14 research outputs found

    Probabilistic Shared Risk Link Groups Modeling Correlated Resource Failures Caused by Disasters

    Get PDF
    To evaluate the expected availability of a backbone network service, the administrator should consider all possible failure scenarios under the specific service availability model stipulated in the corresponding service-level agreement. Given the increase in natural disasters and malicious attacks with geographically extensive impact, considering only independent single component failures is often insufficient. This paper builds a stochastic model of geographically correlated link failures caused by disasters to estimate the hazards an optical backbone network may be prone to and to understand the complex correlation between possible link failures. We first consider link failures only and later extend our model also to capture node failures. With such a model, one can quickly extract essential information such as the probability of an arbitrary set of network resources to fail simultaneously, the probability of two nodes to be disconnected, the probability of a path to survive a disaster. Furthermore, we introduce standard data structures and a unified terminology on Probabilistic Shared Risk Link Groups (PSRLGs), along with a pre-computation process, which represents the failure probability of a set of resources succinctly. In particular, we generate a quasilinear-sized data structure in polynomial time, which allows the efficient computation of the cumulative failure probability of any set of network elements. Our evaluation is based on carefully pre-processed seismic hazard data matched to real-world optical backbone network topologies.Accepted author manuscriptEmbedded and Networked System

    A multi-traffic inter-cell interference coordination scheme in dense cellular networks

    Get PDF
    This paper proposes a novel semi-distributed and practical ICIC scheme based on the Almost Blank Sub-Frame (ABSF) approach specified by 3GPP. We define two mathematical programming problems for the cases of guaranteed and best-effort traffic, and use game theory to study the properties of the derived ICIC distributed schemes, which are compared in detail against unaffordable centralized schemes. Based on the analysis of the proposed models, we define Distributed Multi-traffic Scheduling (DMS), a unified distributed framework for adaptive interference-aware scheduling of base stations in future cellular networks, which accounts for both guaranteed and best-effort traffic. DMS follows a two-tier approach, consisting of local ABSF schedulers, which perform the resource distribution between the guaranteed and best effort traffic, and a light-weight local supervisor, which coordinates ABSF local decisions. As a result of such a two-tier design, DMS requires very light signaling to drive the local schedulers to globally efficient operating points. As shown by means of numerical results, DMS allows to: (i) maximize radio resources resue; (ii) provide requested quality for guaranteed traffic; (iii) minimize the time dedicated to guaranteed traffic to leave room for best-effort traffic; and (iv) maximize resource utilization efficiency for the best-effort traffic.The work of A. Banchs was supported by the H2020 5GMoNArch project (Grant Agreement No. 761445) and the 5GCity project of the Spanish Ministry of Economy and Competitiveness (TEC2016-76795-C6-3-R). The work of V. Mancuso has been supported by a Ramon y Cajal grant (ref: RYC-2014-16285) in part by the Spanish Ministry of Science, Innovation and Universities under grant TIN2017-88749-R and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919)

    2022 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Sixteenth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1016/thumbnail.jp

    K + K = 120 : Papers dedicated to László Kálmán and András Kornai on the occasion of their 60th birthdays

    Get PDF
    corecore