9 research outputs found

    An Exponential Lower Bound for the Runtime of the cGA on Jump Functions

    Full text link
    In the first runtime analysis of an estimation-of-distribution algorithm (EDA) on the multi-modal jump function class, Hasen\"ohrl and Sutton (GECCO 2018) proved that the runtime of the compact genetic algorithm with suitable parameter choice on jump functions with high probability is at most polynomial (in the dimension) if the jump size is at most logarithmic (in the dimension), and is at most exponential in the jump size if the jump size is super-logarithmic. The exponential runtime guarantee was achieved with a hypothetical population size that is also exponential in the jump size. Consequently, this setting cannot lead to a better runtime. In this work, we show that any choice of the hypothetical population size leads to a runtime that, with high probability, is at least exponential in the jump size. This result might be the first non-trivial exponential lower bound for EDAs that holds for arbitrary parameter settings.Comment: To appear in the Proceedings of FOGA 2019. arXiv admin note: text overlap with arXiv:1903.1098

    A Tight Runtime Analysis for the cGA on Jump Functions---EDAs Can Cross Fitness Valleys at No Extra Cost

    Full text link
    We prove that the compact genetic algorithm (cGA) with hypothetical population size μ=Ω(nlogn)poly(n)\mu = \Omega(\sqrt n \log n) \cap \text{poly}(n) with high probability finds the optimum of any nn-dimensional jump function with jump size k<120lnnk < \frac 1 {20} \ln n in O(μn)O(\mu \sqrt n) iterations. Since it is known that the cGA with high probability needs at least Ω(μn+nlogn)\Omega(\mu \sqrt n + n \log n) iterations to optimize the unimodal OneMax function, our result shows that the cGA in contrast to most classic evolutionary algorithms here is able to cross moderate-sized valleys of low fitness at no extra cost. Our runtime guarantee improves over the recent upper bound O(μn1.5logn)O(\mu n^{1.5} \log n) valid for μ=Ω(n3.5+ε)\mu = \Omega(n^{3.5+\varepsilon}) of Hasen\"ohrl and Sutton (GECCO 2018). For the best choice of the hypothetical population size, this result gives a runtime guarantee of O(n5+ε)O(n^{5+\varepsilon}), whereas ours gives O(nlogn)O(n \log n). We also provide a simple general method based on parallel runs that, under mild conditions, (i)~overcomes the need to specify a suitable population size, but gives a performance close to the one stemming from the best-possible population size, and (ii)~transforms EDAs with high-probability performance guarantees into EDAs with similar bounds on the expected runtime.Comment: 25 pages, full version of a paper to appear at GECCO 201

    Artificial immune systems can find arbitrarily good approximations for the NP-hard number partitioning problem

    Get PDF
    Typical artificial immune system (AIS) operators such as hypermutations with mutation potential and ageing allow to efficiently overcome local optima from which evolutionary algorithms (EAs) struggle to escape. Such behaviour has been shown for artificial example functions constructed especially to show difficulties that EAs may encounter during the optimisation process. However, no evidence is available indicating that these two operators have similar behaviour also in more realistic problems. In this paper we perform an analysis for the standard NP-hard Partition problem from combinatorial optimisation and rigorously show that hypermutations and ageing allow AISs to efficiently escape from local optima where standard EAs require exponential time. As a result we prove that while EAs and random local search (RLS) may get trapped on 4/3 approximations, AISs find arbitrarily good approximate solutions of ratio (1+) within n(−(2/)−1)(1 − )−2e322/ + 2n322/ + 2n3 function evaluations in expectation. This expectation is polynomial in the problem size and exponential only in 1/

    When hypermutations and ageing enable artificial immune systems to outperform evolutionary algorithms

    Get PDF
    We present a time complexity analysis of the Opt-IA artificial immune system (AIS). We first highlight the power and limitations of its distinguishing operators (i.e., hypermutations with mutation potential and ageing) by analysing them in isolation. Recent work has shown that ageing combined with local mutations can help escape local optima on a dynamic optimisation benchmark function. We generalise this result by rigorously proving that, compared to evolutionary algorithms (EAs), ageing leads to impressive speed-ups on the standard Image 1 benchmark function both when using local and global mutations. Unless the stop at first constructive mutation (FCM) mechanism is applied, we show that hypermutations require exponential expected runtime to optimise any function with a polynomial number of optima. If instead FCM is used, the expected runtime is at most a linear factor larger than the upper bound achieved for any random local search algorithm using the artificial fitness levels method. Nevertheless, we prove that algorithms using hypermutations can be considerably faster than EAs at escaping local optima. An analysis of the complete Opt-IA reveals that it is efficient on the previously considered functions and highlights problems where the use of the full algorithm is crucial. We complete the picture by presenting a class of functions for which Opt-IA fails with overwhelming probability while standard EAs are efficient

    When move acceptance selection hyper-heuristics outperform Metropolis and elitist evolutionary algorithms and when not

    Get PDF
    Selection hyper-heuristics (HHs) are automated algorithm selection methodologies that choose between different heuristics during the optimisation process. Recently, selection HHs choosing between a collection of elitist randomised local search heuristics with different neighbourhood sizes have been shown to optimise standard unimodal benchmark functions from evolutionary computation in the optimal expected runtime achievable with the available low-level heuristics. In this paper, we extend our understanding of the performance of HHs to the domain of multimodal optimisation by considering a Move Acceptance HH (MAHH) from the literature that can switch between elitist and non-elitist heuristics during the run. In essence, MAHH is a non-elitist search heuristic that differs from other search heuristics in the source of non-elitism. We first identify the range of parameters that allow MAHH to hillclimb efficiently and prove that it can optimise the standard hillclimbing benchmark function OneMax in the best expected asymptotic time achievable by unbiased mutation-based randomised search heuristics. Afterwards, we use standard multimodal benchmark functions to highlight function characteristics where MAHH outperforms elitist evolutionary algorithms and the well-known Metropolis non-elitist algorithm by quickly escaping local optima, and ones where it does not. Since MAHH is essentially a non-elitist random local search heuristic, the paper is of independent interest to researchers in the fields of artificial intelligence and randomised search heuristics

    Artificial Immune Systems can find arbitrarily good approximations for the NP-Hard partition problem

    Get PDF
    Typical Artificial Immune System (AIS) operators such as hypermutations with mutation potential and ageing allow to efficiently overcome local optima from which Evolutionary Algorithms (EAs) struggle to escape. Such behaviour has been shown for artificial example functions such as Jump, Cliff or Trap constructed especially to show difficulties that EAs may encounter during the optimisation process. However, no evidence is available indicating that similar effects may also occur in more realistic problems. In this paper we perform an analysis for the standard NP-Hard Partition problem from combinatorial optimisation and rigorously show that hypermutations and ageing allow AISs to efficiently escape from local optima where standard EAs require exponential time. As a result we prove that while EAs and Random Local Search may get trapped on 4/3 approximations, AISs find arbitrarily good approximate solutions of ratio ( 1+ϵ ) for any constant ϵ within a time that is polynomial in the problem size and exponential only in 1/ϵ
    corecore