(bj))

}
, (2)

where mij is the correspondence coefficient between ai and bj . The dissimilarity function
ψ(·, ·) is defined differently for the TIC chromatogram and full LC/MS case: for TIC regis-
tration we include derivative information into the estimation process. Therefore

ψ(ai, âj) = (ai − âj)TW2(ai − âj) + κslope|[Da]i − [Dâ]j |+ κsignH([Da]i[Dâ]j) (3)

with âj = F(bj), and H(·) the Heavyside step function. The weight matrix W2 = diag(w1, w2)
allows for relative weighting of retention time and intensity distances, κslope and κsign control
the contribution of derivative information to the dissimilarity measure. With κslope > 0 and
κsign > 0, eq. (3) will favor correspondences between points if their gradients are similar and
of equal sign. This proved to be an important addition, significantly improving alignment
outcomes.

Registration of LC/MS peak lists deals with arbitrarily spaced point sets and will most fre-
quently be carried out on preprocessed, peak-picked data, where no sensible derivative infor-
mation is available. We define a weighted squared dissimilarity

ψ(ai, âj) = (ai − âj)TW3(ai − âj) (4)

with âj = F(bj) and W3 = diag(w1, w2, w3) weighting retention time, mass/charge ratio
and intensity contributions. Thus, while mass/charge ratio and intensity contribute to the
correspondence estimation, the warping function accounts for variation along the retention
time axis only.

In order to deal with outliers (points for which no plausible correspondence can be established),
we augment M with an outlier column and row, yielding an (NA + 1)× (NB + 1) matrix M0.
In contrast to Walczak and Wu (2005), we set outlier correspondences to a constant value,
independent of the number of points. After Sinkhorn standardization (Sinkhorn 1996; Walczak
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and Wu 2005) M0 holds quasi-probabilistic (in the sense that all entries were subjected
to iterative row and column normalization and now sum to one) correspondence estimates,
subsequently used for the estimation of the warping function.
Estimation of the optimal smooth monotone warping function. Given the correspon-
dence matrix M = {mij}, estimation of the optimal warping function f(·) can be carried out
using a smooth monotone regression approach, as detailed in Ramsay and Silverman (2005).
We expand an unconstrained function w(·) ∈ R in terms of a set of B-spline basis functions
φk(·), yielding

w(x) =
∑

k

ckφk(x), (5)

and define a roughness-penalized fitting criterion for monotone smoothing as

min
w

{
(ˆ̄t− β0 − β1{D−1eD

−1w}(t))TR(ˆ̄t− β0 − β1{D−1eD
−1w}(t)) + λ

∫
w2(τ)dτ

}
. (6)

The vector ˆ̄t holds the expected value of the retention times of the warped point set Â = F(B),
i.e. ˆ̄t = (ˆ̄a11, ˆ̄a21, . . . , ˆ̄aNB1)T , with ˆ̄aj1 =

∑NA
i=1mjkak1. The retention times of the original

point set B are given in t = (b11, b21, . . . , bNB1)T . R is a symmetric positive definite matrix
allowing for unequal weighting of squares and products of residuals. With known residual
covariance matrix Σ, we have R = Σ−1, otherwise the assumption of uncorrelated errors and
treating R as a diagonal weight matrix is sensible. The parameters βk, k = 0, 1 need to be
estimated from the data, see Ramsay (1998) for details. By default, amsrpm places spline
knots at each observation for LC/MS peak list data and on equidistantly sampled retention
time points for TIC chromatogram data. This behavior can be controlled by the user.
Minimizing eq. (6) with respect to the spline coefficients ck results in a numerical optimization
problem that can be solved using the Newton-Raphson algorithm. In amsrpm the transfor-
mation estimation is carried out using the smooth.monotone(·) function from the fda package
by Ramsay and Wickham (2006).
Annealing procedure. Chui and Rangarajan (2002) introduce a deterministic annealing
scheme, aimed at gradually allowing more flexible transformations by adapting λ in each
iteration using λl = λinitT , with T as annealing temperature. The amsrpm implementation
follows this idea.

4. Results

This section describes the application of the amsrpm package to two TIC chromatogram
alignment problems and an LC/MS peak list alignment task. We begin each of the subsections
with a data description followed by a short comment on how the alignment was obtained.
Simulated TIC distortion data. During amsrpm development we created a simulation
dataset by artificially distorting real-world TIC chromatograms. The distortion was simulated
by uniform drawing of elution time values from the retention time domain of the original signal.
We added a time shift (assuming a normal distribution centered around the previously drawn
value), and applied a smooth monotone regression against the original retention time values.
Final simulation chromatograms were obtained by adding Poisson noise on TIC intensity
as well as zero-mean normal noise on retention time. The simulation data were used for
evaluation purposes and we show a sample alignment result in Figure 1.
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Figure 1: Top panel: TICs of the undistorted sample (blue), after distortion (red), and TIC
of the sample after application of the warping estimate with amsrpm (green). Bottom panel:
Time shifts for the simulated distortion (red) and the amsrpm warping estimate (green).

Alignment. Acquiring the alignment estimate is a straightforward procedure: the function
ams.rpm.register.tic(·) takes two matrices x and y, with one point per row and columns
corresponding to retention time and intensity and outputs the calculated fit. Parameters
allow further customization.

R> result <- ams.rpm.register.tic(

x = pho4_tic[[1]],

y = simchrom,

kappa = c(0.01, 0.1),

max.points = 150,

subsample.method = "equidistant")

In this case we have chosen to reweight the derivative sign contribution, to limit the number
of points used in the transformation estimation to 150, and to use equidistant subsampling
of the TIC. The results are summarized in two panels in Figure 1: plots in the upper panel
show TICs of the undistorted sample (blue) and the warped sample (red), and the warping
estimation result applied to the undistorted TIC (green). The bottom panel visualizes the
time shifts for the simulated distortion (red) and our estimate (green).

Parameter selection. With simulation data available we were able to analyze TIC align-
ment quality as a function of the weighting parameters κslope and κsign. The alignment algo-
rithm was applied to n = 100 simulation data sets, with p = 25 different parametrizations,
where κslope ∈ {0.01, 0.032, 0.1, 0.32, 1} and κsign ∈ {0.001, 0.0032, 0.01, 0.032, 0.1} (logarith-
mic scales). A summary of results is shown in Table 1. Minimal training error was attained
for κslope = 0.01 and κsign = 0.1.

Pho4 dataset. The Pho4 dataset was initially acquired with relative quantitation of pro-
tein phosphorylation in mind. Steen et al. (2005) monitored Pho80/85-induced changes in
phosphorylation stoichiometry of the yeast transcription factor Pho4. Pho4 was isolated at
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Figure 2: Top panel: amsrpm alignment of the Pho4 TIC data, repeats 2 (blue) and 3 (red).
The warping result is shown in green. Bottom panel: estimated time shifts.

different time points during a kinase assay. After in-gel tryptic digestion, the samples were
analyzed in replicate by LC/MS using a QSTAR XL mass spectrometer (Applied Biosys-
tems/MDS Sciex, Concord, Canada) at MS-acquisition times of 150 ms. The raw data was
converted to text files using in-house software. TIC chromatograms were calculated by inte-
gration over the mass/charge domain and are provided in the data directory of the amsrpm
package. We used the MarkerView Software (Applied Biosystems/MDS Sciex) for peak pick-
ing the raw LC/MS data and to obtain LC/MS peak lists.

Pho4 TIC chromatogram alignment. Alignment of Pho4 TIC chromatogram data pro-
ceeds analogously to alignment of the simulated data,

R> data("pho4_tic")

R> res <- ams.rpm.register.tic(

x = pho4_tic[[1]],

y = pho4_tic[[2]],

kappa = c(0.01, 0.1),

max.points = 150,

subsample.method = "equidistant")

R> ams.plot(res, pho4_tic[[1]], pho4_tic[[2]])

yielding the alignment shown in Figure 2. Again, the two original TIC chromatograms are
given in blue and red, the warping result in green. It is obvious that this is a more difficult
example, with good alignment but problematic regions (especially in the 19.8−20.4min range,
where TIC structure is insufficient to provide a reliable result).

Pho4 LC/MS peak list registration. For LC/MS peak list alignment amsrpm provides
the ams.rpm.register.lcms(·) function:

R> data("pho4_lcms")

R> res <- ams.rpm.register.lcms(
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x = pho4_lcms[[1]],

y = pho4_lcms[[2]],

max.points = 200,

tie.method = "noise")

R> ams.plot(res, pho4_lcms[[1]], pho4_lcms[[2]])

● ●
● ●●● ●●●●● ●● ● ●●●● ●● ● ● ●● ●● ● ●● ●● ●●● ●●● ●●● ●●● ●●●● ●●● ●● ●● ●●● ●● ●● ● ● ●●● ●● ● ●●●●● ●●●● ●●● ●●●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●●● ● ●● ●●●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●● ●●● ● ●●●●● ●●●

●● ●●
● ●●●

●
●●

● ● ●● ●●
● ●●

●●●●
●●●● ●● ●●● ●●●● ● ●●● ●

●

●●●
● ●●● ●●●

●
●

●
●●●●

●● ●●●●● ● ●

●●●

●● ●●●●

●

●
● ●●

●
●

● ●

●

●

●

40
0

60
0

80
0

10
00

12
00

y[,1]

m
/z

20 21 22 23

−
0.

15
0.

05

retention time

of
fs

et

Figure 3: LC/MS alignment. Top panel: Pho4 LC/MS data at t = 5min. Result (green) of
aligning repeat 2 (blue) with repeat 3 (red). Bottom panel: estimated warping shifts.

Here we chose to limit the number of points contributing to the smooth monotone regression
to 200, and to numerically stabilize the fit by adding a tiny amount of noise to the spline
knot positions. The top panel of Figure 3 shows the positions of picked peaks constituting
the point set B (crosses) before (blue) and after (green) alignment with the point set A
(red circles). Difficult alignment regions (neglecting border effects) include two peak clusters
around 22.9min, exhibiting slight m/z-dependent shift properties. The same phenomenon can
be observed at ∼ 20.4min, augmented by imperfect correspondence estimation of the peaks
within the cluster at ∼ 600m/z. Despite these problems, and recalling that Figures 2 and 3
are based on highly similar data, the benefit of working with LC/MS peak lists as compared
to TIC data is obvious.

5. Conclusions and outlook

Conclusions. We present an R package for unsupervised nonlinear alignment/registration of
TIC chromatograms and LC/MS peak list data sets. Its capability of automatically finding
tentative landmarks makes it well suited for samples of low- to medium complexity where
no additional chemical information is available through MS2 sampling. Imposing physically
motivated constraints such as monotonicity leads to sensible and useful warping estimates,
and significantly improves run-to-run comparability.
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Open Problems and Outlook. The main limitation of amsrpm currently is the com-
putational burden involved in repetitively calculating the distance matrix and the smooth
monotone regression estimate. The latter is based on fda (Ramsay and Wickham 2006), with
a native R Newton-Raphson implementation. The package authors themselves note that this
is suboptimal in terms of speed. We are currently working at eliminating this shortcoming.

Alignment behavior is controlled by the parameters w1, w2, κslope, and κsign in the TIC case,
and by wi, i = 1, 2, 3 in the LC/MS peak list case. Optimal settings for these parameters
depend on the problem at hand and amsrpm does currently not provide means to obtain these
estimates.

A general limitation of global retention time alignment approaches is their inability to cope
with situations in which analytes exhibit mass/charge ratio-dependent run-to-run retention
time variability. This also holds for amsrpm.

κslope κsign q0.25 q0.5 q0.75

1 0.01 0.00 0.72 2.10 22.78
2 0.01 0.00 0.75 2.01 28.04
3 0.01 0.01 0.68 1.55 16.62
4 0.01 0.03 0.51 1.49 18.11
5 0.01 0.10 0.46 1.24 13.68
6 0.03 0.00 1.37 3.00 25.01
7 0.03 0.00 0.92 2.63 35.31
8 0.03 0.01 0.95 2.32 17.97
9 0.03 0.03 0.84 2.19 20.14

10 0.03 0.10 0.95 2.34 17.10
11 0.10 0.00 1.53 3.92 24.78
12 0.10 0.00 1.75 3.84 28.09
13 0.10 0.01 1.60 3.85 24.61
14 0.10 0.03 1.37 3.22 17.81
15 0.10 0.10 1.18 3.17 18.93
16 0.32 0.00 2.46 5.86 23.01
17 0.32 0.00 2.74 6.33 35.35
18 0.32 0.01 2.53 7.02 42.76
19 0.32 0.03 2.31 6.29 45.04
20 0.32 0.10 2.28 5.29 23.04
21 1.00 0.00 4.43 10.21 38.09
22 1.00 0.00 3.46 8.77 50.46
23 1.00 0.01 3.81 9.58 40.93
24 1.00 0.03 3.59 7.50 22.45
25 1.00 0.10 3.46 7.04 32.06

Table 1: Quartiles of squared lack of fit of estimated time shifts depending on κslope ∈
{0.01, 0.032, 0.1, 0.32, 1} and κsign ∈ {0.001, 0.0032, 0.01, 0.032, 0.1} parametrization in TIC
registration. Quartiles have been calculated over 100 simulation sets for each parametrization.
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