655 research outputs found

    Quasiflats in hierarchically hyperbolic spaces

    Get PDF
    The rank of a hierarchically hyperbolic space is the maximal number of unbounded factors in a standard product region. For hierarchically hyperbolic groups, this coincides with the maximal dimension of a quasiflat. Examples for which the rank coincides with familiar quantities include: the dimension of maximal Dehn twist flats for mapping class groups, the maximal rank of a free abelian subgroup for right-angled Coxeter and Artin groups, and, for the Weil--Petersson metric, the rank is the integer part of half the complex dimension of Teichm\"{u}ller space. We prove that any quasiflat of dimension equal to the rank lies within finite distance of a union of standard orthants (under a mild condition satisfied by all natural examples). This resolves outstanding conjectures when applied to various examples. For mapping class group, we verify a conjecture of Farb; for Teichm\"{u}ller space we answer a question of Brock; for CAT(0) cubical groups, we handle special cases including right-angled Coxeter groups. An important ingredient in the proof is that the hull of any finite set in an HHS is quasi-isometric to a CAT(0) cube complex of dimension bounded by the rank. We deduce a number of applications. For instance, we show that any quasi-isometry between HHSs induces a quasi-isometry between certain simpler HHSs. This allows one, for example, to distinguish quasi-isometry classes of right-angled Artin/Coxeter groups. Another application is to quasi-isometric rigidity. Our tools in many cases allow one to reduce the problem of quasi-isometric rigidity for a given hierarchically hyperbolic group to a combinatorial problem. We give a new proof of quasi-isometric rigidity of mapping class groups, which, given our general quasiflats theorem, uses simpler combinatorial arguments than in previous proofs.Comment: 58 pages, 6 figures. Revised according to referee comments. This is the final pre-publication version; to appear in Duke Math. Jou

    Polyhedral computational geometry for averaging metric phylogenetic trees

    Get PDF
    This paper investigates the computational geometry relevant to calculations of the Frechet mean and variance for probability distributions on the phylogenetic tree space of Billera, Holmes and Vogtmann, using the theory of probability measures on spaces of nonpositive curvature developed by Sturm. We show that the combinatorics of geodesics with a specified fixed endpoint in tree space are determined by the location of the varying endpoint in a certain polyhedral subdivision of tree space. The variance function associated to a finite subset of tree space has a fixed C∞C^\infty algebraic formula within each cell of the corresponding subdivision, and is continuously differentiable in the interior of each orthant of tree space. We use this subdivision to establish two iterative methods for producing sequences that converge to the Frechet mean: one based on Sturm's Law of Large Numbers, and another based on descent algorithms for finding optima of smooth functions on convex polyhedra. We present properties and biological applications of Frechet means and extend our main results to more general globally nonpositively curved spaces composed of Euclidean orthants.Comment: 43 pages, 6 figures; v2: fixed typos, shortened Sections 1 and 5, added counter example for polyhedrality of vistal subdivision in general CAT(0) cubical complexes; v1: 43 pages, 5 figure

    Boolean function monotonicity testing requires (almost) n1/2n^{1/2} non-adaptive queries

    Full text link
    We prove a lower bound of Ω(n1/2−c)\Omega(n^{1/2 - c}), for all c>0c>0, on the query complexity of (two-sided error) non-adaptive algorithms for testing whether an nn-variable Boolean function is monotone versus constant-far from monotone. This improves a Ω~(n1/5)\tilde{\Omega}(n^{1/5}) lower bound for the same problem that was recently given in [CST14] and is very close to Ω(n1/2)\Omega(n^{1/2}), which we conjecture is the optimal lower bound for this model

    Partially ample line bundles on toric varieties

    Get PDF
    In this note we study properties of partially ample line bundles on simplicial projective toric varieties. We prove that the cone of q-ample line bundles is a union of rational polyhedral cones, and calculate these cones in examples. We prove a restriction theorem for big q-ample line bundles, and deduce that q-ampleness of the anticanonical bundle is not invariant under flips. Finally we prove a Kodaira-type vanishing theorem for q-ample line bundles.Comment: 12 pages, 2 figures; v.2: proofs simplified, lots of material added, new autho

    When Does a Mixture of Products Contain a Product of Mixtures?

    Full text link
    We derive relations between theoretical properties of restricted Boltzmann machines (RBMs), popular machine learning models which form the building blocks of deep learning models, and several natural notions from discrete mathematics and convex geometry. We give implications and equivalences relating RBM-representable probability distributions, perfectly reconstructible inputs, Hamming modes, zonotopes and zonosets, point configurations in hyperplane arrangements, linear threshold codes, and multi-covering numbers of hypercubes. As a motivating application, we prove results on the relative representational power of mixtures of product distributions and products of mixtures of pairs of product distributions (RBMs) that formally justify widely held intuitions about distributed representations. In particular, we show that a mixture of products requiring an exponentially larger number of parameters is needed to represent the probability distributions which can be obtained as products of mixtures.Comment: 32 pages, 6 figures, 2 table
    • …
    corecore