226 research outputs found

    Hybridizing and applying computational intelligence techniques

    Get PDF
    As computers are increasingly relied upon to perform tasks of increasing complexity affecting many aspects of society, it is imperative that the underlying computational methods performing the tasks have high performance in terms of effectiveness and scalability. A common solution employed to perform such complex tasks are computational intelligence (CI) techniques. CI techniques use approaches influenced by nature to solve problems in which traditional modeling approaches fail due to impracticality, intractability, or mathematical ill-posedness. While CI techniques can perform considerably better than traditional modeling approaches when solving complex problems, the scalability performance of a given CI technique alone is not always optimal. Hybridization is a popular process by which a better performing CI technique is created from the combination of multiple existing techniques in a logical manner. In the first paper in this thesis, a novel hybridization of two CI techniques, accuracy-based learning classifier systems (XCS) and cluster analysis, is presented that improves upon the efficiency and, in some cases, the effectiveness of XCS. A number of tasks in software engineering are performed manually, such as defining expected output in model transformation testing. Especially since the number and size of projects that rely on tasks that must be performed manually, it is critical that automated approaches are employed to reduce or eliminate manual effort from these tasks in order to scale efficiently. The second paper in this thesis details a novel application of a CI technique, multi-objective simulated annealing, to the task of test case model generation to reduce the resulting effort required to manually update expected transformation output --Abstract, page iv

    Strategic and operational services for workload management in the cloud

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework

    MILCS: A mutual information learning classifier system

    Get PDF
    This paper introduces a new variety of learning classifier system (LCS), called MILCS, which utilizes mutual information as fitness feedback. Unlike most LCSs, MILCS is specifically designed for supervised learning. MILCS's design draws on an analogy to the structural learning approach of cascade correlation networks. We present preliminary results, and contrast them to results from XCS. We discuss the explanatory power of the resulting rule sets, and introduce a new technique for visualizing explanatory power. Final comments include future directions for this research, including investigations in neural networks and other systems. Copyright 2007 ACM

    A tandem evolutionary algorithm for identifying causal rules from complex data

    Get PDF
    We propose a new evolutionary approach for discovering causal rules in complex classification problems from batch data. Key aspects include (a) the use of a hypergeometric probability mass function as a principled statistic for assessing fitness that quantifies the probability that the observed association between a given clause and target class is due to chance, taking into account the size of the dataset, the amount of missing data, and the distribution of outcome categories, (b) tandem age-layered evolutionary algorithms for evolving parsimonious archives of conjunctive clauses, and disjunctions of these conjunctions, each of which have probabilistically significant associations with outcome classes, and (c) separate archive bins for clauses of different orders, with dynamically adjusted order-specific thresholds. The method is validated on majority-on and multiplexer benchmark problems exhibiting various combinations of heterogeneity, epistasis, overlap, noise in class associations, missing data, extraneous features, and imbalanced classes. We also validate on a more realistic synthetic genome dataset with heterogeneity, epistasis, extraneous features, and noise. In all synthetic epistatic benchmarks, we consistently recover the true causal rule sets used to generate the data. Finally, we discuss an application to a complex real-world survey dataset designed to inform possible ecohealth interventions for Chagas disease

    Learning Mazes with Aliasing States: An LCS Algorithm with Associative Perception

    Get PDF
    Learning classifier systems (LCSs) belong to a class of algorithms based on the principle of self-organization and have frequently been applied to the task of solving mazes, an important type of reinforcement learning (RL) problem. Maze problems represent a simplified virtual model of real environments that can be used for developing core algorithms of many real-world applications related to the problem of navigation. However, the best achievements of LCSs in maze problems are still mostly bounded to non-aliasing environments, while LCS complexity seems to obstruct a proper analysis of the reasons of failure. We construct a new LCS agent that has a simpler and more transparent performance mechanism, but that can still solve mazes better than existing algorithms. We use the structure of a predictive LCS model, strip out the evolutionary mechanism, simplify the reinforcement learning procedure and equip the agent with the ability of associative perception, adopted from psychology. To improve our understanding of the nature and structure of maze environments, we analyze mazes used in research for the last two decades, introduce a set of maze complexity characteristics, and develop a set of new maze environments. We then run our new LCS with associative perception through the old and new aliasing mazes, which represent partially observable Markov decision problems (POMDP) and demonstrate that it performs at least as well as, and in some cases better than, other published systems

    Parallel evaluation of Pittsburgh rule-based classifiers on GPUs

    Get PDF
    Individuals from Pittsburgh rule-based classifiers represent a complete solution to the classification problem and each individual is a variable-length set of rules. Therefore, these systems usually demand a high level of computational resources and run-time, which increases as the complexity and the size of the data sets. It is known that this computational cost is mainly due to the recurring evaluation process of the rules and the individuals as rule sets. In this paper we propose a parallel evaluation model of rules and rule sets on GPUs based on the NVIDIA CUDA programming model which significantly allows reducing the run-time and speeding up the algorithm. The results obtained from the experimental study support the great efficiency and high performance of the GPU model, which is scalable to multiple GPU devices. The GPU model achieves a rule interpreter performance of up to 64 billion operations per second and the evaluation of the individuals is speeded up of up to 3.461× when compared to the CPU model. This provides a significant advantage of the GPU model, especially addressing large and complex problems within reasonable time, where the CPU run-time is not acceptabl

    Implementation of a scalable communication mechanism for MPI

    Get PDF
    This document shows how the development of a scalable communication mechanism for MPI has been carried. This work presents a communication mechanism applied to the monitorization of parallel distributed applications which has served as an example of how these kind of communication mechanisms work. In order to implement the proposed system, in which an application spans a variable number of processes, a network communication topology shaped as a binary tree has been created. This allows the communications to be carried out in a scalar way which avoids network bottlenecks. In addition to that, a filtering mechanism in the communication has been implemented, which discards some messages which are irrelevant in the monitorization of the application. This project has been developed in C language, using the MPICH implementation of the MPI standard for using parallel applications and the EVpath library for the communication mechanism.Ingeniería Informátic
    • …
    corecore