328 research outputs found

    Patterns in random binary search trees

    Get PDF

    Holistic Twig Joins: Optimal XML Pattern Matching

    Get PDF
    XML employs a tree-structured data model, and, naturally, XML queries specify patterns of selection predicates on multiple elements related by a tree structure. Finding all occurrences of such a twig pattern in an XML database is a core operation for XML query processing. Prior work has typically decomposed the twig pattern into binary structural (parent-child and ancestor-descendant) relationships, and twig matching is achieved by: (i) using structural join algorithms to match the binary relationships against the XML database, and (ii) stitching together these basic matches. A limitation of this approach for matching twig patterns is that intermediate result sizes can get large, even when the input and output sizes are more manageable. In this paper, we propose a novel holistic twig join algorithm, TwigStack, for matching an XML query twig pattern. Our technique uses a chain of linked stacks to compactly represent partial results to root-to-leaf query paths, which are then composed to obtain matches for the twig pattern. When the twig pattern uses only ancestor-descendant relationships between elements, TwigStack is I/O and CPU optimal among all sequential algorithms that read the entire input: it is linear in the sum of sizes of the input lists and the final result list, but independent of the sizes of intermediate results. We then show how to use (a modification of) B-trees, along with TwigStack, to match query twig patterns in sub-linear time. Finally, we complement our analysis with experimental results on a range of real and synthetic data, and query twig patterns

    Object-oriented Graphic User Interface for Visualization of B-trees' Animator

    Get PDF

    SAGA: A project to automate the management of software production systems

    Get PDF
    The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. The SAGA system consists of a small number of software components that are adapted by the meta-tools into specific tools for use in the software development application. The modules are design so that the meta-tools can construct an environment which is both integrated and flexible. The SAGA project is documented in several papers which are presented

    An XML Query Engine for Network-Bound Data

    Get PDF
    XML has become the lingua franca for data exchange and integration across administrative and enterprise boundaries. Nearly all data providers are adding XML import or export capabilities, and standard XML Schemas and DTDs are being promoted for all types of data sharing. The ubiquity of XML has removed one of the major obstacles to integrating data from widely disparate sources –- namely, the heterogeneity of data formats. However, general-purpose integration of data across the wide area also requires a query processor that can query data sources on demand, receive streamed XML data from them, and combine and restructure the data into new XML output -- while providing good performance for both batch-oriented and ad-hoc, interactive queries. This is the goal of the Tukwila data integration system, the first system that focuses on network-bound, dynamic XML data sources. In contrast to previous approaches, which must read, parse, and often store entire XML objects before querying them, Tukwila can return query results even as the data is streaming into the system. Tukwila is built with a new system architecture that extends adaptive query processing and relational-engine techniques into the XML realm, as facilitated by a pair of operators that incrementally evaluate a query’s input path expressions as data is read. In this paper, we describe the Tukwila architecture and its novel aspects, and we experimentally demonstrate that Tukwila provides better overall query performance and faster initial answers than existing systems, and has excellent scalability

    KBGIS-2: A knowledge-based geographic information system

    Get PDF
    The architecture and working of a recently implemented knowledge-based geographic information system (KBGIS-2) that was designed to satisfy several general criteria for the geographic information system are described. The system has four major functions that include query-answering, learning, and editing. The main query finds constrained locations for spatial objects that are describable in a predicate-calculus based spatial objects language. The main search procedures include a family of constraint-satisfaction procedures that use a spatial object knowledge base to search efficiently for complex spatial objects in large, multilayered spatial data bases. These data bases are represented in quadtree form. The search strategy is designed to reduce the computational cost of search in the average case. The learning capabilities of the system include the addition of new locations of complex spatial objects to the knowledge base as queries are answered, and the ability to learn inductively definitions of new spatial objects from examples. The new definitions are added to the knowledge base by the system. The system is currently performing all its designated tasks successfully, although currently implemented on inadequate hardware. Future reports will detail the performance characteristics of the system, and various new extensions are planned in order to enhance the power of KBGIS-2

    Survey of semi-regular multiresolution models for interactive terrain rendering

    Get PDF
    Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accurac
    • …
    corecore