2,516 research outputs found

    Random field Ising model: dimensional reduction or spin-glass phase?

    Full text link
    The stability of the random field Ising model (RFIM) against spin glass (SG) fluctuations, as investigated by M\'ezard and Young, is naturally expressed via Legendre transforms, stability being then associated with the non-negativeness of eigenvalues of the inverse of a generalized SG susceptibility matrix. It is found that the signal for the occurrence of the SG transition will manifest itself in free-energy {\sl fluctuations\/} only, and not in the free energy itself. Eigenvalues of the inverse SG susceptibility matrix is then approached by the Rayleigh Ritz method which provides an upper bound. Coming from the paramagnetic phase {\sl on the Curie line,\/} one is able to use a virial-like relationship generated by scaling the {\sl single\/} unit length (D<6; (D<6; in higher dimension a new length sets in, the inverse momentum cut off). Instability towards a SG phase being probed on pairs of {\sl distinct\/} replicas, it follows that, despite the repulsive coupling of the RFIM the effective pair coupling is {\sl attractive\/} (at least for small values of the parameter gΔˉ, g\bar \Delta , g g the coupling and Δˉ \bar \Delta the effective random field fluctuation). As a result, \lq\lq bound states\rq\rq\ associated with replica pairs (negative eigenvalues) provide the instability signature. {\sl Away from the Curie line\/}, the attraction is damped out till the SG transition line is reached and paramagnetism restored. In D<6, D<6, the SG transition always precedes the ferromagnetic one, thus the domain in dimension where standard dimensional reduction would apply (on the Curie line) shrinks to zero.Comment: te

    Parallel eigensolvers in plane-wave Density Functional Theory

    Full text link
    We consider the problem of parallelizing electronic structure computations in plane-wave Density Functional Theory. Because of the limited scalability of Fourier transforms, parallelism has to be found at the eigensolver level. We show how a recently proposed algorithm based on Chebyshev polynomials can scale into the tens of thousands of processors, outperforming block conjugate gradient algorithms for large computations

    A robust and efficient implementation of LOBPCG

    Full text link
    Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is widely used to compute eigenvalues of large sparse symmetric matrices. The algorithm can suffer from numerical instability if it is not implemented with care. This is especially problematic when the number of eigenpairs to be computed is relatively large. In this paper we propose an improved basis selection strategy based on earlier work by Hetmaniuk and Lehoucq as well as a robust convergence criterion which is backward stable to enhance the robustness. We also suggest several algorithmic optimizations that improve performance of practical LOBPCG implementations. Numerical examples confirm that our approach consistently and significantly outperforms previous competing approaches in both stability and speed

    Spline-based Rayleigh-Ritz methods for the approximation of the natural modes of vibration for flexible beams with tip bodies

    Get PDF
    Rayleigh-Ritz methods for the approximation of the natural modes for a class of vibration problems involving flexible beams with tip bodies using subspaces of piecewise polynomial spline functions are developed. An abstract operator theoretic formulation of the eigenvalue problem is derived and spectral properties investigated. The existing theory for spline-based Rayleigh-Ritz methods applied to elliptic differential operators and the approximation properties of interpolatory splines are useed to argue convergence and establish rates of convergence. An example and numerical results are discussed

    A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process

    Get PDF
    We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems

    Linear Stochastic Models of Nonlinear Dynamical Systems

    Full text link
    We investigate in this work the validity of linear stochastic models for nonlinear dynamical systems. We exploit as our basic tool a previously proposed Rayleigh-Ritz approximation for the effective action of nonlinear dynamical systems started from random initial conditions. The present paper discusses only the case where the PDF-Ansatz employed in the variational calculation is ``Markovian'', i.e. is determined completely by the present values of the moment-averages. In this case we show that the Rayleigh-Ritz effective action of the complete set of moment-functions that are employed in the closure has a quadratic part which is always formally an Onsager-Machlup action. Thus, subject to satisfaction of the requisite realizability conditions on the noise covariance, a linear Langevin model will exist which reproduces exactly the joint 2-time correlations of the moment-functions. We compare our method with the closely related formalism of principal oscillation patterns (POP), which, in the approach of C. Penland, is a method to derive such a linear Langevin model empirically from time-series data for the moment-functions. The predictive capability of the POP analysis, compared with the Rayleigh-Ritz result, is limited to the regime of small fluctuations around the most probable future pattern. Finally, we shall discuss a thermodynamics of statistical moments which should hold for all dynamical systems with stable invariant probability measures and which follows within the Rayleigh-Ritz formalism.Comment: 36 pages, 5 figures, seceq.sty for sequential numbering of equations by sectio
    corecore