3,025 research outputs found

    IMPACT: Investigation of Mobile-user Patterns Across University Campuses using WLAN Trace Analysis

    Full text link
    We conduct the most comprehensive study of WLAN traces to date. Measurements collected from four major university campuses are analyzed with the aim of developing fundamental understanding of realistic user behavior in wireless networks. Both individual user and inter-node (group) behaviors are investigated and two classes of metrics are devised to capture the underlying structure of such behaviors. For individual user behavior we observe distinct patterns in which most users are 'on' for a small fraction of the time, the number of access points visited is very small and the overall on-line user mobility is quite low. We clearly identify categories of heavy and light users. In general, users exhibit high degree of similarity over days and weeks. For group behavior, we define metrics for encounter patterns and friendship. Surprisingly, we find that a user, on average, encounters less than 6% of the network user population within a month, and that encounter and friendship relations are highly asymmetric. We establish that number of encounters follows a biPareto distribution, while friendship indexes follow an exponential distribution. We capture the encounter graph using a small world model, the characteristics of which reach steady state after only one day. We hope for our study to have a great impact on realistic modeling of network usage and mobility patterns in wireless networks.Comment: 16 pages, 31 figure

    Location-aware computing: a neural network model for determining location in wireless LANs

    Get PDF
    The strengths of the RF signals arriving from more access points in a wireless LANs are related to the position of the mobile terminal and can be used to derive the location of the user. In a heterogeneous environment, e.g. inside a building or in a variegated urban geometry, the received power is a very complex function of the distance, the geometry, the materials. The complexity of the inverse problem (to derive the position from the signals) and the lack of complete information, motivate to consider flexible models based on a network of functions (neural networks). Specifying the value of the free parameters of the model requires a supervised learning strategy that starts from a set of labeled examples to construct a model that will then generalize in an appropriate manner when confronted with new data, not present in the training set. The advantage of the method is that it does not require ad-hoc infrastructure in addition to the wireless LAN, while the flexible modeling and learning capabilities of neural networks achieve lower errors in determining the position, are amenable to incremental improvements, and do not require the detailed knowledge of the access point locations and of the building characteristics. A user needs only a map of the working space and a small number of identified locations to train a system, as evidenced by the experimental results presented

    Location and product bundling in the provision of WiFi networks

    Get PDF
    WiFi promises to revolutionise how and where we access the internet. As WiFi networks are rolled out around the globe, access to the internet will no longer be through fixed networks or unsatisfactory mobile phone connections. Instead access will be through low cost wireless networks at speeds of up to 11Mbps. It is hard not to be impressed by the enthusiasm with which WiFi has been embraced. GREEN, ROSENBUSH, CROKETT and HOLMES (2003) assert that WiFi is a disruptive technology akin to telephones in the 1920s and network computers in the 1990s. WiFi is seen as both an opportunity in its own right, as well as an enabler of opportunities for others. Computer manufacturers are hoping that WiFi will increases sales of their laptops, whilst Microsoft feels that WiFi will result in users upgrading their operating systems to Windows XP. This paper seeks to understand why three companies have sought to provide WiFi

    Quantifying Potential Energy Efficiency Gain in Green Cellular Wireless Networks

    Full text link
    Conventional cellular wireless networks were designed with the purpose of providing high throughput for the user and high capacity for the service provider, without any provisions of energy efficiency. As a result, these networks have an enormous Carbon footprint. In this paper, we describe the sources of the inefficiencies in such networks. First we present results of the studies on how much Carbon footprint such networks generate. We also discuss how much more mobile traffic is expected to increase so that this Carbon footprint will even increase tremendously more. We then discuss specific sources of inefficiency and potential sources of improvement at the physical layer as well as at higher layers of the communication protocol hierarchy. In particular, considering that most of the energy inefficiency in cellular wireless networks is at the base stations, we discuss multi-tier networks and point to the potential of exploiting mobility patterns in order to use base station energy judiciously. We then investigate potential methods to reduce this inefficiency and quantify their individual contributions. By a consideration of the combination of all potential gains, we conclude that an improvement in energy consumption in cellular wireless networks by two orders of magnitude, or even more, is possible.Comment: arXiv admin note: text overlap with arXiv:1210.843

    Capacity Analysis of IEEE 802.11ah WLANs for M2M Communications

    Full text link
    Focusing on the increasing market of the sensors and actuators networks, the IEEE 802.11ah Task Group is currently working on the standardization of a new amendment. This new amendment will operate at the sub-1GHz band, ensure transmission ranges up to 1 Km, data rates above 100 kbps and very low power operation. With IEEE 802.11ah, the WLANs will offer a solution for applications such as smart metering, plan automation, eHealth or surveillance. Moreover, thanks to a hierarchical signalling, the IEEE 802.11ah will be able to manage a higher number of stations (STAs) and improve the 802.11 Power Saving Mechanisms. In order to support a high number of STAs, two different signalling modes are proposed, TIM and Non-TIM Offset. In this paper we present a theoretical model to predict the maximum number of STAs supported by both modes depending on the traffic load and the data rate used. Moreover, the IEEE 802.11ah performance and energy consumption for both signalling modes and for different traffic patterns and data rates is evaluated. Results show that both modes achieve similar Packet Delivery Ratio values but the energy consumed with the TIM Offset is, in average, a 11.7% lower.Comment: Multiple Access Communications 201

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms

    Behavior-Based Mobility Prediction for Seamless Handoffs in Mobile Wireless Networks

    Get PDF
    The field of wireless networking has received unprecedented attention from the research community during the last decade due to its great potential to create new horizons for communicating beyond the Internet. Wireless LANs (WLANs) based on the IEEE 802.11 standard have become prevalent in public as well as residential areas, and their importance as an enabling technology will continue to grow for future pervasive computing applications. However, as their scale and complexity continue to grow, reducing handoff latency is particularly important. This paper presents the Behavior-based Mobility Prediction scheme to eliminate the scanning overhead incurred in IEEE 802.11 networks. This is achieved by considering not only location information but also group, time-of-day, and duration characteristics of mobile users. This captures short-term and periodic behavior of mobile users to provide accurate next-cell predictions. Our simulation study of a campus network and a municipal wireless network shows that the proposed method improves the next-cell prediction accuracy by 23~43% compared to location-only based schemes and reduces the average handoff delay down to 24~25 ms
    • …
    corecore