7 research outputs found

    Explicit constructions of RIP matrices and related problems

    Get PDF
    We give a new explicit construction of n×Nn\times N matrices satisfying the Restricted Isometry Property (RIP). Namely, for some c>0, large N and any n satisfying N^{1-c} < n < N, we construct RIP matrices of order k^{1/2+c}. This overcomes the natural barrier k=O(n^{1/2}) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredients in our proof are new estimates for sumsets in product sets and for exponential sums with the products of sets possessing special additive structure. We also give a construction of sets of n complex numbers whose k-th moments are uniformly small for 1\le k\le N (Turan's power sum problem), which improves upon known explicit constructions when (\log N)^{1+o(1)} \le n\le (\log N)^{4+o(1)}. This latter construction produces elementary explicit examples of n by N matrices that satisfy RIP and whose columns constitute a new spherical code; for those problems the parameters closely match those of existing constructions in the range (\log N)^{1+o(1)} \le n\le (\log N)^{5/2+o(1)}.Comment: v3. Minor correction

    Optimal RIP Matrices with Slightly Less Randomness

    Full text link
    A matrix ΦRQ×N\Phi \in \mathbb{R}^{Q \times N} satisfies the restricted isometry property if Φx22\|\Phi x\|_2^2 is approximately equal to x22\|x\|_2^2 for all kk-sparse vectors xx. We give a construction of RIP matrices with the optimal Q=O(klog(N/k))Q = O(k \log(N/k)) rows using O(klog(N/k)log(k))O(k\log(N/k)\log(k)) bits of randomness. The main technical ingredient is an extension of the Hanson-Wright inequality to ϵ\epsilon-biased distributions

    Two are better than one: Fundamental parameters of frame coherence

    Full text link
    This paper investigates two parameters that measure the coherence of a frame: worst-case and average coherence. We first use worst-case and average coherence to derive near-optimal probabilistic guarantees on both sparse signal detection and reconstruction in the presence of noise. Next, we provide a catalog of nearly tight frames with small worst-case and average coherence. Later, we find a new lower bound on worst-case coherence; we compare it to the Welch bound and use it to interpret recently reported signal reconstruction results. Finally, we give an algorithm that transforms frames in a way that decreases average coherence without changing the spectral norm or worst-case coherence
    corecore