16,989 research outputs found

    Chordal co-gem-free and (P5,gem)-free graphs have bounded clique-width

    Get PDF
    AbstractIt is well known that the clique-width of chordal gem-free graphs (also known as ptolemaic graphs), as a subclass of distance-hereditary graphs, is at most 3. Hereby, the gem consists of a P4 plus a vertex being completely adjacent to the P4, and the co-gem is its complement graph. On the other hand, unit interval graphs being another important subclass of chordal graphs, have unbounded clique-width. In this note, we show that, based on certain tree structure and module properties, chordal co-gem-free graphs have clique-width at most eight. By a structure result for (P5,gem)-free graphs, this implies bounded clique-width for this class as well. Moreover, known results on unbounded clique-width of certain grids and of split graphs imply that the gem and the co-gem are the only one-vertex P4 extension H such that chordal H-free graphs have bounded clique-width

    On the structure of (pan, even hole)-free graphs

    Full text link
    A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our O(nm)O(nm)-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our O(n2.5+nm)O(n^{2.5}+nm)-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.Comment: Accepted to appear in the Journal of Graph Theor

    Independent sets of maximum weight in apple-free graphs

    Get PDF
    We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph G to be apple-free; the algorithm either finds an independent set of maximum weight in G or reports that G is not apple-free

    Edge Clique Cover of Claw-free Graphs

    Full text link
    The smallest number of cliques, covering all edges of a graph G G , is called the (edge) clique cover number of G G and is denoted by cc(G) cc(G) . It is an easy observation that for every line graph G G with n n vertices, cc(G)ncc(G)\leq n . G. Chen et al. [Discrete Math. 219 (2000), no. 1--3, 17--26; MR1761707] extended this observation to all quasi-line graphs and questioned if the same assertion holds for all claw-free graphs. In this paper, using the celebrated structure theorem of claw-free graphs due to Chudnovsky and Seymour, we give an affirmative answer to this question for all claw-free graphs with independence number at least three. In particular, we prove that if G G is a connected claw-free graph on n n vertices with α(G)3 \alpha(G)\geq 3 , then cc(G)n cc(G)\leq n and equality holds if and only if G G is either the graph of icosahedron, or the complement of a graph on 1010 vertices called twister or the pthp^{th} power of the cycle Cn C_n , for 1p(n1)/31\leq p \leq \lfloor (n-1)/3\rfloor .Comment: 74 pages, 4 figure

    Separability and Vertex Ordering of Graphs

    Get PDF
    Many graph optimization problems, such as finding an optimal coloring, or a largest clique, can be solved by a divide-and-conquer approach. One such well-known technique is decomposition by clique separators where a graph is decomposed into special induced subgraphs along their clique separators. While the most common practice of this method employs minimal clique separators, in this work we study other variations as well. We strive to characterize their structure and in particular the bound on the number of atoms. In fact, we strengthen the known bounds for the general clique cutset decomposition and the minimal clique separator decomposition. Graph ordering is the arrangement of a graph’s vertices according to a certain logic and is a useful tool in optimization problems. Special types of vertices are often recognized in graph classes, for instance it is well-known every chordal graph contains a simplicial vertex. Vertex-ordering, based on such properties, have originated many linear time algorithms. We propose to define a new family named SE-Class such that every graph belonging to this family inherently contains a simplicial extreme, that is a vertex which is either simplicial or has exactly two neighbors which are non-adjacent. Our family lends itself to an ordering based on simplicial extreme vertices (named SEO) which we demonstrate to be advantageous for the coloring and maximum clique problems. In addition, we examine the relation of SE-Class to the family of (Even-Hole, Kite)-free graphs and show a linear time generation of SEO for (Even-Hole, Diamond, Claw)-free graphs. We showcase the applications of those two core tools, namely clique-based decomposition and vertex ordering, on the (Even-Hole, Kite)-free family
    corecore