185,281 research outputs found

    Interactive analysis of high-dimensional association structures with graphical models

    Get PDF
    Graphical chain models are a capable tool for analyzing multivariate data. However, their practical use may still be cumbersome in some respect since fitting the model requires the application of an intensive selection strategy based on the calculation of an enormous number of different regressions. In this paper, we present a computer system especially designed for the calculation of graphical chain models which is not only planned to automatically carry out the model search but also to visualize the corresponding graph at each stage of the model fit on request by the user. It additionally allows to modify the graph and the model fit interactively

    Estimating the polarization degree of polarimetric images in coherent illumination using maximum likelihood methods

    Get PDF
    This paper addresses the problem of estimating the polarization degree of polarimetric images in coherent illumination. It has been recently shown that the degree of polarization associated to polarimetric images can be estimated by the method of moments applied to two or four images assuming fully developed speckle. This paper shows that the estimation can also be conducted by using maximum likelihood methods. The maximum likelihood estimators of the polarization degree are derived from the joint distribution of the image intensities. We show that the joint distribution of polarimetric images is a multivariate gamma distribution whose marginals are univariate, bivariate or trivariate gamma distributions. This property is used to derive maximum likelihood estimators of the polarization degree using two, three or four images. The proposed estimators provide better performance that the estimators of moments. These results are illustrated by estimations conducted on synthetic and real images

    An Object-Oriented Framework for Statistical Simulation: The R Package simFrame

    Get PDF
    Simulation studies are widely used by statisticians to gain insight into the quality of developed methods. Usually some guidelines regarding, e.g., simulation designs, contamination, missing data models or evaluation criteria are necessary in order to draw meaningful conclusions. The R package simFrame is an object-oriented framework for statistical simulation, which allows researchers to make use of a wide range of simulation designs with a minimal effort of programming. Its object-oriented implementation provides clear interfaces for extensions by the user. Since statistical simulation is an embarrassingly parallel process, the framework supports parallel computing to increase computational performance. Furthermore, an appropriate plot method is selected automatically depending on the structure of the simulation results. In this paper, the implementation of simFrame is discussed in great detail and the functionality of the framework is demonstrated in examples for different simulation designs.

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Pore-scale analyses of heterogeneity and representative elementary volume for unconventional shale rocks using statistical tools

    Get PDF
    We express our appreciations to the Petroleum Technology Development Fund, Nigeria (PTDF), for funding this work.Peer reviewedPublisher PD

    Confirmation of the existence of coherent orientations of quasar polarization vectors on cosmological scales

    Get PDF
    In order to verify the existence of coherent orientations of quasars polarization vectors on very large scales, we have obtained new polarization measurements for a sample of quasars located in a given region of the three-dimensional Universe where the range of polarization position angles was predicted in advance. For this new sample, the hypothesis of uniform distribution of polarization position angles may be rejected at the 1.8% significance level on the basis of a simple binomial test. This result provides an independent confirmation of the existence of alignments of quasar polarization vectors on very large scales. In total, out of 29 polarized quasars located in this region of the sky, 25 have their polarization vectors coherently oriented. This alignment occurs at redshifts 1-2 suggesting the presence of correlations in objects or fields on Gpc scales. More global statistical tests applied to the whole sample of polarized quasars distributed all over the sky confirm that polarization vectors are coherently oriented in a few groups of 20-30 quasars. Some constraints on the phenomenon are also derived. Considering more particularly the quasars in the selected region of the sky, we found that their polarization vectors are roughly parallel to the plane of the Local Supercluster. But the polarization vectors of objects along the same line of sight at lower redshifts are not accordingly aligned. We also found that the known correlations between quasar intrinsic properties and polarization are not destroyed by the alignment effect. Several possible mechanisms are discussed, but the interpretation of this orientation effect remains puzzling.Comment: Accepted for publication in Astronomy & Astrophysic

    Quantile-Based Spectral Analysis in an Object-Oriented Framework and a Reference Implementation in R: The quantspec Package

    Get PDF
    Quantile-based approaches to the spectral analysis of time series have recently attracted a lot of attention. Despite a growing literature that contains various estimation proposals, no systematic methods for computing the new estimators are available to date. This paper contains two main contributions. First, an extensible framework for quantile-based spectral analysis of time series is developed and documented using object-oriented models. A comprehensive, open source, reference implementation of this framework, the R package quantspec, was recently contributed to CRAN by the author of this paper. The second contribution of the present paper is to provide a detailed tutorial, with worked examples, to this R package. A reader who is already familiar with quantile-based spectral analysis and whose primary interest is not the design of the quantspec package, but how to use it, can read the tutorial and worked examples (Sections 3 and 4) independently.Comment: 27 pages, 11 figures, R package available via CRAN (http://cran.r-project.org/web/packages/quantspec) or GitHub (https://github.com/tobiaskley/quantspec

    Knowledge-based systems and geological survey

    Get PDF
    This personal and pragmatic review of the philosophy underpinning methods of geological surveying suggests that important influences of information technology have yet to make their impact. Early approaches took existing systems as metaphors, retaining the separation of maps, map explanations and information archives, organised around map sheets of fixed boundaries, scale and content. But system design should look ahead: a computer-based knowledge system for the same purpose can be built around hierarchies of spatial objects and their relationships, with maps as one means of visualisation, and information types linked as hypermedia and integrated in mark-up languages. The system framework and ontology, derived from the general geoscience model, could support consistent representation of the underlying concepts and maintain reference information on object classes and their behaviour. Models of processes and historical configurations could clarify the reasoning at any level of object detail and introduce new concepts such as complex systems. The up-to-date interpretation might centre on spatial models, constructed with explicit geological reasoning and evaluation of uncertainties. Assuming (at a future time) full computer support, the field survey results could be collected in real time as a multimedia stream, hyperlinked to and interacting with the other parts of the system as appropriate. Throughout, the knowledge is seen as human knowledge, with interactive computer support for recording and storing the information and processing it by such means as interpolating, correlating, browsing, selecting, retrieving, manipulating, calculating, analysing, generalising, filtering, visualising and delivering the results. Responsibilities may have to be reconsidered for various aspects of the system, such as: field surveying; spatial models and interpretation; geological processes, past configurations and reasoning; standard setting, system framework and ontology maintenance; training; storage, preservation, and dissemination of digital records
    • 

    corecore