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Ž .ABSTRACT: In a randomly grown binary search tree BST of size n, any fixed pattern
occurs with a frequency that is on average proportional to n. Deviations from the average
case are highly unlikely and well quantified by a Gaussian law. Trees with forbidden patterns
occur with an exponentially small probability that is characterized in terms of Bessel
functions. The results obtained extend to BSTs a type of property otherwise known for
strings and combinatorial tree models. They apply to paged trees or to quicksort with halting
on short subfiles. As a consequence, various pointer saving strategies for maintaining trees
obeying the random BST model can be precisely quantified. The methods used are based on
analytic models, especially bivariate generating function subjected to singularity perturba-

Ž .tion asymptotics. Q 1997 John Wiley & Sons, Inc. Random Struct. Alg., 11, 223]244 1997
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1. INTRODUCTION

The model of randomly grown binary search trees, hereafter called the BST model,
is of interest in the analysis of binary search trees, their randomized versions}like

w x w xtreaps 2, 37 or rBSTs 39 }, and k-dimensional trees for multidimensional search
w x31, 34, 41 . By a standard equivalence principle, this model also applies to

w xheap-ordered trees for priority queue maintenance 41, 44 , to tree representations
w x w xof permutations 5, 41, 43 , as well as to quicksort 31, 41, 43 . In addition, empirical

Correspondence to: Philippe Flajolet
Contract grant sponsor: European Union long term research project Alcom-It; contract grant number
20244.
Q 1997 John Wiley & Sons, Inc. CCC 1042-9832r97r030223-22

223



´FLAJOLET, GOURDON, AND MARTINEZ224

studies by software engineers suggest that the BST model is perhaps more
adequate for syntax trees and term trees than the common combinatorial model
where all trees of a given size are taken with equal likelihood. A plausible reason is
that the combinatorial model tends to produce trees that are often too ‘‘skinny’’ to

Žmodel closely trees that occur naturally in this context Gilles Kahn, private
.communication, 1994 .

In abstract terms, the BST model produces for each size n a random binary tree
which is rooted and embedded in the plane. Such a tree consists of an internal
node, the root, connected to a left subtree of size K and a right subtree of size
ny1yK. There K is a random variable uniformly distributed over its range,

1
� 4Pr Ksk s , ks0, 1, . . . , ny1, 1Ž .

n

and the subtrees recursively obey the BST model. By design, the model of BSTs
applies to two closely related types of trees built on random permutations:

v the binary search tree where the first element of the permutation is placed at
the root, with elements smaller and larger than the root going, respectively, to
left and right root subtrees;

v Ž .the increasing binary tree also called ‘‘heap-ordered’’ tree where the smallest
element is placed at the root, with elements left and right of the minimum
going, respectively, to left and right root subtrees.

w xWe refer to 31, 34, 41, 43, 44 for basic combinatorial and probabilistic properties;
for instance, the trees produced have expected height ;4.31107 log n, their path
length is ;2n log n so that a search costs ;2 log n on average, and the number of

Ž .leaves nodes with both descendants external is ;nr3 on average.
In this paper we investigate fine characteristics of the shape of trees produced

by the BST model. Given a fixed binary tree u, called the pattern, we examine the
w x 1number of occurrences v t of u as a subtree of a larger tree t called the text.u

Taken over a random BST of size n, this random variable has an expectation that is
Ž . Ž .;c u ?n for some explicitly determined constant c u , its standard deviation is
'Ž .OO n , and its distribution is found to be asymptotically normal. Thus, an over-

whelming majority of trees will behave closely like what the average case analysis
predicts. Trees not containing pattern u are found to have an exponentially
vanishing probability, where the exponential rate is characterized in terms of zeros

Ž w xof Bessel function equations. See 36 for a first connection between Bessel
.functions and occurrence counts.

These phenomena are analogous to what happens in random binary strings
where a pattern u has on average ;nr2 < u < occurrences, with a companion

ŽGaussian law. Strings with excluded patterns for instance, no sequence of three
.identical characters in a row have exponentially small probability, with the

w xexponential rates being given as roots of correlation polynomials 16, 25, 41, 46 .
Similar properties hold true for the combinatorial tree model as established in
w x19, 42 .

1As usual, a subtree of a tree t is defined by a node of t together with all its descendants. We are thus
counting here occurrences of ‘‘terminal’’ subtrees.
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Such analyses, apart from being of combinatorial interest, are relevant to
efficient storage representations of trees. A straightforward implementation of a
binary tree of size n involves a total of 2n pointers among which nq1 are
attached to an external node and are void of information content. By distinguishing
between the four basic types of possible nodes}binary, left unary, right unary, and
leaves}one obtains a representation of trees that only requires ny1 pointers.
Pushing the idea further leads to pointer-free representations for small subtrees
occurring at the fringe of the tree. For instance, our analysis shows that the
number of pointers is reduced to ;4nr5 when fringe subtrees of the three types

( ( (
r _ r _

( ( ( (

Žare encoded as special pointer-free nodes. Similar ideas are often used to obtain
w x .the compacted form of digital trie dictionaries; see, for instance, 38 .

Pushed to its limits, the pointer-free representation gives rise to the directed
Ž .acyclic graph DAG representation, also known in parsing and compiling as

w xcommon subexpression factoring 19 . Naturally, this technique would not apply
directly to BSTs, where internal nodes contain important information, but, with
minor adjustments, it is applicable to parse trees statistically governed by the BST
model, We show here that the expected size K of the DAG associated to a BST ofn
size n is of order at most nrlog n. This result contrasts with the corresponding

Ž . w x'estimate of OO nr log n under the combinatorial model 19 and it confirms that
trees obeying the BST model are better suited for compaction.

Another consequence of the methods developed here is a distributional analysis
of the storage requirements of paged BSTs, or equivalently of the number of
recursive calls of quicksort under the strategy of halting on subfiles of size less than
a fixed threshold b.

Some of the distributional results of Section 5 are quite similar in spirit to
w xtheorems obtained by Devroye 11 . Devroye developed a general framework for

the study of local order patterns in random permutations that is based on the
central limit theorem of probability theory extended to random variables with
restricted dependencies. In particular, Devroye’s approach yields central limit laws

Ž .for leaves and for nodes with k descendants compare with our Theorem 5 . The
w xapproaches of this paper and of 11 are complementary. Devroye’s method applies

more naturally to problems expressed on the linear representation of permutations,
especially local order patterns of close neighbors. Our method, being based on the
tree decomposition, seems more suitable for recursively defined parameters of the
tree structure, like occurrences of subtrees and paging. In addition, it may give

Ž . Ž .local limit laws Theorem 6 and quantify rare events Theorems 2 and 3 as well as
Ž .convergence rates Theorems 4 and 5 . A special mention must also be made of the

Žworks of Aldous, who introduced a general model of randomness in trees see, for
w x.instance, 1 that encompasses many classical models and provides first order

asymptotics by probabilistic arguments. The mean value estimate in our Theorem 5
w xseems to come out as a direct consequence of Aldous’ work 1, p. 241 .
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2. MEAN, VARIANCE, AND GENERATING FUNCTION

Ž .The probability l u for a given unlabeled tree u to be the shape of a random BST
< < w xof size u is well known to satisfy 31, 41

1
l u s ,Ž . Ł < <¨¨$u

where the product is over all subtrees ¨ of u. The parameter l was studied in
w xdetail by Fill 15 . All analyses relative to the occurrences of pattern u involve
Ž . < <crucially lsl u as well as the pattern size ms u . We will often omit the

dependence on u in parameters or generating functions.
w x w xLet v t 'v t denote the number of occurrences of pattern u as a subtree ofu

Ž .the BST t possible labels of t are not taken into account . Then one has the
obvious recurrence

w x w x w xv t s @ tsu#qv t qv t ,0 1

where t and t denote the left and right subtrees of t and where the bracket0 1
notation @ P # is the indicator of P with value 1 if the predicate P is true and 0

Ž . Ž .otherwise. The bï ariate generating function BGF F z, y , defined by

F z , y [ l t y vw t x z < t < ,Ž . Ž .Ý
t

w n k x Ž .is such that the coefficient z y F z, y represents the probability that a random
BST of size n has k occurrences of u. We have:

Ž .Lemma 1. The bï ariate generating function F z, y satisfies the Riccati equation

­
2 < u <y1< <F z , y sF z , y q yy1 l u u z , F 0, y s1. 2Ž . Ž . Ž . Ž . Ž . Ž .

­ z

Proof. The tree parameter y vw t x satisfies the recursive relation

y vw t x sy @ tsu# y vw t0 x y vw t1 x ,

which means that y vw t x is multiplicative over subtrees, except in the single case
when tsu for which y0 s1 should be replaced by y1 sy. By the shape of the

Ž .splitting probabilities}check directly by means of recurrences implied by 1 or
w xsee 41, 43 for more general approaches}this gives the integral equation

z
2 < u <F z , y s1q F w , y dwq yy1 l u z .Ž . Ž . Ž . Ž .H

0

The statement then follows by differentiation with respect to z. B

Mean and Variance. By a classical process, the moments of the number of
Ž .occurrences of u are obtained by successive differentiation of the BGF F z, y

with respect to y, upon setting ys1. The easy computation is summarized by the
following statement that is of folklore knowledge.



PATTERNS IN RANDOM BINARY SEARCH TREES 227

( )Theorem 1 Moments of occurrences . The number V of occurrences of a patternn
� 4u of size m in a random BST of size n has mean m sE V and ¨ariancen n

2 � 4s sVar V that satisfyn n

2l
u ; ?n ,n mq1 mq2Ž . Ž .

2 22l 2l 11m q22mq6Ž .
2s ; y ?n ,n 2mq1 mq2Ž . Ž . mq1 mq2 2mq1 2mq3Ž . Ž . Ž . Ž .

Ž .where lsl u is the probability of a BST with shape u.

Proof. We have

­ F z , yŽ .
n 2 2w xm s z , s sf qm ym ,n n n n n­ y ys1

where f is the second factorial moment,n

2­ F z , yŽ .
nw xf s z .n 2­ y ys1

Ž .By differentiation with respect to y of the basic equation 2 , the ordinary
Ž . n Ž . ngenerating function M z [Ý m z and F z [Ý f z satisfy the first ordern n n n

differential equations

2 2
my 1 2M9 z s M z qlmz , F9 z s F z q2 M z .Ž . Ž . Ž . Ž . Ž .

1yz 1yz

These equations are a priori solvable by quadrature through the variation of
constant method; both functions turn out to be rational fractions with a pole at
zs1 of, respectively, second and third order. For dominant asymptotics of s 2, onen

Ž . Ž .needs accordingly two- and three-term expansions of M z and F z near the
singularity zs1. The computations are easily completed with the help of the
symbolic manipulation system Maple. B

In particular, a random BST of size n has on average ;nr3 nodes that are
leaves, hence ;nr3 binary nodes, a well-known fact. This indicates a better
balancing for BSTs than for trees under the combinatorial model where these

w xquantities are ;nr4; see, for instance, 41 .

Bessel Function Solutions. We now proceed with an explicit solution of the
Ž .Riccati differential equation 2 . Solution to such a nonlinear equation are always

reducible to quotients of solutions of second order linear differential equations.
We thus perform the basic change of variables

w9 z , yŽ .
F z , y sy , 3Ž . Ž .

w z , yŽ .
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Ž . XŽ .where w9 z, y sw z, y is the partial derivative with respect to z. The Riccatiz
equation of Lemma 1 induces the second order equation

­ 2
my1w z , y yL z w z , y s0, Lsl?m ? 1yy ,Ž . Ž . Ž .2­ z

Ž . < <with, again, lsl u , ms u . This equation is readily solved by indeterminate
w n x Ž .coefficients: with w s z w z , we have the recurrencen

nqm nqmq1 w sLw .Ž . Ž . nqmq1 n

Ž .Introduce now the two function precise definitions are given below

z z 2

A z s1q q q ??? ,Ž .m m mq1 m mq1 2mq1 2mq2Ž . Ž . Ž . Ž .

z z 2

B z s1q q q ??? , 4Ž . Ž .m mq1 mq2 mq1 mq2 2mq2 2mq3Ž . Ž . Ž . Ž . Ž . Ž .

Ž .so that any solution to the linear equation is a linear combination of A z andm
Ž . w x Ž .zB z . These are normalized Bessel functions 47 of orders y1r mq1 andm
Ž .1r mq1 , respectively. In effect, defining

` rz
II z s ,Ž . Ýa r ! aq1 aq2 ??? aq rŽ . Ž . Ž .rs0

one has

z z
A z sII , B z sII .Ž . Ž .m y1rŽmq1. m 1rŽmq1.2 2ž / ž /mq1 mq1Ž . Ž .

The initial conditions arising from the combinatorics of the problem entail that
Ž . Ž . Ž 2 . Ž < < .yw9 z, y rw z, y s1qzqOO z at the origin for u G2 , and one may impose

Ž . Ž . Ž .additionally w z s1qOO z , which fully determines w z . Hence:

Lemma 2. The bï ariate generating function of the number of occurrences of pattern
u is gï en by

w9 z , yŽ .
mq 1 mq1F z , y sy , w z , y sA L z yzB L z , 5Ž . Ž . Ž . Ž . Ž .m mw z , yŽ .

Ž . XŽ . < < Ž .Ž . < <with w9 z, y sw z, y , Ls u l u 1yy , ms u G2, and A , B are normalizedz m m
Ž .Bessel functions gï en by 4 .

3. ANALYSIS OF GENERATING FUNCTIONS

For the reader’s convenience, we summarize here the basic principles of complex
analysis that are required in our subsequent analyses of the BST model.



PATTERNS IN RANDOM BINARY SEARCH TREES 229

The generating functions that occur throughout are meromorphic, in the main
Ž .variable z, which means that they are quotients of analytic holomorphic func-

tions. This fact is a direct reflection of the recursive binary form of the BST model,
which leads to Riccati equations, hence to quotients of analytic functions by the

Ž .basic linearizing transformation of 3 . It is then well known that the location of
polar singularities of a function dictates the asymptotic form of its coefficients: this
is a simple consequence of Cauchy’s coefficient formula detailed in Henrici’s book
w x Ž .26 and briefly recalled when we first encounter it in Eq. 8 . This technique falls
into the broad class of singularity analysis methods, and is used in the univariate
case for proving Theorems 2 and 3.

Our interest here is largely with multivariate asymptotics, where it is required to
extract information on coefficients

n kf s z y F z , yŽ .n , k

Ž .of a bivariate generating function F z, y , like in Lemma 2. As is common practice,
we first perform one level of inversion, resulting in estimates of

w n xf y s z F z , yŽ . Ž .n

Ž .for some values of y. At this stage, the problem of estimating f y belongs ton
univariate asymptotics, but is parameterized by y. Singularity analysis techniques
allow for uniform error bounds, a crucial feature for probability estimates.

Ž .The quantity f y is by construction a probability generating function and onen
more inversion is required in order to recover the individual probabilities f asn, k

kf s y f y .Ž .n , k n

The most direct approach consists in appealing to Le¨y’s continuity theorem for
Ž . iucharacteristic functions; this implies estimating f y for yse , but only u near 0n

is required because of scaling. Thus, we have a perturbation of the univariate
Ž .problem at ys1. It turns out that f y is a ‘‘quasipower,’’ meaning that it behavesn

Ž .very nearly like the powers of a fixed function, so that the scaled version of f yn
Ž .behaves like the characteristic function of a Gaussian variable; see Eqs. 14 and

Ž .15 . In this way, a central limit law is derived in Theorems 4 and 5. Analytically,
the process is then essentially equivalent to Fourier inversion. Additional results

Ž .derive if one can estimate globally f y by quasipowers in larger regions, liken
< <y s1, and not merely locally near ys1. In that case, the recovery of f fromn, k
Ž .f y is achieved by subjecting a Cauchy coefficient integral,n

1 dy
f s f y ,Ž .En , k n kq12 ip y

to the saddle point method. Large powers and quasipowers are known to lead to
local limit laws of the Gaussian type, and Theorem 6 is an instance of this method.

To carry out this program, one must analyze the way the poles of F depend on
y. By the basic linearizing transformation, this requires analyzing the behavior of
roots of various sorts of equations

S z , y s0,Ž .
where S is analytic in both variables z, y; see Lemma 2 with S'w.



´FLAJOLET, GOURDON, AND MARTINEZ230

w xFor this category of problems we refer to the very clear treatment by Hille 27 .
ŽThe Weierstrass preparation theorem and the implicit function theorem see Sect.

w x. Ž .9.4 of 27 assert the following: if, at y , the equation S z, y s0 has an mth0 0
� 4m Ž .order root in z at zsz , then there exist also m roots z of S z , y that are0 j js1

near z when y is sufficiently near to y . Furthermore, these local roots are0 0
algebraic functions, in the sense that they satisfy

z m qg y z my 1 q ??? qg y s0Ž . Ž .1 m

Ž . Ž .for some functions g y analytic at y with g y s0. Thus, functions definedj 0 j 0
implicitly by bivariate analytic equations have a locally predictable behavior. We

w xrefer again to 27, pp. 265]275 for details. In particular, there is no ‘‘spontaneous’’
Ž .appearance of roots of analytic equations S z, y s0, as these roots vary continu-

Ž .ously on the Riemann sphere. Consequently, poles in the z plane of functions
Ž .like F z, y have a dependence on the parameter y that is of an algebraic form

Ž w x.and governed by Puiseux expansions 28, Sect. 12.3 . We make use of these
properties throughout Section 5]7.

4. TREES WITH EXCLUDED PATTERNS

We now estimate the probability that a tree does not contain a given pattern u.
This problem is of combinatorial interest as it corresponds to enumerating permu-
tations with certain types of forbidden patterns, given the equivalence between the
BST model, heap-ordered trees, and permutations. More importantly, the analysis
paves the way for the distributional results of the next section.

Asymptotic analysis of univariate and bivariate generating functions derived
Ž . Ž .from F z, y depends on locating the zeros of w z, y , where y is a parameter. We

Ž .thus define the function a y to be the root of smallest modulus of the Besselu
type equation

mq 1 mq1 < <A La yzB La , Ls 1yy u l u . 6Ž . Ž . Ž . Ž . Ž .m m

Ž . < <This definition specifies a y unambiguously, for 1yy not too large, as is shownu
by the following lemma.

< < < <Lemma 3. For any constant c, c -5r2, and any pattern u of size ms u )4, the
equation

< < < u <q1 < < < u <q1A c u l u z yzB c u l u z s0 7Ž . Ž . Ž .Ž . Ž .m m

< <admits exactly one root in the domain z F11r10.

Ž .Proof. The idea of the proof is that, since l u is small, the equation is a small
Ž .perturbation of 1yzs0 corresponding to the first two Taylor terms of 5 , so that

w xRouche’s theorem 27 applies.´
Ž . < <First, a uniform exponential upper bound on l u as a function of ms u is

Ž . < <needed. Asymptotically, it is known that l u decays at least exponentially with u ,
w xsee Fill’s paper 15 . It is not hard to see, by either direct induction or by
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specializing some of Fill’s results, that for all mG4, one has

< < y< u < r4u l u F2 .Ž .

w < < Ž .The actual asymptotic growth of u l u is exponentially smaller than the upper
bound above, so that any rough asymptotic analysis complemented by exhaustive

xverifications for small m suffices to establish such a bound.
Ž .Then the proof is completed by decomposing the left hand side of 7 as

Ž . Ž . < <1yzqR z , where R z is the sum of terms of degree )2. On z F11r10, the
Ž .quantity R z is majorized by the sum of a geometric progression, and a simple

< Ž . < < < < <computation shows that R z - 1yz on z s11r10. By Rouche’s theorem, the´
Ž .number of solutions of the full equation 7 is the same as that of 1yzs0 inside

< <z F11r10. B

The proof above leaves aside six cases corresponding to the six types of trees of
² < < Ž .:sizes 2, 3, and 4 based on the values of u , l u . These cases are exhausted by

applying Rouche’s theorem to Taylor truncations of low degrees. For instance, for´
Ž .cs1, the roots of smallest modulus also called ‘‘dominant’’ roots of the charac-

Ž .teristic equation 7 are well separated from subdominant roots and given by the
table

ms2 o, o, I, I , I 1.10732Ž .Ž .
ms3 o, o, o, I, I , I , I 1.01762Ž .Ž .Ž .

o, o, I, I , o, I, I 1.03748Ž . Ž .Ž .

with values 1.00861, 1.00567, and 1.00280 for size ms4.

( )Theorem 2 Excluded patterns . The probability e that a random BST of size nu, n
does not contain the pattern u satisfies

yny1 yne sa 0 1qOO K ,Ž . Ž .Ž .u , n u

Ž . Ž .where KsK u is a constant strictly larger than 1, and a 0 is the smallest positï eu
Ž .root of Eq. 6 with ys0, namely,

< < < u <q1 < < < u <q1A u l u a yzB u l u a s0.Ž . Ž .Ž . Ž .m m

w n x Ž .Proof. The probability is by definition z F z, 0 . By Lemma 3, the function
Ž . Ž .F z, 0 has a unique dominant singularity that is a simple pole at a 0 that isu

Ž . < < Ž < <positive and satisfies a 0 F11r10 for u )4. The cases u F4 are covered byu
.the remarks following Lemma 3. The function yF is a logarithmic derivative, so

Ž .that its residue at a 0 s1. Therefore,u

1
F z , 0 s qR z ,Ž . Ž .

a 0 yzŽ .u

Ž . Ž .where R z is analytic in a circle of radius strictly larger than a 0 .u
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The result follows by singularity analysis of meromorphic functions, according to
a classical process. For small enough e , e 9, one has

1 dz
nw xz F z , 0 s F z , 0Ž . Ž .H nq12 ip z< <z se

1 dzyny1sa 0 q F z , 0Ž . Ž .Hu nq12 ip z< < Ž . Ž .z s 1qe 9 a 0u

yny1 yny1ynsa 0 qOO K a 0 8Ž . Ž . Ž .Ž .u u

by Cauchy’s coefficient formula, the residue theorem, and the triangular inequality.
B

< <The same argument proves that, for small enough y ,

yny1nw xz F z , y ;a y , 9Ž . Ž . Ž .u

with a uniform exponentially small error term. Now, the probability that a random
BST of size n has k occurrences of a pattern u is obtained by differentiating k
times:

k1 d
n< <w x w xPr v t sk t sn s z F z , y .Ž .� 4u kž /k! dy ys0

Ž .Differentiation of asymptotic expansions like 9 is valid for analytic functions, so
that the probability of k occurrences, for any fixed k satisfies

Žk . yny1< <w xPr v t sk t sn ;P n a ,Ž .� 4u u u

where P ²k: is a polynomial of degree k whose coefficients depend on u by way ofu
values of a and its derivatives at 0. Retaining only dominant asymptotics leads tou
the following theorem.

( )Theorem 3 Poisson law for rare occurrences . Gï en a fixed pattern u, for each
fixed k, one has an nª`,

k Xmn 1 a 0Ž . Ž .uyny1< <w xPr v t sk t sn sa 0 ? 1qOO , msy . 10Ž . Ž .� 4u u ž /ž /k! n a 0Ž .u

For small number of occurrences, the asymptotic probability of this rare event is
thus the product of a Poisson law of parameter mn and of an exponentially small
scaling factor.

Permutations. Theorem 2 is in line with known enumerations of permutations
with excluded patterns, a fact to be expected since the BST model is also

Ž .isomorphic to the model of heap-ordered i.e., increasing trees that itself bijec-
w xtively correspond to permutations 5, 41, 44 . For instance, the exponential generat-
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Ž . w xing function of alternating or ‘‘up]down’’ permutations 8 is

sin z
A z s tan zs ,Ž .

cos z

also the negative of a logarithmic derivative, satisfying the Riccati equation
2 Ž .A9s1qA . Accordingly, the function A z is meromorphic and the probability for

Ž .yna permutation to be alternating decays like pr2 , an estimate of the same form
as Theorem 2. As alternating permutation correspond to trees that exclude unary
branching nodes, this is a type of excluded pattern that is only marginally different
from the ones considered here.

5. GAUSSIAN LIMIT LAWS

Finding the asymptotic distribution of the number of occurrences of a fixed pattern
belongs to bivariate asymptotics. The starting point of our approach is the bivariate

Ž .generating function F z, y . The method consists in analyzing the meromorphic
Ž .function F z, y and its z coefficients in the vicinity of ys1 by a technique of

singularity perturbation. In this way, one proves that the probability generating
Ž .function PGF of the number of occurrences is, near ys1, well approximated by a

Ž . Ž .large power of the fixed function a y , like in Eq. 9 . In the ‘‘pure’’ case of exactu
powers, this situation yields a Gaussian limit distribution, in accordance with the
central limit theorem of probability theory. Here, PGFs obey a general scheme of

w‘‘quasipowers’’ already studied by Bender, Richmond, Hwang, and others 4, 20,
x22, 30 .

Suitable adaptations of the technique also lead to a distributional analysis of
paging, where the bivariate GF is only known implicitly through differential
equations. A local limit law for leaves is also proved by means of typical saddle
point arguments.

5.1. Pattern Occurrences

Ž .The first result, also called a central limit law of the Gaussian type , describes the
probability of deviating more than a certain number of standard deviation from the
mean in terms of the Gaussian error function.

Ž .Central Limit Law CLL . A sequence of random variables V with mean m andn n
standard deviation s satisfies a central limit law ifn

xV ym 1 2n n yw r2sup Pr Fx y e dw -e , 11Ž .H n½ 5 's 2p y`xgR n

where e ª0 as nª`.n

An upper bound e is called a speed of con¨ergence to the central limit. Clearly,n
a CLL is equivalent to a Gaussian approximation for the partial sums Ý f ,jF k n, j

� 4 w n j x Ž .where f sPr V s j s z y F z, y .n, j n
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( )Theorem 4 Central law for occurrences . Gï en a pattern u, the number of
Ž .occurrences V of u in a random BST of size n obeys a central limit law CLL withn

2'Ž .speed of con¨ergence OO 1r n . The mean and ¨ariance m and s are gï en byn n
Theorem 1.

Ž . w n x Ž .Proof. The quantity f y s z F z, y is the probability generating functionn
Ž . Ž . � V n4 U ŽPGF of V , that is to say, f y sE y . The seminormalized variable V s Vn n n n'.ym r n then has characteristic function equal ton

Ui tV yim tr n itr n' 'n n� 4j t sE e se f e . 12Ž . Ž . Ž .n n

w xBy Levy’s continuity theorem for characteristic function 6, 33 , it is enough to´
Ž . Ž .prove pointwise convergence of j t for any fixed t to the characteristic functionn

Ž .of a Gaussian variable as nª`. In that case, the argument of f y lies in an
complex neighborhood of 1 that is of vanishingly small radius. Thus, only a local

Ž .analysis of f y near 1 is needed.n
The analysis of trees with excluded patterns applies almost ¨erbatim in this

context. By the implicit function theorem and the preparation theorem of Weier-
Ž .strass see the previous section , there is a small complex neighborhood of 1 such

Ž .that the function a y is analytic. In such a small neighborhood, we have, by theu
analysis of meromorphic functions and by Lemma 3,

yny1 ynf y sa y 1qOO K . 13Ž . Ž . Ž . Ž .Ž .n u

Ž .In other words, f y is closely approximated by a large power of a fixed function, an
situation conducive to normal laws.

Ž . Ž .Combining 12 and 13 , we get

log j t syitm ny1r2 y nq1 log a eitny1r2 qOO Kyn . 14Ž . Ž . Ž . Ž . Ž .n n u

Ž . Ž .We have a 1 s1, so that, from 14 , as nª`,u

yit t 2
2X Y X X y1r2log j t s m qna 1 q a 1 qa 1 y a 1 qOO n .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /n n u u u u' 2n

15Ž .
X Ž . YŽ .The derivatives a 1 and a 1 are readily computed from the bivariate Tayloru u

Ž . Ž . Ž . X Ž .expansion of the entire function w z, y at z, y s 1, 1 . It is found that a 1 su
ylim m rn, so thatnª` n

t 2
2 y1r2log j t sys qOO nŽ . Ž .n 2

'for a constant s that also equals lim s r n and is expressible in terms ofnª` n
X Ž . YŽ . Ž . Ua 1 and a 1 . This implies that the variable 1rs V converges in distribution tou u n

a standard normal variable. In passing, the computation provides an independent
check of the variance computation done earlier in Theorem 1.

w x w xFollowing Feller 14 and Hwang 30 , it is also possible to bound the speed of
convergence to the Gaussian limit by means of the Berry]Essen inequalities that
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wrelate the distance between distribution functions and characteristic functions 14,
x Ž .33 . Let F, G be two distribution functions with characteristic functions f t and
Ž . 5 5g t , G being assumed to have a density G9, and let h be the sup norm,`

5 5 < Ž . <h ssup h x . Then, the Berry]Esseen inequalities state that` x g R

5 524 G9 1 f t yg tŽ . Ž .T`
5 5FyG F q dt 16Ž .` H

p T p tyT

Ž .for any T)0. Now, the main estimate 14 applies with a uniform error term of the
Ž 3 y1r2 . < < 1r2form OO t n provided t Fc n , where c is a positive constant whose value1 1

Ž .is dictated by the radius of the analyticity region of a y at 1. Taking thenu
1r2 Ž .Tsc n in 16 entails that the speed of convergence in the central limit law is1'Ž . Ž w xOO 1r n . See also Hwang’s work 30 for an interesting analytic framework of

.considerable generality. B

5.2. Paged Trees

Fix a ‘‘bucket size’’ parameter bG2. Given a tree t, its b-index is a tree that is
constructed by retaining only those internal nodes of t which correspond to
subtrees of size )b. Such an index is well suited to ‘‘paging,’’ where one has a
two-level hierarchical memory structure: the index resides in main memory and the
rest of the tree is kept in pages of capacity b on peripheral storage; see, for

w x w x w xinstance, 29, 34 . We let i t s i t denote the size}number of nodes}of theb
b-index of t. The analysis is then clearly equivalent to determining the total
number of occurrences of all patterns of size )b, or dually those of size Fb.

( )Theorem 5 Paging distribution . For fixed bG2, the size I of the b-indexn
constructed on a random BST of size n has mean m and ¨ariance s 2 that satisfyn n

2 nq1 2 by1 b bq1Ž . Ž . Ž .
2m s y1, s s nq1 . 17Ž . Ž .n n 2bq2 3 bq2Ž .

Ž .The random ¨ariable I obeys a central limit law in the sense of 11 with speed ofn'Ž .con¨ergence e sOO 1r n .n

As pointed out by a referee, the first person to obtain a law of large numbers in
w xthis context was Aldous 1 . A limit law for subtrees of size exactly equal to b

w xappears in Devroye’s paper 11 .

Proof of Theorem 5. Like in Lemma 1, the bivariate generating function

G z , y [ l t y iw t x z < t <Ž . Ž .Ý
t

satisfies a Riccati equation that reflects the root decomposition of trees,

­ d 1yz bq1
2G z , y syG z , y q 1yy . 18Ž . Ž . Ž . Ž .ž /­ z dz 1yz
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Mean and variance follow by differentiation at zs1, like in the case of Theorem 1.
ŽThe result for the mean is well known; refer to quantity A in the analysis ofn

w x .quicksort on p. 122 of 31 .
Ž . Ž .Multiplying both sides of 18 by y now gives an equation satisfied by H z, y [

Ž .yG z, y ,

­ d 1yz bq1
2H z , y sH z , y qy 1yy ,Ž . Ž . Ž . ž /­ z dz 1yz

Ž .that may as well be taken as a starting point since H z, y is the bivariate GF of
Ž .parameter 1q i a quantity also equal to the number of external pages . To applyb

the linearization transformation, one sets

X X z , yŽ .z
H z , y sy ,Ž .

X z , yŽ .

so that

­ 2 d 1yz bq1

X z , y qy yy1 A z X z , y s0, A z s , 19Ž . Ž . Ž . Ž . Ž . Ž .2 ž /dz 1yz­ z

Ž . XŽ .with X 0, y s1 and X 0, y syy. By the classical existence theorem of Cauchy,z
Ž .the solution of 19 is an entire function of z for each fixed y, as the linear

differential equation has no singularity at a finite distance. Furthermore, the
wdependency of X on y is also locally everywhere analytic; see the remarks of 45,

xSect. 24 , for which a proof derives by inspection of the classical existence proof
Ž .based on indeterminate coefficients and majorant series. Thus, X z, y is actually

an entire function of both complex variables z and y. As a consequence, for any
Ž .fixed ysy , the function H z, y is a meromorphic function of z whose coeffi-0 0

cients are amenable to singularity analysis.
To proceed further, we need to prove that, in a sufficiently small neighborhood

Ž . Ž .of ys1, X z, y has only one simple root, corresponding for H z, y to a unique
dominant and simple pole. This fact itself derives from the preparation theorem of

Ž .Weierstrass see the discussion in the previous section : in the ¨icinity of any point
Ž . Ž . Ž .z , y with X z , y s0, the roots of the bï ariate analytic equation X z, y s0 are0 0 0 0

Ž .locally branches of an algebraic function. Here, we have X z, 1 '1yz. Thus, as y
Ž .tends to 1, all solutions of X z, y must escape to infinity except for one branch

Ž . Ž . X Ž .b y that satisfies b 1 s1. By the nonvanishing of X z, 1 and the implicity
Ž .function theorem, the function b y is additionally an analytic function about

ys1.
The argument is now completed like in the proof of Theorem 4. We have, for y

in a sufficiently small complex neighborhood of 1,

yny1n ynw xz H z , y sb y 1qOO KŽ . Ž . Ž .Ž .

w xfor some fixed constant K)0. Thus, the probability GF of i t over trees of size nb
Ž . Ž .is asymptotic to a large power, and by the computation of 12 ] 15 , the Gaussian

limit results. B
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Sets of Patterns. Note that the proof architecture is robust enough to survive the
disappearance of explicit Bessel function solutions. For this reasons, it applies in
full generality to any finite collection of patterns S. In this way, one can prove the
following result: the occurrence count

w x w xv t [ v t ,ÝS s
sgS

under the BST model of size n, has an expectation m and a ¨ariance s that aren n
linear in n; in addition, it satisfies a central limit law. In the general context of this
paper, the Laplace transform of the distribution of v also exists for real y in a real
interval strictly containing 1, and this fact implies exponential tails for large

w xdeviation from the mean; see 6, 20, 30 . Thus, there exist positï e constants A, B
Ž .depending only on S such that

yB x' < <w xPr v t ym Gx n t sn FAe .� 4S n

5.3. Local Laws

As seen in Section 5.1, a central limit law approximates the distribution function of
Žthe number of occurrences by a Gaussian error function. A local limit law of the

.Gaussian type means a direct approximation of the probabilities by the Gaussian
Ž yx 2 r2 .density i.e., the normalized form of the function e .

Ž .Local Limit Law LLL . A sequence of random variables V with mean m andn n
standard deviation s satisfies a local limit law if, for x in any fixed compact subsetn

x wof y`, q` ,

1 2yx r2sup s Pr V s m qxs y e ª0.� 4? @n n n n '2px

�Clearly, an LLL provides a direct estimation for the coefficients f sPr V sn, k n
4 w n k x Ž .k s z y F z, y . Local limit law usually accompany central limit laws, but their

w xproofs require strong regularity conditions on the distribution; see 3 for a clear
discussion.

( ) Ž .Theorem 6 Local law for leaves . A local limit law in the sense of LLL holds for
the number of lea¨es in random BSTs, that is to say, the number of occurrences of the
particular pattern ‘‘o.’’ The mean m and ¨ariance s 2 aren n

nq1 2 nq1Ž .
2m s , s s .n n3 45

We present here a proof schema based on a lemma of greater generality that
also clearly delineates the power and limitations of the analytic method. For an

Ž .arbitrary pattern u, a y may be defined as the root of smallest modulus of theu
Ž .transcendental equation 7 . By Lemma 3 and subsequent remarks, this function is

uniquely defined in a disk that properly contains the unit disk; for instance, we may
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< < < < Ž .take y -3r2, for u )4, by Lemma 3. As already noted, a y that is single-u
valued and locally analytic in such a disk is also globally an analytic function of y.

Lemma 4. Gï en a pattern u, assume that the uniqueness condition holds:

< <Condition C : a y /1 for all y with y s1, y/1.Ž . Ž .u

Ž .Then the random ¨ariable V satisfies a local limit law in the sense of LLL .n

Ž . Ž . < < Ž .Proof Sketch . The condition C means that for y s1, the function F z, y
has, when y varies, a pole of modulus 1 in the sole case when ys1. Also, for
< < < Ž . <y s1 and y/1, we must have a y always on the same side of 1, and, in fact,u

< Ž . < w n x Ž . Ž .we have a y )1 for all y/1 by virtue of the property z F z, y sOO 1 whenu
< <y s1.

Ž .By singularity analysis of the meromorphic function F z, y , we have, by an
argument used repeatedly before,

yny1n ynw xf y ' z F z , y sa y 1qOO KŽ . Ž . Ž . Ž .Ž .n u

for some K)1. The individual probabilities f can then e recovered by Cauchy’sn, k
coefficient formula

1 dyyny1kf ' y f y s a y qh ,Ž . Ž .Hn , k n u n , kkq12 ip y< <y s1

where h is exponentially small.n, k
As is classically known, coefficients of large indices in large powers can be

extracted by the saddle point method and, granted unicity of the saddle point on
Ž < < . Ž .the contour here y s1 , the consequence is a local limit law LLL . We refer to

w x18, 21, 23, 24, 30 for this fact that is also an offspring of analytic approaches to
w xlocal and central limit theorems originally stemming from the work of Daniels 9 .

Here, there is a saddle point at ys1 and the argument establishes the local limit
Ž .law, assuming the uniqueness condition C . B

'Ž .Note also that a speed of con¨ergence of OO 1r n in the local law derï es from
the saddle point method.

Proof of Theorem 6. The preceding discussion specializes easily to the case of
Ž .leaves, where explicit expression for F z, y are available. The Riccati ODE,

­
2F z , y sF z , y q yy1 , F 0, y s1,Ž . Ž . Ž . Ž .

­ z
reduces to a second order linear ODE that has constant coefficients. From there,
one finds

1yd tanh d zŽ . 1r2F z , y s , ds 1yy . 20Ž . Ž . Ž .y11yd tanh d zŽ .
Ž .The function a y is then explicit,u

1 1 1qd
a y s atanh d s log ,Ž . Ž .u d 2d 1yd

and the uniqueness condition of Lemma 4 is easily checked to hold. B
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< Ž iu . < Ž .Fig. 1. A polar plot of a e as a function of u in the case of leaves uso .u

As an illustration, we have

" ia 1 s1, a e s1.02267,Ž . Ž .u u

" 2 i " 3 ia e s1.09659, a e s1.24410,Ž . Ž .u u

Ž . < Ž iu . < Ž .and Figure 1 offers a polar plot of j u s a e , with j u plotted on the ray ofu
Ž .angle u . More generally, we believe the uniqueness condition C to hold true for

any fixed pattern u, not just leaves. In any particular instance, the condition of
Lemma 4 could at least be tested by numerical analysis and carefully controlled
error bounds.

Permutations. By the bijective correspondence between increasing trees and
permutations, f also equals the probability for a random permutation s of sizen, k
n to have k peaks, that is to say, configuration such that s -s )s . Thus,iy1 i iq1
Theorems 4 and 6 provide asymptotic laws for permutations counted according to

w xsize and number of peaks; see also 10, Chap. 10 . The situation of peaks then
w xappears to be analogous to that of Eulerian numbers 8, 31, 41 that count

Žpermutations according to size and number of ascents configurations such that
. w x w xs -s , where both a central law 10, 40 and a local law 3, 32 are known.i iq1

6. FACTORED REPRESENTATIONS OF TREES

w xWe consider finally a global parameter k t of trees that represents the number of
Ž .structurally different subtrees i.e., number of different subtree shapes that occur

in t. This parameter is of intrinsic interest as an indicator of the structural
‘‘richness’’ of t. It also measures the optimal storage complexity of tree t when all
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w xcommon subtrees are factored and represented only once. Then, k t measures the
Ž .number of nodes of the maximally factored DAG directed acyclic graph cor-

resonding to t, a quantity that intervenes in parsing and data compression applica-
w x w xtions 19 . We call k t the DAG size of tree t.

By its definition,

w x w xk t s @ug t #s @v t G1#,Ý Ý u
ugTT ugTT

where the sum is over the set TT of all tree shapes, @ ? # is the indicator function, and
Ž .ug t is true if u occurs at least once as a subtree of t. We denote by K then

w xaverage value of k t under the BST model of index n, so that

w xK s l t k t ,Ž .Ýn
< <t sn

Ž .where l t is the probability of the tree shape t under the BST model.
Under the combinatorial model where all trees are taken equally likely, the

˜ w x'corresponding expectation K grows like nr log n ; see 19 . In the BST modeln
where trees tend to be more balanced, we expect a priori fewer different subtrees,

˜that is to say, K <K . The following simple bound justifies this observation.n n

Theorem 7. The a¨erage ¨alue of the DAG size of a random BST of size n satisfies
the upper bound,

4 log 2 n n log log nŽ .
K F qOO .n 2ž /log n log nŽ .

Ž . w xProof. Fix a cutpoint parameter b to be adjusted later . An upper bound ¨ t onb
w xk t is

w x w x¨ t sB qB q ??? qB q i t ,b 0 1 b b

w xwhere i t is the number of nodes in t whose subtrees have size )b, andb

1 2kB sk ž /kkq1

is the Catalan number that counts the number of binary trees with k internal
w xnodes. Combinatorially, ¨ t is the size of an approximate DAG representationb

where all trees of size )b are represented once, irrespective of their possible
nonoccurrence in t, and nodes commanding subtrees of size Gb are each repre-
sented irrespective of the fact that they may be associated to repeated subtrees. In

w xother words, ¨ t is the size of a partly redundant and partially factored DAGb
representation.

Let U and I be the expectations of ¨ and i under the BST model of sizeb, n b, n b b
n. The analysis of i is exactly that of paging in Section 5.2, and we have byb
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Theorem 5, for n)b,

2n b
I s y . 21Ž .b , n bq2 bq2

As the Catalan numbers grow like 4kky3r2, we also have, for any b,

4b

B qB q ??? qB sOO . 22Ž .0 1 b 3r2ž /b

Thus, we have

2n 4b

K - qOO .n 3r2ž /b b

Equipped with this family of upper bounds, we can now optimize the choice of
Ž . Ž .the cutpoint b in 21 and 22 . Adopting

log ny log log n
bs ,

log 4

so that

4b n n n log log n
sOO , I s4 log 2 qOOŽ .b , n3r2 5r2 2ž / ž /log nb log n log nŽ . Ž .

yields the stated inequality. B

Based on simulations and heuristic analysis, we have reasons to believe that the
upper bound on K is of the right order. We know by Theorem 1 that any fixedn
pattern occurs almost surely in a large random tree. The argument of the upper
bound suggests that, almost surely in a large BST of size n, all the patterns of size a
bit less than log n occur at least once while all the patterns of size a bit more than4

Ž w x .log n occur at most once. Analogous laws are known for random strings 16 .4
Second moment methods based on Theorem 1 seem too crude to establish such
properties. Perhaps the thresholds could be precisely quantified along the lines of

< < w xTheorems 2]4, by allowing for uniform error terms when u grows with n; see 16
for strings. This would lead to a precise asymptotic estimation of K .n

7. CONCLUSIONS

There are two aspects of possible interest in the present work; one relative to the
‘‘physics’’ of random trees and permutations; the other concerning methodologies
for multivariate asymptotics.

Regarding methodology, the analysis of pattern occurrences as presented here is
attached to the general domain of bivariate asymptotics. Here, the combinatorial
problems translate into nonlinear differential equation that, being of the Riccati
type, lead to linear second order ODEs. Singularities in the main variable z drive
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TABLE 1 The Correspondence between Regions of the Auxiliary Variable y
and Combinatorial Properties of Pattern Occurrences

Values of y Combinatorial Property Theorem

ys0 Excluded pattern 2
yf0 Rare occurrences 3
ys1 Moments 1
yf1 Central limit law 4, 5

< <y s1 Local limit law 6

the asymptotic behavior of the bivariate generating function, with the auxiliary
variable y entering as a parameter. It is interesting to note, and typical, that
different regions of values of the auxiliary variable provide information on ex-
cluded patterns, rare occurrences, as well as central or local limit laws, as
summarized in Table 1. Globally, the process belongs to the class of singularity

w xperturbation methods; see 5, 13, 17 for related situations.
Regarding the physics of the problem, random structures of a large size tend to

have any small subconfiguration whose occurrences obey a Gaussian law, whether
Ž w x.local or global. This is a well-established fact for random strings see, e.g., 16 with

w ximplications in computational biology 46, Chap. 12 , for random combinatorial
w xtrees as implied by the results of 19, 42 , as well as for random graphs of various

w xsorts 7 . Our work adds random binary search trees to the collection, and recent
w xanalyses by Devroye 12 suggest that such universal behavior should persist for

many other types of trees. Consideration of multiway search trees that exhibit some
w xsort of Gaussian behavior, as shown by Mahmoud and Pittel 35 , also supports this

expectation.

ŽNote added in proof. Luc Devroye ‘‘On the richness of the collection of subtrees in
.random binary search trees,’’ May 1997 has shown that the upper bound in

Theorem 7 is indeed the right order of average DAG size.
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