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Selection hyper-heuristics (HHs) are automated algorithm selection methodologies that 
choose between different heuristics during the optimisation process. Recently, selection 
HHs choosing between a collection of elitist randomised local search heuristics with 
different neighbourhood sizes have been shown to optimise standard unimodal benchmark 
functions from evolutionary computation in the optimal expected runtime achievable with 
the available low-level heuristics. In this paper, we extend our understanding of the 
performance of HHs to the domain of multimodal optimisation by considering a Move 
Acceptance HH (MAHH) from the literature that can switch between elitist and non-elitist 
heuristics during the run. In essence, MAHH is a non-elitist search heuristic that differs 
from other search heuristics in the source of non-elitism.
We first identify the range of parameters that allow MAHH to hillclimb efficiently and 
prove that it can optimise the standard hillclimbing benchmark function OneMax in the 
best expected asymptotic time achievable by unbiased mutation-based randomised search 
heuristics. Afterwards, we use standard multimodal benchmark functions to highlight 
function characteristics where MAHH outperforms elitist evolutionary algorithms and the 
well-known Metropolis non-elitist algorithm by quickly escaping local optima, and ones 
where it does not. Since MAHH is essentially a non-elitist random local search heuristic, 
the paper is of independent interest to researchers in the fields of artificial intelligence and 
randomised search heuristics.

© 2022 Published by Elsevier B.V.

1. Introduction

Selection hyper-heuristics (HHs) are automated algorithm selection methodologies designed to choose which of a set 
of low-level heuristics to apply in the next steps of the optimisation process [15]. Rather than deciding in advance which 
heuristic and related parameter settings to apply for a problem, either by manual trial and error in preliminary experiments 
or using automated algorithm configurators [32,64], the aim behind HHs is to automate the process at runtime. Originally 
shown to effectively optimise scheduling problems, such as the scheduling of a sales summit and university timetabling 
[15,16], they have since been successfully applied to a variety of hard combinatorial optimisation problems (see e.g., [7,6,
27,40,58,64] for surveys of results).

✩ An extended abstract of this manuscript has appeared at the 2019 Association for the Advancement of Artificial Intelligence Conference (AAAI 2019) 
[46].
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Selection HHs consist of two separate components: (1) a heuristic selection method, often referred to as the learning 
mechanism, to decide which heuristic to be applied in the next step of the optimisation process, and (2) a move acceptance 
operator to decide whether the newly produced search points should be accepted.

The majority of heuristic selection methods in the literature apply machine learning techniques that generate scores for 
each heuristic based on their past performance. A commonly used method for the purpose is reinforcement learning [15,50,
5]. Despite their numerous successful applications, very limited rigorous theoretical understanding of their behaviour and 
performance is available [43,1].

Recently, it has been proved that a reinforcement learning HH and a simple selection HH called Random Descent [15,16], 
both choosing between elitist randomised local search (RLS) heuristics with different neighbourhood sizes, can respectively 
optimise the standard unimodal benchmark functions OneMax and LeadingOnes in the best possible runtimes achievable 
(up to lower order terms), with the available low-level heuristics [22,48]. Since the Random Descent HH does not store 
information on the past performance of the low-level heuristics, it is necessary to run the selected low-level heuristics for a 
sufficient amount of time, called the learning period, to allow the HH to accurately determine how useful the chosen heuristic 
is at the current stage of the optimisation process. However, the optimal duration of the learning period may change during 
the optimisation process. Doerr et al. recently introduced a self-adjusting mechanism and rigorously proved that it allows the 
HH to track the optimal learning period throughout the optimisation process for LeadingOnes [25]. The optimal asymptotic 
performance of the same self-adjusting Random Descent HH has recently been shown also for the OneMax and Ridge

unimodal benchmark functions [47]. For a survey of the available theoretical results regarding the performance of HHs, see 
[51].

In this paper we aim to extend the understanding of the behaviour and performance of HHs to multimodal optimisation 
problems. In order to evaluate their capability at escaping local optima, we consider elitist and non-elitist selection operators 
(called move acceptance operators) that have been used in the HH literature. Move acceptance operators (also referred to as 
selection operators in the classic evolutionary computation literature) are classified as either deterministic, where the same 
decision is made independent of the stage of the optimisation process, or non-deterministic, where different decisions for 
the same solutions might be made at different stages [56].

Cowling et al. introduced two variants of deterministic move acceptance operators: the elitist OnlyImproving (OI) op-
erator, which only accepts moves that improve the current solution, and the non-elitist AllMoves (AM) operator, which 
accepts any new solution independent of its quality [15,16]. Another move acceptance operator that has been considered 
in the literature is the ImprovingandEqual (IE) operator which, in addition to accepting improving solutions, also accepts 
solutions of equal quality [2,4,55]. In the mentioned works, the acceptance operator remains fixed throughout the run, with 
the HH only switching between different mutation operators. However, it would be more desirable that HHs are allowed 
to decide to change the move acceptance operator and hence, the selection pressure at different stages of the optimisation 
process. For instance, they may use elitist move acceptance in exploitation phases of the search, such as hillclimbing, and 
non-elitism for exploration, for instance to escape from local optima.

Indeed, Qian et al. analysed a HH that switches between move acceptance operators in the context of multi-objective 
optimisation [60]. They considered a HH that selects between the elitist (IE) and the strict elitist (OI) move acceptance 
operators and presented a function where it is necessary to mix the two acceptance operators. Lehre and Özcan presented 
the only available analysis of a HH which chooses between elitist and non-elitist low level heuristics [43]. In particular, the 
HH uses the above described OI (strict elitist) and AM (non-elitist) acceptance operators. The considered Move Acceptance 
HH (MAHH) uses 1-bit flips (i.e., local mutations) as the mutation operator and selects the AM acceptance operator with 
probability p and the OI acceptance operator with probability 1 − p. Essentially, the algorithm is a randomised local search 
(RLS) algorithm that switches between strict elitism, by only accepting improvements, and extreme non-elitism, by accepting 
any new found solution. For the standard RoyalRoadk benchmark function from evolutionary computation, which consists 
of several blocks of k ≥ 2 bits each that have to be set correctly to observe a fitness improvement, they proved that it is 
necessary to mix the acceptance operators for MAHH to be efficient, because by only accepting improvements (i.e., p = 0) 
the runtime is infinite due to MAHH not being able to cross the plateaus of equal fitness while by always accepting any 
move (i.e., p = 1), the algorithm simply performs a random search. By choosing the value of the parameter p appropriately 
they provide an upper bound on the expected runtime of the HH of O (n3 · k2k−3) versus the O (n log(n) · (2k/k)) expected 
time required by evolutionary algorithms with standard bit mutation (i.e., each bit is flipped with probability 1/n) and with 
the standard selection operator that accepts new solutions if their fitness is at least as good as that of their parent [26]. In 
particular, just using the IE acceptance operator throughout the run leads to a better performance. Hence, the advantages of 
switching between selection operators rather than just using one all the time were not evident.

In this paper we present a systematic analysis of the same HH considered by Lehre and Özcan [43] for multimodal 
optimisation problems,1 where the considerable advantages of changing the move acceptance operator during the run may 
be highlighted. In particular, we will increase our understanding of the behaviour and performance of MAHH by providing 

1 In the literature, the term ‘multimodal optimisation’ is also used to refer to optimisation tasks that involve identifying a set of local or global optima 
(several or all) rather than just the global optimum [59]. In this paper, we use the term to simply refer to the fact that the optimisation functions are not 
unimodal, i.e., they have local optima in which the algorithms may get trapped. Concerning the term ‘multimodal function’, we use the same definition as 
in the cited book, i.e., “Naturally, some objective functions do only possess one optimizer. These are generally considered easier to optimize and are called unimodal. All 
others are called multimodal”.
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features of multimodal landscapes where it is efficient at escaping local optima and features where it is not. Furthermore, 
we provide a comparative analysis with the well-studied Metropolis non-elitist algorithm [37] and steady-state evolu-
tionary algorithms (EAs), which highlights when MAHH has superior performance, thus should be preferred and when 
not.

We first perform an analysis of the standard unimodal OneMax benchmark function from evolutionary computation to 
identify the range of parameter values for p that allow MAHH to hillclimb, and hence to locate local optima efficiently. In 
particular, we prove that for any p = O ((log log n)1−ε/n) and any constant ε > 0, MAHH is asymptotically as efficient as 
the best unary unbiased (i.e., mutation-based) randomised search heuristic [44] even though it does not rely on elitism. On 
the other hand, we show that for larger p = ω(

√
n log n)/n), MAHH cannot optimise any function with unique optimum in 

polynomial time with high probability.
Afterwards we highlight the power of MAHH by analysing its performance for standard benchmark function classes 

chosen because they allow us to isolate important properties of multimodal optimisation landscapes. Firstly, we consider 
the Cliffd class of functions, consisting of local optima that, once escaped, allow the identification of a new slope of 
increasing fitness. For this class of functions, we rigorously prove that MAHH efficiently escapes the local optima and on 
the hardest instances of the function class for elitist search heuristics [12], it even achieves the best possible expected 
runtime of O (n log n) (for unary - mutation only - unbiased randomised search heuristics) for any problem with up to 
a polynomial number of optima [3]). Thus, we prove that it considerably outperforms established elitist and non-elitist 
evolutionary algorithms, including the Metropolis algorithm. We then consider the standard Jumpm multimodal instance 
class of functions to provide an example of fitness landscape where to identify a new slope with increasing gradient towards 
the optimum is as hard as possible. While MAHH has a runtime that is exponential in the size of the basin of attraction, 
it is efficient for instances of moderate jump size (i.e., constant) where it still considerably outperforms Metropolis which 
requires exponential time in the problem size with overwhelming probability independent of the basin’s size.

The superior performance of MAHH over Metropolis for the considered function classes is mainly due to the large 
fitness value difference between the local optima and their neighbouring solutions. To this end, we design a smoother 
function class, called CliffJumpd,r,s , for which the sizes of the basins of attraction of both local and global optima and 
the steepness of the negative slope that has to be traversed to escape from the local optima can be tuned. Our aim is 
to identify basin-of-attraction characteristics where MAHH outperforms Metropolis and vice-versa. CliffJumpd,r,s combines 
aspects of both Cliffd and Jumpm . From the local optima, a ‘Jumpm ’ slope returning to the local optima has to be overcome 
to identify a Cliffd slope leading to the global optimum. If the negative slope leading away from the local optima decreases 
in fitness gently, then Metropolis can be configured to always outperform any variant of the HH. Conversely, if the slope 
is steep, then the HH can be configured to be faster than any variant of Metropolis. Hence, the analysis shows that MAHH 
is preferable on rugged landscapes with steep changes in fitness, while Metropolis is more efficient on smoother ‘well-
behaved’ landscapes where neighbouring points have similar fitness values. However, while MAHH is always efficient if the 
length of the negative slope is not too large independent of steepness of the slope, Metropolis is inefficient even when 
the slope is small if the descending gradient is not gentle. As a corollary, the function class allows us to point out what 
kinds of basin of attraction are overcome more efficiently by the non-elitist hyper-heuristic compared to elitist evolutionary 
algorithms using standard bit mutation. In particular, for small basins of attraction located at a super-constant distance 
from the optimum, non-elitism may make a difference between small polynomial and super-polynomial runtimes, including 
exponential ones.

We use this insight to complete the picture by presenting fitness landscape characteristics where Metropolis is efficient 
while MAHH is not. The benchmark function we consider has a very gentle slope with a smooth fitness-decreasing gradient 
surrounded by points of considerably lower fitness. While Metropolis is efficient for the function because it can follow the 
gentle path by rejecting the points of lower fitness, the function is deceptive for MAHH since it is likely to accept worsening 
solutions that are not on the path resulting in exponential optimisation time with overwhelming probability. Since MAHH 
is essentially a non-elitist random local search heuristic that differs from other search heuristics in the source of non-
elitism, the paper is of general interest outside the parameter control [21] and hyper-heuristics community, in particular 
to researchers in randomised search heuristics and artificial intelligence in general (see, e.g., [36,10,18] for other analyses 
emphasising the effectiveness of non-elitism).

The rest of the paper is structured as follows. In the next section we formally introduce the move-acceptance hyper-
heuristics (MAHHOI and MAHHIE), the problem classes and the mathematical analysis tools used in the rest of the paper. 
In Section 3, we analyse MAHHOI on the unimodal benchmark function OneMax. In Sections 4 and 5, we analyse MAHHOI

on the multimodal Cliffd and Jumpm functions, comparing its expected runtime with that of the well known Metropolis

algorithm. Section 6 analyses the ability of MAHHOI and Metropolis to escape basins of attraction with tuneable gradients 
and size. In Section 7, we analyse an example function where Metropolis provably outperforms MAHHOI. We finish the 
paper with some conclusions on when MAHH performs well and when it doesn’t, as well as offering some promising 
avenues for future research.

Compared to its conference version [46], this manuscript has been considerably extended. We include all proofs that 
were omitted due to space constraints, and many theorems have been strengthened. Furthermore, sections 6 and 7 are 
completely new additions.
3
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Algorithm 1 Move Acceptance Hyper-Heuristic (MAHHOI) [43].
1: Choose x ∈ {0, 1}n uniformly at random
2: while termination criteria not satisfied do
3: x′ ← FlipRandomBit(x)
4: Choose r ∈ [0, 1] uniformly at random
5: if r ≤ p then x ← x′ // AM
6: else � f ← f (x′) − f (x)
7: if � f > 0 then x ← x′ // OI

Algorithm 2 Metropolis algorithm [49].
1: Choose x ∈ {0, 1}n uniformly at random, set α(n) ≥ 1
2: while termination criteria not satisfied do
3: x′ ← FlipRandomBit(x)
4: � f ← f (x′) − f (x)
5: if � f ≥ 0 then x ← x′
6: else choose r ∈ [0, 1] uniformly at random
7: if r ≤ α(n)� f then x ← x′

Algorithm 3 (1 + 1) Evolutionary algorithm.
1: Choose x ∈ {0, 1}n uniformly at random
2: while termination criteria not satisfied do
3: x′ ← flip each bit of x independently with probability 1/n
4: � f ← f (x′) − f (x)
5: if � f ≥ 0 then x ← x′

2. Preliminaries

In this section, we will formally introduce the hyper-heuristic algorithms and the problem classes we will analyse in this 
paper, and briefly state some widely-known mathematical tools for the runtime analysis of randomised search heuristics 
that we will use throughout the paper.

2.1. Algorithms

We will analyse the Move Acceptance hyper-heuristic previously considered by Lehre and Özcan [43]. In each iteration, 
one bit chosen uniformly at random will flip and with probability p, the AllMoves (AM) acceptance operator is used, while 
with probability 1 − p, the OnlyImproving (OI) acceptance operator is used. Algorithm 1 shows its pseudocode.

We also consider the MAHHIE variant of Algorithm 1 whereby the ImprovingandEqual (IE) acceptance operator (which 
accepts all moves which either increase or maintain the current fitness) is used instead of the OI operator. Thus, in MAHHIE, 
the AM acceptance operator is used with probability p, and the IE acceptance operator is used with probability 1 − p. 
However, for the problem classes we consider, changing the number of 1-bits in the bit-string by 1 (as is done by the
FlipRandomBit mutation operator of Algorithm 1) will always change the fitness value, i.e., there are no plateaus of constant 
fitness. Therefore, we point out that, given these conditions, all the statements made in the paper for the MAHHOI hyper-
heuristic will also hold for the MAHHIE hyper-heuristic. Thus, in the rest of the paper, we will focus the analysis on the 
MAHHOI hyper-heuristic.

Throughout this paper, we will compare the performance of the MAHHOI hyper-heuristic with the well-known Metropo-

lis algorithm [49] which also allows for global exploration through non-elitism, and with a standard elitist evolutionary 
algorithm ((1 + 1) EA) which uses global mutations to escape from local optima [39]. While all local mutations which find 
improving solutions are accepted, Metropolis also accepts worsening moves with some non-zero probability. Suppose the 
parent solution x has fitness f (x), and the offspring solution y has a fitness f (y), where f (y) − f (x) = � f < 0. Metropolis

accepts the worsening move with probability α(n)� f , for some function α(n) ≥ 1. The pseudocode for Metropolis is shown 
in Algorithm 2. The (1 + 1) EA only accepts solutions of non-decreasing fitness (i.e., elitism) and flips each bit with a fixed 
probability (i.e., 1/n) so that it can reach any area of the search space in a single step, while the probability of reaching a 
new point decreases with the increased Hamming distance to the current point. The pseudocode for the (1 +1) EA is shown 
in Algorithm 3.

2.2. Benchmark function classes

We will start by considering standard benchmark function classes defined over bit strings of length n commonly used in 
the theory of randomised search heuristics to evaluate their performance. These problem classes are artificially constructed 
with the purpose of reflecting and isolating common difficulty profiles that are known to appear in classical combinatorial 
optimisation problems and are expected to appear in real-world optimisation.

The OneMax problem class is a class of unimodal functions which provide a consistent fitness gradient leading to the 
global optimum. The class displays the typical function optimisation feature that improving solutions are harder to identify 
4
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Fig. 1. Examples of the Cliffd , Jumpm , and CliffJumpd,r,s benchmark functions for n = 20.

as the optimum is approached. It is generally used to evaluate and validate the hillclimbing performance of randomised 
search heuristics. The function is defined as follows:

OneMax(x) :=
n∑

i=1

xi .

In the above definition, the global optimum is placed in the 1n bit-string for convenience of the analysis, i.e., the fitness 
increases with the number of 1-bits. The results we derive will hold for any instance in the function class, i.e., the optimum 
may be any bit string and the fitness function returns the number of matching bits. This class of functions is known to be 
the easiest among all functions with a unique global optimum for unary unbiased black box algorithms (i.e., mutation-based 
EAs) [44].

We also consider the Cliffd and Jumpm multimodal problem classes, where the optimisation algorithm will need to 
escape from local optima in order to reach the global optimum. The two classes differ in whether the fitness function 
guides the search towards or away from the global optimum once the algorithm has escaped the local optimum.

The Cliffd class of functions was originally proposed as an example where non-elitist evolutionary algorithms outperform 
elitist ones [36]. Functions within the class generally lead the optimisation process to a local optimum, from which a fitness-
decreasing mutation can be taken to find another fitness-improving slope leading to the global optimum. An example 
instance is shown in Fig. 1a. We define the Cliffd class of functions (for 1 < d < n/2) as follows:

Cliffd(x) :=
{

OneMax(x) if |x|1 ≤ n − d,

OneMax(x) − d + 1/2 otherwise.

As for OneMax, the global optimum is placed at the 1n bit string to simplify notation. The parameter d controls both the 
fitness decrease from the local optimum to the lowest point on the slope leading to the global optimum and the length of 
this second slope. This class of problems captures real-world problems where local optima have narrow basins of attraction: 
if it is able to escape from the local optimum, a search heuristic has good chances of identifying a new basin of attraction.

The Jumpm class of functions is similar to Cliffd , but has both fitness gradients leading towards the local optima: thus, to 
find the global optimum, search algorithms should not only take a fitness-decreasing mutation to escape the local optimum, 
but also disregard the fitness gradient in further iterations. An example instance is shown in Fig. 1b. We define the Jumpm

class of functions (for 1 < m < n/2) as follows:
5
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Jumpm(x) :=

⎧⎪⎨⎪⎩
n + m if |x|1 = n,

m + OneMax(x) if |x|1 ≤ n − m,

n − OneMax(x) otherwise.

As for OneMax, the global optimum is placed at the 1n bit string to simplify notation. Compared to Cliffd , this class 
of functions features a local optimum with a much broader basin of attraction, making it more difficult for the search 
heuristics to escape the basin and locate the global optimum.

Additionally, we define a function class which combines the features of both Cliffd and Jumpm , allowing both the local 
and global optima to have basins of attraction in the region of the search space between the two optima. Thus, to optimise 
this function, which we name CliffJumpd,r,s , a search algorithm employing local mutations may need to take multiple steps 
away from the local optimum before a slope leading towards the global optimum can be found. Example instances are 
shown in Figs. 1c and 1d for s = 1 and s = 2. We define this class of functions (for 1 ≤ r < d < n/2 and s > 0) as follows:

CliffJumpd,r,s(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n if |x|1 = n,

OneMax(x) if |x|1 ≤ n − d,

OneMax(x) − r − rs if |x|1 ≥ n − d + r,

(n − d) − s · (OneMax(x) + d − n) otherwise.

The global optimum is placed at the 1n string, while the d and r parameters control the lengths of the positive and negative 
slopes following the local optimum: after reaching the local optimum, r mutations, each decreasing the fitness by s, must 
be taken by a local search heuristic before a fitness-increasing slope of length (d − r) becomes accessible.

We further consider the following function (which we rename GentleNegativeSlope), which was originally introduced 
by Jansen and Wegener as an example of fitness landscape where Metropolis considerably outperforms the (1 + 1) EA [38].

GentleNegativeSlope(x) :=

⎧⎪⎨⎪⎩
2n · n + 1 if x = 0n,

2n · n − (n − i) if x = 1i0n−i , i ∈ {1, . . . ,n},
2n · OneMax(x) otherwise.

GentleNegativeSlope (GNS) is a deceptive function that will lead most algorithms away from the global optimum at 0n . 
There is a steep OneMax style path to the 1n bit-string followed by a ridge with gently decreasing fitness towards the global 
optimum.

2.3. Mathematical analysis tools

We now present some well known drift analysis theorems often used to bound the expected runtime of randomised 
search heuristics. Drift analysis is a very general mathematical technique that allows to make statements regarding the long 
term performance (i.e., the runtime) of a randomised search heuristic by analysing the expected progress that the algorithm 
makes in one step. All that is required to apply drift analysis is a potential function (sometimes called a ‘distance function’) 
to estimate the distance of the current solution to a target area of the search space (e.g., the global optimum), and a bound 
on the expected one-step change (referred to as the ‘drift’) that the algorithm makes with respect to the potential function 
conditional on the current distance from the target. Hence, given that at time step t the distance from the target is Xt , 
analysing the drift requires providing bounds on the quantity E(Xt − Xt+1 | Xt) to quantify the expected one-step progress 
of the algorithm. For a gentle introduction to drift analysis we refer to [42], while for a more extensive overview we refer 
the reader to Lengler’s recent book chapter [45].

We will apply the following theorems throughout the paper for our analyses using the Hamming distance as a measure 
of distance to the optimum (or another set of target solutions), and write �(i) to refer to the drift conditioned on the 
parent solution containing i 1-bits. The following Additive Drift Theorem provides upper and lower bounds on the expected 
runtime given, respectively, lower and upper bounds on the drift which hold throughout the process.

Theorem 1 (Additive Drift Theorem [34]). Let {Xt}t≥0 be a sequence of random variables over a finite set of states S ⊆ R+
0 and let T

be the random variable that denotes the first point in time for which Xt = 0. If there exist δu ≥ δl > 0 such that for all t ≥ 0, we have

δu ≥ E(Xt − Xt+1 | Xt) ≥ δl,

then the expected optimisation time E(T ) satisfies

X0

δu
≤ E(T | X0) ≤ X0

δl
, and

E(X0) ≤ E(T ) ≤ E(X0)
.

δu δl

6
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When the expected drift is negative in a non-trivial region of the search space, exponential lower bounds on the runtime 
can be derived using the Negative Drift Theorem.

Theorem 2 (Negative Drift Theorem [52,53]). Let Xt , t ≥ 0, be the random variables describing a Markov process over some state space, 
and let δt(i) := (Xt − Xt+1 | Xt = i) for i ∈ S and t ≥ 0. Suppose there exist an interval [a, b] of the state space and two constants 
δ, ε > 0 such that for all t ≥ 0 the following two conditions hold:

1. E(δt(i)) ≤ −ε for a < i < b,
2. Pr(|δt(i)| ≥ j) ≤ 1/(1 + δ) j for i > a and j ≥ 0.

Then there is a constant c∗ > 0 such that for T ∗ := min{t ≥ 0 : Xt ≤ a | X0 ≥ b} it holds Pr(T ∗ ≤ 2c∗(b−a)) = 2−�(b−a) .

We will also use the Negative Drift Theorem with Scaling which allows the negative drift ε to be sub-constant in 
magnitude.

Theorem 3 (Negative Drift Theorem with Scaling [54]). Let Xt , t ≥ 0, be real-valued random variables describing a stochastic process 
over some state space. Suppose that there exist an interval [a, b] ⊆R and, possibly depending on 	 := b − a, a drift bound ε := ε(	) >
0, as well as a scaling factor r := r(	) such that for all t ≥ 0 the following conditions hold:

1. E(Xt+1 − Xt | X0, . . . , Xt; a < Xt < b) ≥ ε,
2. Pr(|Xt+1 − Xt | ≥ jr | X0, . . . , Xt; a < Xt) ≤ e− j for all j ∈N0 ,
3. 1 ≤ r2 ≤ ε	/(132 log(r/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0 : Xt ≤ a | X0 > b} it holds that Pr(T ∗ ≤ eε	/(132r2)) = O (e−ε	/(132r2)).

3. Unimodal optimisation: hillclimbing

We begin the study of MAHHOI by analysing its performance on unimodal functions. Since accepting worsening moves 
is never required in this setting, the hyper-heuristic cannot outperform elitist algorithms. Nevertheless, Theorem 7 shows 
that MAHHOI can still be very efficient when optimising OneMax, even with p > 0. We first introduce Theorem 4 and 
Theorem 5, which show that the parameter p should not be too large. Theorem 6 subsequently states that the expected 
runtime of MAHHOI for OneMax is a lower bound for its expected runtime on all functions with a unique global optimum.

For OneMax, the larger the value of p, the greater the probability of accepting moves away from the global optimum 
during the optimisation process, and the greater the expected runtime of the hyper-heuristic. For constant values of p, the 
standard Negative Drift Theorem (Theorem 2) can be applied directly to show that an exponential number of iterations is 
required with exponentially high probability.

Theorem 4. The runtime of MAHHOI on OneMax, with p = 
(1), is at least 2�(n) with probability at least 1 − 2−�(n) .

Proof. Let i denote the number of 1-bits in the current bit-string, and consider the expected change in the Hamming 
distance (i.e., drift) to the optimum (which for OneMax is equivalent to the expected change in solution fitness) in an 
iteration of MAHHOI:

�(i) = n − i

n
− p · i

n
= − i + pi − n

n
, (1)

as improving mutations (which require flipping one of the n − i remaining 0-bits) are accepted by both acceptance operators, 
while worsening mutations (flipping one of the i 1-bits) are accepted only by the AM operator, chosen with probability p.

Let p > 0 be a constant. We have that for i ≥ 1+C
1+p · n, �(i) ≤ −C , for some constant C , with p > C > 0. Hence, for a 

region of size (n − 1) − 1+C
1+p · n = �(n), the drift is negative (at most −C ). Since MAHHOI is a local search algorithm, this 

region of negative drift cannot be escaped by a large jump. By the Negative Drift Theorem (Theorem 2), the runtime in this 
case will be at least 2�(n) with overwhelming probability 1 − 2−�(n) . �

For smaller values of p, yet still too large, we apply the negative drift theorem with scaling (Theorem 3).

Theorem 5. The runtime of MAHHOI for OneMax, with p = ω((
√

n log n)/n), is at least nω(1) with probability at least 1 − n−ω(1) .

Proof. To prove this result, we will apply the Simplified Drift Theorem with Scaling (Theorem 3), which handles regions of 
sub-constant negative drift.
7
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Recall Equation (1) from the proof of Theorem 4: the drift in one iteration for MAHHOI for OneMax, when the current 
solution contains i 1-bits, is

�(i) = n − i

n
− p · i

n
= − i + pi − n

n
.

We will consider the drift in the region of n − c
√

n ≤ i < n of length 	 = c
√

n, where c > 0 is a constant. Let p =
c+ · (√n log n)/n, where c+ = ω(1). As �(i) decreases with i, the negative drift is weakest at i = n − 	:

�(n − 	) = − (n − 	) + (n − 	)p − n

n
= −np − 	p − 	

n

= −
(

p − c
√

np

n
− c

√
n

n

)
= −

(
p − o(p) − O (n−1/2)

)
= −�(p)

and thus ε = ω
(√

n logn
n

)
satisfies the drift condition of the Simplified Drift Theorem with Scaling (Theorem 3).

The second condition, forbidding large jumps, is satisfied by choosing r = 2 and verifying that for all j ∈N0, the proba-
bility that the magnitude of the fitness change is at least jr is at most e− j , which is trivially true: for j = 0, e− j = 1, and 
for j ≥ 1, the probability that the distance to the optimum changes by at least jr ≥ 2 is 0, as the mutation operator used 
by MAHHOI only flips one bit per iteration.

Finally, we need to verify the following condition, 1 ≤ r2 ≤ ε	/(132 log(r/ε)). To this end, we note that

ε	 = ω

(√
n log n

n

)
· c

√
n = ω(log n),

and

132 log(r/ε) = 132 log

(
2
√

n

ω(log n)

)
≤ 132 log(2

√
n) ≤ 66 log(n) + O (1).

Thus ε	/(132 log(r/ε)) = ω(1) is greater than r2 = 4 for sufficiently large n.
Having verified that all of the conditions of the Simplified Drift Theorem with Scaling are satisfied, we apply the theorem, 

concluding that the probability that the optimum is found within eε	/(132r2) = nω(1) iterations is at most O (eε	/(132r2)) =
n−ω(1) . �

We remark that the ω((
√

n log n)/n) lower bound on the probability of applying the AM selection operator is the lowest 
such bound for which the Negative Drift Theorem with scaling yields a super-polynomially high probability of requiring a 
super-polynomial number of iterations to optimise OneMax. We note that ε	 = ω(log n) is required for Theorem 3 to yield 
a super-polynomial runtime bound, and further reducing p would require reductions to both the drift bound ε and the 
length of the negative drift region 	. Closing the gap to the upper bound on this probability for which a positive result is 
presented in Theorem 7 would thus require other proof techniques to be applied.

The following theorem proves that MAHHOI in the same setting cannot solve any function with a unique global optimum 
in polynomial time. Thus we provide a pretty general lower bound on the value of parameter p for efficient optimisation. 
We follow the proof idea of [23, Theorem 9], which showed that the expected runtime of the (1 + 1) EA on OneMax is a 
lower bound on its expected runtime for any function with a unique global optimum. [65, Theorem 10] further proved the 
same result for arbitrary mutation-based EAs with mutation probability 1/n.

Theorem 6. The expected runtime of MAHHOI for any function with a unique global optimum is at least as large as the expected 
runtime of MAHHOI for OneMax with the same setting for p.

Proof. Let f denote any function with a unique global optimum and without loss of generality we set the unique global 
optimum of f at the bit-string 1n . We will prove that the expected runtime of MAHHOI for f is at least as large as the 
runtime of MAHHOI for OneMax. Formally, we aim to show that

E f
MAHHOI

≥ EOneMax

MAHHOI

. (2)

Let E f
MAHHOI

(i) denote the minimum expected time required by MAHHOI to find the global optimum of f , given that 
MAHHOI has only sampled solutions x with |x|1 ≤ i so far. MAHHOI only samples Hamming neighbours and hence must 
sample at least one solution with |x|1 = j for all j > i before reaching the global optimum. By definition,

E f
MAHHOI

(n) ≤ E f
MAHHOI

(n − 1) ≤ · · · ≤ E f
MAHHOI

(0).

We further define ẼOneMax

MAHHOI

(i) be defined the same as EOneMax

MAHHOI

(i) yet with the added constraint that a solution with |x|1 = i

has been sampled. By definition, ẼOneMax(i) ≥ EOneMax(i).

MAHHOI MAHHOI

8
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We will verify the claim in Equation (2) by proving that E f
MAHHOI

(i) ≥ ẼOneMax

MAHHOI

(i) holds for all i. We use proof by induc-

tion. Firstly, note that E f
MAHHOI

(n) = ẼOneMax

MAHHOI

(n) = 0, and we assume that E f
MAHHOI

( j) ≥ ẼOneMax

MAHHOI

( j) for all j > i.
Since MAHHOI uses local search with a neighbourhood size of one, the number of 1-bits in the solution can either 

decrease by one (if a worsening move is accepted by the AM operator), stay the same (if a worsening move is rejected by the 
OI operator) or increase by one. If the number of 1-bits increases, the expected optimisation time is at least E f

MAHHOI

(i + 1). 
Let Y denote the number of 1-bits in the solution after the mutation is accepted or rejected; using the induction hypothesis,

E f
MAHHOI

(i) ≥ 1 + Pr(Y = i + 1) · E f
MAHHOI

(i + 1) + Pr(Y ≤ i) · E f
MAHHOI

(i)

≥ 1 + Pr(Y = i + 1) · ẼOneMax

MAHHOI

(i + 1) + Pr(Y ≤ i) · E f
MAHHOI

(i).

Hence,

E f
MAHHOI

(i) ≥ 1 + Pr(Y = i + 1) · ẼOneMax

MAHHOI

(i + 1)

1 − Pr(Y ≤ i)
.

Furthermore, for MAHHOI on OneMax we have,

ẼOneMax

MAHHOI

(i) = 1 + Pr(Y = i + 1) · ẼOneMax

MAHHOI

(i + 1) + Pr(Y ≤ i) · ẼOneMax

MAHHOI

(i),

and hence,

ẼOneMax

MAHHOI

(i) = 1 + Pr(Y = i + 1) · ẼOneMax

MAHHOI

(i + 1)

1 − Pr(Y ≤ i)
.

Therefore, we have proven that E f
MAHHOI

(i) ≥ ẼOneMax

MAHHOI

(i) ≥ EOneMax

MAHHOI

(i). Since MAHHOI is initialised uniformly at random 
regardless of the fitness function used, the distribution of the number of 1-bits in the initial solution is the same. Hence, 
the theorem holds. �

Theorem 6 combined with the statements of Theorem 4 and Theorem 5 shows that the expected runtime of MAHHOI on 
any function with unique global optimum is at least n�(log n) if p ≥ (

√
n log2 n)/n and at least 2�(n) if p = 
(1).

We now provide an upper bound on p for which the hyper-heuristic is efficient at hillclimbing OneMax.

Theorem 7. The expected runtime of MAHHOI for OneMax, with p = O ((log log n)1−ε/n), for any constant ε > 0, is O (n logn). With 
p = O ((log n)1−ε/n), for any constant ε > 0, the expected runtime of MAHHOI for OneMax is o(n2 log n).

Proof. Let Yt denote the current solution at iteration t , h(Yt) be its Hamming distance to the OneMax optimum, g :N0 →
R≥0 be an injective function with g(0) = 0, and g−1 the inverse function of g . To prove this result, we will apply the 
additive drift theorem on the process Xt := g(h(Yt)), bounding the expected number of steps before Xt = 0 for the first 
time (and hence MAHHOI has constructed an optimal solution for the first time).

Consider the drift �(i) := E(Xt − Xt+1 | g−1(Xt) = i), i.e. the expected decrease of the Xt+1 value when the current 
solution is a Hamming distance of i away from the optimum. If MAHHOI mutation produces an improvement, it will be 
accepted regardless of which selection operator is used and hence decrease h(Yt) by 1. If MAHHOI mutation produces a 
worsening, it will only be accepted if the AM operator is applied (with probability p), in which case h(Yt) will increase by 
1; otherwise, h(Yt) and hence also Xt will remain unchanged. Combining the above yields:

�(i) = i

n
· (g(i) − g(i − 1)) − n − i

n
· p · (g(i + 1) − g(i)). (3)

Let g(x) = ∑x
i=1(

1
i + s(i)), where s :N →R≥0 is a monotonically decreasing function; then,

�(i) = 1

n

(
1 + i · s(i) + ip

(
1

i + 1
+ s(i + 1)

)
− np

(
1

i + 1
+ s(i + 1)

))
≥ 1

n

(
1 + i · s(i) − np

i + 1
− np · s(i + 1)

)
(4)

Suppose s(1) = 0; then, �(i) ≥ 1
n

(
1 − np

1+i

)
. When p = (2 − c)/n for any 0 < c ≤ 2, �(i) ≥ c/(2n) for all i > 0 (i.e., 

all i ≥ 1), and hence the additive drift theorem yields an upper bound on the expected runtime of MAHHOI of at most 
g(n)/(c/(2n)) = O ((n/c) log n).

For p ≥ 2/n, we will need to modify s to ensure that the drift �(i) remains positive throughout the search space. 
Observe that in equation (3), the bound on �(i) can be increased by increasing s(i); and that as long as the expression in 
9
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the parentheses produces at least a positive constant, a drift of �(1/n) can be maintained. First, we show that for i ≥ 2np, 
no adjustment to s(i) is necessary to achieve this:

�(2np) · n ≥ 1 − np

2np + 1
≥ 1

2
,

and as �(i) is an increasing function, �(i) ≥ 1/(2n) for all i ≥ �2np�.
Let i0 be the minimum Hamming distance to the optimum at which 1 − np

i0+1 ≥ 1
2 and hence �(i) ≥ 1/(2n) for all i ≥ i0. 

Per the above, i0 ≤ �2np�. If i0 = 1, a direct application of the additive drift theorem with s(i) = 0, as described previously, 
yields a O (n log n) upper bound on the runtime. Thus, it remains to consider the case that 2 ≤ i0 ≤ �2np�.

Let i j = i0 − j for j ∈ {1, . . . , i0 − 1}. Using that s(i0) = 0, we can adjust s(i1) to ensure that �(i1) is sufficiently large. 
We will show by induction that s(i j) = (np) j/(3i j) is sufficient to ensure that �(i j) ≥ 1/(2n).

To begin, consider the drift at i1:

�(i1) · n ≥ 1 + i1 s(i1) − np

i1 + 1
≥ 1 − np

i0 + 1
− np

3
+ i1 s(i1) ≥ 1

2
− np

3
+ i1 s(i1),

using that 1
i j+1 = 1

i0− j+1 = 1
i0+1 + j

i0
2+(2− j)i0+1

≤ 1
i0+1 + 1

3 as i0 ≥ 2 and j ≤ i0 − 1. Hence, setting s(i1) ≥ np/(3i1) ensures 
that �(i1) ≥ 1/(2n), establishing the induction base case.

For j ≥ 2, both s(i j) and s(i j + 1) = s(i j−1) are positive. Given that the induction hypothesis holds for s(i j−1),

�(i j) · n ≥ 1 + i j s(i j) − np

i j + 1
− np s(i j + 1) ≥ 1 − np

i0 + 1
− np

3
− np s(i j−1) + i j s(i j)

≥ 1

2
− np

3
− (np) j

3i j−1
+ i j s(i j) ≥ 1

2
− (np) j

3
+ i j s(i j),

using that np
3 ≤ (np)2

6 as np ≥ 2, i j−1 ≥ 2, and j ≥ 2. Hence, setting s(i j) ≥ (np) j/(3i j) ensures that �(i j) ≥ 1/(2n).
Thus, s(i j) = (np) j/(3i j) = (np)i0−i j /(3i j) for 1 ≤ i j < i0 ≤ �2np�, and s(i) = 0 for i ≥ i0 is sufficient to ensure that 

�(i) ≥ 1/(2n) for all i ≥ 1. Additionally, it holds that s(1) ≤ (np)i0−1/3 ≤ (np)2np/3, and for p = O ((log log n)1−ε/n) with 
any constant ε > 0, (np)2np = o(log n), and hence s(1) = o(log n).

For p = O ((log log n)1−ε/n) and np ≥ 2, 
∑n

i=1 s(i) ≤ ∑n
i=1 s(1)/2i−1 < 2s(1) = o(log n), and hence g(n) = O (log n). Apply-

ing the additive drift theorem with X0 = O (log n) and δ = �(1/n) thus yields that Xt = 0 is found in expectation after at 
most X0/δ = O (n log n) steps. Hence, MAHHOI with any p = O ((log log n)1−ε/n) and constant ε > 0 optimises OneMax in 
O (n log n) iterations in expectation.

For p = O ((log n)1−ε/n), (np)2np = o(n), and hence g(n) = o(n). Applying the additive drift theorem yields that MAHHOI
with any p = O ((log n)1−ε/n) and constant ε > 0 optimises OneMax in o(n2 log n) iterations in expectation. �

For simplicity throughout the remainder of the paper, we consider MAHHOI with p = 1
(1+ε)n for any constant ε > 0, 

which still gives the desired O (n log n) runtime. This value of p allows MAHHOI to maintain a positive drift throughout the 
search space of OneMax, and removes the need for complicating (log n)1−ε/n terms in the subsequent calculations. We will 
show how with this parameter value the hyper-heuristics can, as well as hill-climbing efficiently, escape from difficult local 
optima effectively.

Regarding the performance of Metropolis for OneMax, we present the following Theorem from Jansen and Wegener 
[38], which provides a polynomial upper bound on the expected runtime of Metropolis for OneMax given that the function 
α(n) is chosen to be sufficiently large with respect to the problem size.

Theorem 8 ([38, Theorems 4&7]). The expected runtime of Metropolis for OneMax is polynomially bounded if and only if α(n) =
�(n/ log n). Furthermore, if α(n) ≥ εn for a constant ε > 0, then the expected runtime of Metropolis for OneMax is O (n logn).

4. Multimodal optimisation: easy basins of attraction

We now analyse the performance of the search heuristics for the multimodal Cliffd (1 < d < n/2) class of benchmark 
functions. Recall that Cliffd features local optima that the heuristics must escape before climbing a fitness gradient towards 
the global optimum. We refer to the local optimum at i = n − d as the ‘cliff’, the two OneMax style hillclimbs as the ‘first 
slope’ and ‘second slope’ respectively (see Fig. 1a), and use d to denote the length of the cliff.

To find the global optimum of the Cliffd function, it is necessary to escape the local optimum, either by dropping down 
from the cliff and accepting a worse candidate solution and then climbing up the second slope, or by making a prohibitive 
jump to the global optimum on the other side of the cliff (this is possible with standard bit mutation, by requiring expected 
exponential time in the distance between the cliff and the optimum, but not with local mutations).

We now consider the performance of MAHHOI for Cliffd . Clearly, with p = 1, MAHHOI reduces to a random walk across 
the fitness landscape. Similarly, if p = 0, with probability at least 1/2, the bit-string is initialised with at most n/2 1-bits, 
10
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and will hillclimb to the top of the cliff. There is no improving step from this position and the global optimum cannot 
be reached. By the law of total expectation, the expected runtime will be infinite. We will show that using MAHHOI with 
p = 1

(1+ε)n , which has been shown to hillclimb efficiently (Theorem 7), will still allow worsening moves with sufficiently 
high probability to be able to move down from the cliff and reach the global optimum in expected polynomial time.

Theorem 10 bounds the expected runtime of MAHHOI for Cliffd from above. We begin, however, by introducing a helper 
Lemma which was proved by Droste et al. for trajectory based algorithms which can only change the number of 1-bits in the 
bit-string by 1 [29]. The lemma was subsequently used to analyse the performance of the (1 + 1) EA for noisy OneMax for 
small noise strength [28]. Unlike in noisy optimisation, where the noise represents uncertainty with the respect to the true 
fitness of solutions, in hyper-heuristics the AM operator is intended to be helpful to the optimisation process by allowing 
the algorithm to escape from local optima.

Lemma 9 ([29, Lemma 3]). Let E(T +
i ) be the expected time to reach a state with i + 1 1-bits, given a state with i 1-bits, and p+

i and 
p−

i be the transition probabilities to reach a state with, respectively, i + 1 and i − 1 1-bits. Then:

E(T +
i ) = 1

p+
i

+ p−
i

p+
i

· E(T +
i−1).

Within the context of non-elitist local search algorithms, such as MAHHOI, the transition probability p+
i (p−

i ) refers to 
the probability of making a local mutation which increases (respectively decreases) the number of 1-bits in the offspring 
solution and accepting that solution.

Theorem 10. The expected runtime of MAHHOI for Cliffd, with p = 1
(1+ε)n for any constant ε > 0, is O  

(
n logn + n3

d2

)
.

Proof. Let i denote the number of 1-bits in the bit-string at any time t > 0. We wish to bound the expected runtime from 
above by separately bounding four ‘stages’ of the optimisation process, each starting once all earlier stages have ended, and 
ending once a solution with at least certain number of 1-bits has been constructed for the first time during the optimisation 
process (i.e., the HH may go backwards afterwards yet will remain in the same stage): the first stage ends when i ≥ n − d
is reached, the second when i ≥ n − d + 1, the third when i ≥ n − d + 2, and the fourth when i = n, i.e., the optimum has 
been constructed. We use T1, . . . , T4 to denote the number of iterations the algorithm spends in each of these stages, and 
note that by definition of these stages, the number of iterations T before the optimum is reached is T = T1 + T2 + T3 + T4, 
and by linearity of expectation,

E(T ) = E(T1) + E(T2) + E(T3) + E(T4). (5)

In the first stage, while i < n − d, Cliffd resembles the OneMax function, and we can use the upper bound for the 
expected runtime of MAHHOI for OneMax with p = 1

(1+ε)n from Theorem 7. Hence, E(T1) = O (n log n).
The second stage begins when i ≥ n −d for the first time, and ends when i ≥ n −d + 1 for the first time. When i = n −d, 

there are no improving moves. If the OI operator is selected, there will be no change in the candidate solution. Hence, 
any move must come from use of the AM operator, which is selected with probability 1

(1+ε)n . A mutation step may either 
increase the number of 1-bits in the bit-string with probability d/n, or decrease the number of 1-bits with probability 
(n − d)/n. We use Lemma 9 to bound E(T2), the expected time to jump down from the cliff,

E(T2) = E(T +
n−d) = n2(1 + ε)

d
+ n − d

d
· E(T +

n−d−1). (6)

We now must bound E(T +
n−d−1). At i = n − d − 1, the drift is as follows:

�(n − d − 1) = d + 1

n
− 1

(1 + ε)n
· n − d − 1

n

= n(d + ε(d + 1)) + d + 1

n2(1 + ε)
,

as flipping any one of the (d + 1) remaining 0-bits increases the fitness by 1 and is accepted by either operator, and flipping 
any one of the (n − d − 1) 1-bits decreases the fitness by 1 and is only accepted if the AllMoves operator is chosen, which 
occurs with probability p = 1/((1 + ε)n).

Clearly, for all 0 ≤ i ≤ n − d − 1, the drift is bounded from above by the drift at i = n − d − 1, while the distance to the 
required point from i = n − d − 1 is 1. By the Additive Drift Theorem (Theorem 1), we have
11
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E(T +
n−d−1) ≤ 1/�(n − d − 1)

= n2(1 + ε)

n(d + ε(d + 1)) + d + 1
= O

(n

d

)
.

We can now return to bounding E(T2) in Equation (6):

E(T2) = n2(1 + ε)

d
+ n − d

d
· E(T +

n−d−1)

= n2(1 + ε)

d
+ n − d

d
· O

(n

d

)
= O

(
n2

d

)
. (7)

The third stage begins with i ≥ n −d + 1, and ends once i ≥ n −d + 2. When i = n −d + 1, all moves are improving moves 
and all moves will be accepted, regardless of the choice of the OI or AM operator. With probability (d − 1)/n, the accepted 
move decreases the number of 1-bits to i = n − d i.e., the hyper-heuristic returns to the local optimum. With probability 
(n − d + 1)/n, the accepted move instead increases the number of 1-bits to i = n − d + 2. We again use Lemma 9 to bound 
E(T3), the expected time to take one step up the second slope. Noting that E(T +

n−d) = O (n2/d) by Equation (7), we get

E(T3) = E(T +
n−d+1) = n

d − 1
+ n − d + 1

d − 1
· E(T +

n−d)

= n

d − 1
+ n − d + 1

d − 1
· O

(
n2

d

)
= O

(
n3

d2

)
.

If d = 2, the Cliffd function will have been optimised at this point. However, for d ≥ 3, it is necessary to climb further 
up the second slope. If d = 3, we point out that E(T4) = E(T +

n−d+2), and by applying Lemma 9 bound

E(T +
n−d+2) = n

d − 2
+ 1

(1 + ε)n
· n − d + 2

d − 2
· E(T +

n−d+1)

= n

d − 2
+ 1

(1 + ε)n
· n − d + 2

d − 2
· O

(
n3

d2

)
= n

d − 2
+ O

(
n3

d3

)
.

For d > 3, we know that i = n − d + 2 and i = n − d + 3 are points on the second slope, and by applying Lemma 9 bound

E(T +
n−d+3) = n

d − 3
+ 1

(1 + ε)n
· n − d + 3

d − 3
· E(T +

n−d+2)

= n

d − 3
+ 1

(1 + ε)n
· n − d + 3

d − 3
· O

(
n3

d3

)
= n

d − 3
+ O

(
n3

d4

)
.

For d > 4 this trend will continue as MAHHOI progresses closer towards the global optimum; in particular, for k < d, we will 
have E(T +

n−d+k) = n
d−k + O

(
n3

dk

)
.

Hence, E(T4) = ∑d−1
k=2 E(T +

n−d+k). The terms in the summation will be asymptotically dominated by the O (n3/d3) term 
in E(T +

n−d+2) if d is sub-linear, giving

E(T4 | d = o(n)) ≤ d · O (n3/d3) = O (n3/d2).

However, if d is linear in the problem size, the first terms will dominate, and we will have:

E(T4 | d = 
(n)) = O (1) +
d−1∑
i=2

n

d − i
≤ O (1) +

d−1∑
i=0

n

d − i

= O (1) + n ·
d∑

j=1

1

j
= O (n log n).

Combining the bounds for the sub-linear and linear d, we conclude that

E(T4) = O

(
n logn + n3

2

)
.

d

12
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We now return to our overall runtime bound from Equation (5) and complete the proof:

E(T ) = E(T1) + E(T2) + E(T3) + E(T4)

= O

(
n log n + n2

d
+ n3

d2
+ n log n + n3

d2

)
= O

(
n logn + n3

d2

)
. �

Theorem 10 gives an expected runtime bound of MAHHOI for Cliffd of O  
(
n log n + n3/d2

)
. This bound is smallest when 

d is large, suggesting that the algorithm is fastest when the cliff is hardest for elitist algorithms, i.e., a linear cliff length, 
d = 
(n), gives an expected runtime of O (n log n). This runtime asymptotically matches the best case expected performance 
of artificial immune systems, which escape the local optimum with an ageing operator, also O (n log n) in expectation [8,
9,11,12,14], which is the best runtime known for hard Cliffd functions. We suspect MAHHOI is faster in practice (i.e., by 
having smaller leading constants in its expected runtime), but leave this proof for future work. Mutation based EAs have an 
expected runtime of 
(nd) for d ≤ n/2 [57]; for d = ω(1), this will give at least super-polynomial expected runtime in the 
length of the gap. Steady-state Genetic Algorithms which use crossover have recently been proven to be faster by at least a 
linear factor [17], but would still require exponential expected runtimes for large gaps.

The worst-case scenario for MAHHOI is a constant gap length, giving a runtime of O (n3). This means that the (1 +
1) EA will outperform MAHHOI if d < 3, but will be slower for any 3 < d ≤ n/2, with a performance gap that increases 
exponentially with the distance between the cliff and the optimum.

Concerning non-elitist search heuristics, apart from the artificial immune systems, an upper bound of O (nη) (for η ≈
3.9767) on the expected runtime of the (1, λ) EA has recently been proved [35], for a carefully chosen parameter λ that 
satisfies log e

e−1
n ≤ λ = O (log n), improving considerably upon the previously best known bound of n25) [36]). The best case 

expected runtime of the non-elitist, strong-selection weak-mutation (SSWM) evolutionary regime, which rejects fitness-
improving mutations with a non-zero probability, is at most nd/e�(d) [57]. Hence, MAHHOI is also faster than SSWM for 
3 < d ≤ n/2.

We now compare the performance of MAHHOI for Cliffd with the non-elitist Metropolis algorithm (Algorithm 2). The-
orem 11 shows that MAHHOI will considerably outperform Metropolis for Cliffd for all d > 3.

Theorem 11. The expected runtime of Metropolis for Cliffd is at least min

{
n−d+1
2(d−1)

·
(

cn
log n

)d−3/2
,nω(1)

}
for some constant c > 0.

Proof. Let i denote the number of 1-bits in the bit-string at any time t > 0. The Cliffd function has two OneMax slopes 
(0 ≤ i ≤ n − d, n − d + 1 ≤ i ≤ n − 1). In order to reach the global optimum, it is necessary for Metropolis to optimise these 
two slopes. The expected runtime of Metropolis for OneMax is polynomially bounded in the problem size if and only if 
α(n) = �(n/ log n) (by Theorem 8). Hence, α(n) = �(n/ log n) is necessary in order to optimise the two slopes in polynomial 
time. However, the jump down to the bottom of the cliff will be difficult for Metropolis.

The randomly initialised candidate solution has at most n/2 bits with probability at least 1/2. Metropolis accepts the 
jump down from i = n − d to i = n − d + 1 with probability at most α(n)(n−d+3/2)−(n−d) = α(n)3/2−d . Hence, the expected 
time for this event to occur is at least E(T +

n−d) ≥ α(n)d−3/2. From this state, it is necessary to make at least one improving 
move to find the global optimum. Given that, at a state with i = n − d + 1 1-bits, all moves are accepted, we use Lemma 9, 
with p+

n−d+1 = d−1
n and p−

n−d+1 = n−d+1
n :

E(T +
n−d+1) = n

d − 1
+ n − d + 1

d − 1
· E(T +

n−d)

≥ n

d − 1
+ n − d + 1

d − 1
· α(n)d−3/2

≥
(

n − d + 1

d − 1
· α(n)d−3/2

)
.

Given that we want to minimise the overall runtime, we have α(n) = �(n/ log n) such that the hillclimb can be done in 
polynomial time. However, the jump down the cliff will take

E(T +
n−d+1) ≥ n − d + 1

d − 1
·
(

cn

log n

)d−3/2

for some constant c > 0.
We note that if d = ω(1), the term E(T +

n−d+1) is exponential in the problem size, and setting α = �(n/ log n) might not 
be optimal. In this case, the lower bound will be some exponential term, nω(1) , i.e., the time taken for the two hillclimbs.

Overall, in order to optimise the function, the jump down the cliff has to be made (with probability at least 1/2) and at 
least one step up the second slope must be made. Hence,
13
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E(T ) ≥ min

{
1

2
· n − d + 1

d − 1
·
(

cn

log n

)d−3/2

,nω(1)

}
. �

We have proven that while Metropolis cannot optimise hard Cliffd variants in expected polynomial time, MAHHOI is 
extremely efficient for hard cliffs, and has an expected runtime of O (n3) in the worst case.

5. Multimodal optimisation: hard basins of attraction

We now consider the Jumpm function class (1 < m < n/2) as an example of a multimodal function where MAHHOI has a 
harder time escaping the local optima. Unlike Cliffd , the fitness decreases on the second slope, making it harder to traverse.

Typically to optimise the Jumpm function (Fig. 1b), a search heuristic first reaches the local optimum at the top of the 
slope. Then, either a jump to the global optimum is made, which requires exponential expected time in the length of the 
jump for unbiased mutation operators, or a jump is made down to the slope of decreasing fitness, which must be traversed 
before the global optimum is found.

Theorem 12. The runtime of MAHHOI for Jumpm, with p = 1
(1+ε)n , is at least �(n logn + 2cm) for some constant c > 0 and any 

constant ε > 0, with probability at least 1 − 2−�(m) .

Proof. Let i represent the number of 1-bits in the bit-string at any time t > 0. First, we consider m = O (log n). The initialised 
candidate solution has at most n/2 bits with probability at least 1/2. The expected time to optimise the function will be 
bounded from below by the expected time to reach the local optimum at the top of the slope. If m = O (log n), the algorithm 
must at least hillclimb to some point i = n − k ln n, for some constant k > 0. The expected time to flip n/2 − k ln n bits 
correctly is �(n log n); this can be proved by reusing arguments from the proof of [30, Lemma 10].

Similarly, the time to optimise the function will be bounded from below by the time to traverse the slope of decreasing 
fitness and find the global optimum, that is, to traverse the region where n − m + 1 < i ≤ n − 1. Consider the negative drift 
on the number of 1-bits in the bit-string within this region:

−�(i) = i

n
− 1

(1 + ε)n
· n − i

n
= i(n(1 + ε) + 1) − n

n2(1 + ε)

≥ n/2(n(1 + ε) + 1) − n

n2(1 + ε)

= n(1 + ε) − 1

2n(1 + ε)
= 1

2
− 1

2n(1 + ε)
≥ 0.4.

We also note that the number of 1-bits can only change by 1 in each iteration, so there is no chance of escaping 
the area of negative drift with large jumps. We can apply the Negative Drift Theorem (Theorem 2) for the region from 
i = n − m + 1 to i = n − 1, i.e. of length m − 2. Hence there exists a constant c′ > 0 such that, with probability at least 
1 − 2−�(m−2) = 1 − 2−�(m) , the global optimum is not found from the area of negative drift within 2c′ ·(m−2) = 2cm steps, 
where c = c′(m − 2)/m > 0 is a different constant. If m = ω(log n), this term will dominate.

By considering both possibilities, we state that, for some constant c > 0, the expected time for MAHHOI to optimise
Jumpm is �(n log n + 2cm) with probability at least 1 − 2−�(m) . �

The following theorem provides an upper bound on the expected runtime by considering the expected time for MAHHOI
to accept m consecutive worsening moves from the local to the global optimum.

Theorem 13. The expected runtime of MAHHOI for Jumpm, with p = 1
(1+ε)n for any constant ε > 0, is

O

(
n logn + (1 + ε)m−1n2m

m2m!
)

.

Proof. Let i denote the number of 1-bits in the bit-string at any time t > 0. The expected time to reach a bit-string with 
i = n − m 1-bits is O (n log n), by Theorem 7.

From this position, in order to make a move towards the global optimum, it is necessary to flip one of the remaining 
0-bits, and accept the result (with probability p = 1

(1+ε)n ). Starting from a search point with i = n − m 1-bits (hence, m
0-bits), the probability of reaching a bit string with i = n − 1 1-bits within the next m − 1 steps is given by

m∏(
i

n
· 1

(1 + ε)n

)
= m!

(1 + ε)m−1n2(m−1)
.

i=2

14
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Let p+
n−m ≥ m!

(1+ε)m−1n2(m−1) be the probability that a bit-string with n −1 1-bits is reached in m −1 consecutive steps from 
the local optimum at i = n − m, and p−

n−m be the probability that a mutation which decreases the fitness to i = n − m − 1 is 
accepted. By noting that E(T +

n−m−1) = O (n/m) (by the Additive Drift Theorem (Theorem 1)), we can use Lemma 9 to bound 
the expected time to reach such a bit string from the local optimum:

E(T opt
n−m) ≤ (1 + ε)m−1n2(m−1)

m! + (1 + ε)m−1n2(m−1)

m! · O
( n

m

)
= O

(
(1 + ε)m−1n2m−1

m2 · (m − 1)!
)

.

Hence, by a further application of Lemma 9, the expected time to reach the local optimum and traverse the slope of 
decreasing fitness to find the global optimum, is

E(T ) = O

(
n log n + (1 + ε)m−1n2m

m2 · m!
)

. �
Using global mutations to jump allows smaller upper bounds on the expected runtime. The expected runtime of the (1 +

1) EA with mutation rate 1/n for Jumpm is 
(nm) [30] and a bound of O (nm−1) for Steady State (μ + 1) Genetic Algorithms 
using crossover and a slightly higher mutation rate has recently been proved by Dang et al. [17], both outperforming our 
upper bound for MAHHOI. Recent work has shown that by increasing even further the mutation rate, exponential speedups 
are achieved both by a static and adaptive Artificial Immune System [9,12,13] using hyper-mutations and by (1 +1) EAs with 
heavy-tailed mutation operators following a power law distribution [31,24] or by using a stagnation detection mechanism to 
identify the best mutation rate to overcome the local optima [61,63,62] (however, the expected runtime is still exponential 
in m). A compact GA has super-polynomial speedups over these algorithms for super-constant jump lengths when m = o(n)

[33]. In particular for logarithmic jump lengths the algorithm optimises Jumpm in expected polynomial time. We point out 
that steady state GAs with diversity mechanisms that enhance the power of crossover can optimise Jumpm in expected time 
O (mn log n + 4m) for jumps up to m = n/8) [19] and in 
(n log n + 4m) with an unrealistically small crossover probability of 
O (m/n) [41].

Concerning algorithms that use non-elitism to escape from local optima, while the (μ, λ) EA does not improve over the 
expected runtime of the elitist (μ + λ) EA [20], we will now show that Metropolis has worse performance than MAHHOI
on Jumpm . The large fitness difference between the two points at i = n − m and i = n − m + 1 makes Metropolis unlikely to 
accept the i = n − m + 1 point when α(n) is set high enough to enable efficient hill-climbing of the first slope.

Theorem 14. The runtime of Metropolis for Jumpm is 2�(n) , with probability at least 1 − 2−�(n) .

Proof. Let i represent the number of 1-bits in the bit-string at any time t > 0. The initialised candidate solution has at 
most n/2 1-bits with probability at least 1/2. The jump down from the local optimum will be accepted with probability 
α(n) f (n−m+1)− f (n−m) = α(n)m−1−n , and will take expected time at least E(T +

n−m) ≥ α(n)n+1−m .
For i > n − m, we can again use Lemma 9, with p+

i = α(n)−1 · n−i
n and p−

i = i
n , to bound the expected time to transition 

between neighbouring states:

E(T +
n−m+1) = α(n) · n

m − 1
+ α(n) · n − m + 1

m − 1
· E(T +

n−m)

≥ α(n) · n

m − 1
+ α(n) · n − m + 1

m − 1
· α(n)n+1−m

≥ α(n)n+2−m

E(T +
n−m+2) = α(n)

(
n

m − 2
+ n − m + 2

m − 2
· E(T +

n−m+1)

)
≥ α(n) · n

m − 2
+ α(n) · n − m + 2

m − 2
· α(n)n+2−m

≥ α(n)n+3−m.

We note that, in general, E(T +
n−m+k) ≥ α(n)n+(k+1)−m , and hence

E(T ) ≥ E(T +
n−2) ≥ α(n)n+(m−2+1)−m = α(n)n−1.

We now require a lower bound on α(n). If m > n/5, consider the negative drift in the number of 1-bits in the region 
from i = n − m + 1 to i = n − 1. Clearly, α(n) = 1 is the best choice for this region, yet will still lead to a large area of 
negative drift:
15
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−�(i) = i

n
− n − i

n
≥ −�

(
4n

5

)
= 3

5
.

Since Metropolis is a local search algorithm, this region of negative drift cannot be escaped by a large jump. Hence, by 
the Negative Drift Theorem (Theorem 2), the time to escape this region will be at least 2�(n) with overwhelming probability 
1 − 2−�(n) . This will also be a lower bound on the time to optimise the function.

If m ≤ n/5, with probability at least 1/2, Metropolis must hillclimb from i = 3n/4 to i = 4n/5. Consider the drift on the 
fitness in this region when α(n) = 2:

−�(i) = 1

2
· i

n
− n − i

n
≥ −�

(
3n

4

)
= 1

8
.

Clearly, to avoid a large region of negative drift, α(n) ≥ 2 is required; giving E(T ) ≥ 2n−1 = 2�(n) . �
Unlike Metropolis, MAHHOI does not consider the magnitude of the fitness difference between two solutions to decide 

whether to accept worsenings. This allows it to optimise Jumpm with smaller jump sizes, such as m = 
(1), in expected 
polynomial time, while Metropolis requires exponential time in expectation in all cases.

6. Multimodal optimisation: basins of attraction of tuneable gradient and size

The CliffJumpd,r,s function class (see Fig. 1c) combines elements of both the Cliffd and Jumpm function classes. Upon 
reaching the local optimum (i.e., the top of the first OneMax slope), r fitness-worsening mutations, each decreasing fitness of 
the current solution by s, must be overcome before the slope leading to the global optimum can be reached. For algorithms 
that flip one bit uniformly at random in each mutation step (e.g., RLS), setting r = 1 makes CliffJumpd,r,s similar to Cliffd , 
while setting r = d makes it similar to Jumpm; thus, we consider this function class with parameters 1 < r < d < n/2.

To begin, the following theorem shows that if the radius of the region of attraction around the local optimum is too large 
i.e., super-logarithmic, both MAHHOI and Metropolis require super-polynomial expected time to optimise CliffJumpd,r,s , just 
like elitist heuristics using standard bit mutation.

Theorem 15. On CliffJumpd,r,s with r = ω(log n) and d < (0.5 − c)n for any constant 0 < c < 0.5 and any s > 0, the expected 
optimisation time of MAHHOI and Metropolis, with any parameters, is super-polynomial.

Proof. We note that both algorithms are with probability 1/2 initialised with a solution containing at most n/2 1-bits, in 
which case they will need to descend the entire length of the negative-sloped segment of CliffJumpd,r,s . We will apply the 
Negative Drift Theorem to show that regardless of the choice of algorithm parameters, reaching a solution with n − d + r
1-bits will then take super-polynomial time in expectation, and hence the overall expected runtime of either algorithm on
CliffJumpd,r,s will be super-polynomial by the law of total probability.

Let Xt denote the number of 1-bits in the current solution after t ’th accepted mutation changing the number of 1-bits 
in the current solution. Suppose n − d ≤ Xt < n − d + r. A solution with fewer 1-bits is generated with probability Xt/n ≥
(0.5 + c) and accepted with probability 1; let p− ≥ 0.5 + c denote a lower bound on the probability that such a solution is 
generated and accepted in a single iteration. A solution with more 1-bits is generated with probability (n − Xt)/n ≤ 0.5 − c, 
and accepted with probability at most 1; let p+ := 0.5 − c denote an upper bound on the probability that such a solution 
is generated and accepted in a single iteration. Thus, conditional on Xt changing, it increases by 1 with probability at most 
p+/(p+ + p−) ≤ 0.5 − c, and decreases by 1 with probability at least p−/(p+ + p−) ≥ 0.5 + c. Thus, the expected change in 
the number of 1-bits is:

E(Xt+1 − Xt | n − d ≤ Xt < n − d + r) ≤ 1 · (0.5 − c) − 1 · (0.5 + c) = −2c = −
(1).

As both algorithms employ local mutations, P (|Xt+1 − Xt | > 1) = 0, and hence we can apply the Negative Drift Theorem 
(Theorem 2) to lower bound on the number of steps needed to increase Xt from n −d to n −d + r (a region of length �(r)): 
with probability at least 1 − 2−�(r) = 1 − 2−ω(log n) , more than 2�(r) = 2ω(log n) = nω(1) accepted mutations changing the 
number of 1-bits are required. This is also a lower bound on the number of iterations of MAHHOI (or Metropolis) required 
to construct a solution with at least n − d + r 1-bits starting with a solution with at most n − d 1-bits. Thus, the expected 
optimisation time of MAHHOI and Metropolis, with any parameters, on CliffJumpd,r,s with r = ω(log n) and d < (0.5 − c)
for any constant 0 < c < 0.5 is super-polynomial. �

The following theorem shows that when the radius of the region of attraction around the local optimum is at most 
constant, MAHHOI is able to optimise CliffJumpd,r,s in expected polynomial time.

Theorem 16. The expected runtime of MAHHOI, with p = 1
(1+ε)n for any constant ε > 0, for CliffJumpd,r,s with 1 ≤ r < d and any 

s > 0 is at most
16
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O

(
(d − r)

(1 + ε)rn2r+2

(r + 1)2(r + 1)!
)

.

Proof. As MAHHOI only considers the sign of the fitness difference between the parent and offspring solutions (and not the 
magnitude), its behaviour is unaffected by the choice of the s parameter of CliffJumpd,r,s .

For r = 1, the result can be proven exactly as in the proof of Theorem 10. For r > 1, we will adapt the proof of Theo-
rem 10 to cope with the larger basin of attraction around the local optimum.

Let Tu be the number of iterations before MAHHOI takes the first step up the slope leading to the global optimum 
for the first time (i.e. constructs a solution with OneMax (x) = n − d + r + 1). This is at most as difficult as finding the 
global optimum of Jumpm for m = r + 1, and thus E(Tu) = O ((1 + ε)rn2r+2/((r + 1)2(r + 1)!) per Theorem 13. If d = r + 1, 
the global optimum has been found at this point; otherwise, we need to separately bound the time required to climb the 
second slope, taking into the account the possibility of MAHHOI returning to the local optimum. In the language of the proof 
of Theorem 10, we have that E(Tu) = E(T1) + E(T2) + E(T3), and need to bound E(T4).

Let T +
j be the number of iterations between a solution with j 0-bits being accepted and the next time a solution with 

( j − 1) 0-bits is accepted. We bound E(T +
d−r) ≤ E(Tu), and for 1 ≤ j < d − r,

E(T +
j ) = 1 + j/n · 0 + (1 − j/n) · (p · E(T +

j+1) + E(T +
j ))

= 1 + (1 − j/n) · p · E(T +
j+1)

1 − (1 − j/n)
= n + (n − j) · p · E(T +

j+1)

j
= O (n + E(Tu))

as p = O (1/n). Hence,

E(T4) = E

⎛⎝d−r−1∑
j=1

T +
j

⎞⎠ =
d−r−1∑

j=1

E(T +
j ) ≤ (d − r − 1) · O (n + E(Tu)).

Thus, MAHHOI finds the global optimum of CliffJumpd,r,s after at most O ((d − r)(n log n + ((1 + ε)rn2r+2)/(r + 1)2(r +
1)!)) = O ((d − r)((1 + ε)rn2r+2)/((r + 1)2(r + 1)!)) iterations in expectation. �

We can provide a tighter upper bound for MAHHOI on CliffJumpd,r,s when the negative slope is far away from the global 
optimum.

Theorem 17. The expected runtime of MAHHOI, with p = 1
(1+ε)n for any constant ε > 0, for CliffJumpd,r,s with d = 
(n), r = o(n)

and any s > 0 is at most O (nr+3).

Proof. For d = 
(n) and r = o(n), the probability of mutating to a solution with a higher number of 1-bits on the negative 
slope section of CliffJumpd,r,s is at least (n − d + r)/n = 
(1).

A mutation which increases the number of 1-bits while on the negative slope is accepted with probability p = 1
(1+ε)n

(since the move acceptance probability of MAHHOI is fixed, and not affected by the fitness decrease s). Hence, from the 
local optimum, the probability of accepting r consecutive decreasing moves to reach the local minimum and then move one 
step up the next slope is at least(

1

(1 + ε)cn

)r+1

,

for some constant c > 0.

Let p+
n−d ≥

(
1

(1+ε)cn

)r+1
be the probability that a solution with i = n − d + r + 1 1-bits is reached in r + 1 consecutive 

steps from a solution with i = n − d 1-bits. We can bound the time to reach a bit-string with i = n − d 1-bits after random 
initialisation by O (n) (see Theorem 7), and hence we can bound the time to reach a solution with i = n − d + r + 1 1-bits 
(using Lemma 9) by

O (n) · O
(
nr+1) = O

(
nr+2

)
.

Similarly, reusing arguments from the proof of Theorem 16, the expected time required to climb the second positive 
slope (of length d − r = O (n)) and reach the global optimum is bounded by

O (n log n) + O (n) · O (nr+2) = O (nr+3)

using Lemma 9. Hence, the overall expected runtime can be bounded by O (nr+3). �
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Theorem 16 and Theorem 17 respectively give upper bounds for MAHHOI on CliffJumpd,r,s for the general case and 
the case where the local optimum is far away from the global optimum. The following corollary shows that the non-elitist 
MAHHOI can outperform the well-known elitist (μ + λ) EAs with standard bit mutation for CliffJumpd,r,s in both cases, 
provided that s is at least a sufficiently large constant. The result generalises to any μ and λ since the populations do not 
provide any advantage over the (1 + 1) EA on the Jumpm slope [20].

Corollary 18. MAHHOI is faster than the (1 + 1) EA in expectation for CliffJumpd,r,s when s > 1 + 3/r. If d = 
(n), then MAHHOI is 
faster than the (1 + 1) EA in expectation when s > 3/r.

Proof. The (1 + 1) EA with standard bit mutation is an elitist algorithm, and will only accept mutations which increase the 
fitness of the solution. From the local optimum of CliffJumpd,r,s (i.e., when the solution has i = n − d 1-bits), the nearest 
solution with a higher fitness consists of i = �n − d + r + rs� 1-bits. Hence, the expected time to perform such a mutation 
from the local optimum is �(nr(s+1)), which is an overall lower bound for the expected runtime of the (1 + 1) EA.

Theorem 16 gives a general upper bound for MAHHOI on CliffJumpd,r,s of O ((d − r)/r ·n2r+2) = O (n2r+3). Hence, we can 
state that MAHHOI outperforms the (1 + 1) EA (in expectation) when 2r + 3 < r(s + 1). That is, when s > 1 + 3/r.

When d = 
(n), Theorem 17 gives a tighter upper bound for MAHHOI on CliffJumpd,r,s of O (nr+3). Hence, we can state 
than MAHHOI outperforms the (1 + 1) EA in this case (in expectation) when r + 3 < r(s + 1). That is, when s > 3/r. �

In particular, for minimal basins of attraction when r = 1, MAHHOI is faster than the (1 + 1) EA for any s > 4 in the 
general case, and for s > 3 when d = 
(n). Furthermore, for any basin of attraction of size r ≥ 3, then MAHHOI is faster 
when s > 2 and s > 1 respectively. We further note that if CliffJumpd,r,s was modified such that only the global optimum 
point had a fitness value exceeding that of the local optimum, then the expected runtime of the (1 + 1) EA would be �(nd). 
If d = 
(n), then the expected runtime would be exponential in all cases, whereas MAHHOI can be polynomially bounded 
in such a case when r is a constant. Thus, the function illustrates how non-elitism may allow to efficiently escape from a 
wide range of local optima where elitist EAs are inefficient.

Regarding Metropolis, we first show that it is able to exactly match the performance of MAHHOI for CliffJumpd,r,s when 
s = 1.

Theorem 19. On CliffJumpd,r,s with s = 1 and any integers d and r, MAHHOI and Metropolis can be configured to behave identically. 
That is, when p = α(n)−1 , the two algorithms maintain identical state probability distributions throughout their runs.

Proof. With the exception of the global optimum, the fitness difference on CliffJumpd,r,1 between any two bit-strings that 
are at a Hamming distance of 1 is either −1 or 1. Thus, any offspring except the global optimum differs from its parent in 
fitness by either 1 or −1.

If the offspring is better than its parent (either by a fitness difference of 1, or because the offspring is the global 
optimum), both MAHHOI and Metropolis will accept the offspring solution. If the offspring is worse than its parent (and 
the parent isn’t the global optimum), MAHHOI will accept the offspring solution with probability p, and Metropolis will 
accept the offspring solution with probability α(n)−1.

Thus, p = α(n)−1 ensures that, until the global optimum is found, both algorithms have the same probability of accepting 
each offspring solution considered during the optimisation process. As both algorithms are initialised with a solution chosen 
uniformly at random, use the same mutation operator to generate offspring solutions, and consider exactly one offspring 
in each iteration, they therefore maintain identical probabilities of having observed the global optimum within any given 
iteration budget. �

We can extend this argument to show that if the fitness differences between any two adjacent points are equal across 
the entire search space, MAHHOI and Metropolis can be configured to have identical performance. This holds for all fitness 
functions which display such a property.

Finally, because Metropolis is sensitive to the magnitude of the fitness differences between neighbouring solutions, we 
show that there exist choices of the CliffJumpd,r,s parameter s that allow Metropolis to outperform MAHHOI, and choices 
that allow MAHHOI to outperform Metropolis.

Theorem 20. On CliffJumpd,r,s , if 0 < s < 1, α(n) can be chosen such that Metropolis outperforms MAHHOI with any choice of 
0 < p < 1. If s > 1, p can be chosen such that MAHHOI outperforms Metropolis with any choice of α(n).

Proof. On CliffJumpd,r,s , there are two types of mutations which can reduce the fitness value of a solution: those that 
reduce the number of 1-bits while the solution is on the positive slopes (i.e., |x|1 ≤ n − d or |x|1 > n − d + r) and hence 
reduce fitness by 1, and those that increase the number of 1-bits while the solution is on the negative slope (i.e., n − d ≤
|x|1 < n −d + r) and hence reduce fitness by s. Recall that Metropolis accepts mutations which decrease fitness by � f with 
probability α(n)−� f . Thus, if s < 1, it is easier for Metropolis to accept mutations increasing the number of 1-bits while on 
18



A. Lissovoi, P.S. Oliveto and J.A. Warwicker Artificial Intelligence 314 (2023) 103804
the negative slope compared to mutations decreasing the number of 1-bits while on the positive slope, while the opposite 
holds if s > 1.

Suppose s < 1, and consider how the parameters of Metropolis can be chosen so as to outperform MAHHOI with a fixed 
parameter p. Choosing α(n) = 1/p ensures that Metropolis matches MAHHOI’s probabilities of making progress while on 
the positive slopes, and accepts mutations that increase the number of 1-bits in the solution while on the negative slope 
with probability α(n)−s = p−s > p. Thus, Metropolis with α(n) = p−1 is at least as fast on the positive slopes as MAHHOI
with any p, while traversing the negative slope faster than MAHHOI with that p. Choosing α(n) = p−1/s ensures that
Metropolis matches MAHHOI’s probabilities of making progress while on the negative slope, while also making Metropolis

less likely to accept detrimental mutations while on the positive slopes. Choosing an α(n) between these values will result 
in (reduced) improvement over MAHHOI on both slope types. Combining these results yields that Metropolis with p−1 ≤
α(n) ≤ p−1/s outperforms MAHHOI for CliffJumpd,r,s for any parameter p, with 0 < s < 1.

Similarly, α(n)−s ≤ p ≤ α(n)−1 ensures that MAHHOI outperforms Metropolis for CliffJumpd,r,s with s > 1. Here, choos-
ing p = α(n)−s allows MAHHOI to replicate Metropolis behaviour on the negative slope while making MAHHOI less likely to 
accept worsenings on the positive slopes, while p = α(n)−1 allows MAHHOI to replicate Metropolis behaviour on the pos-
itive slopes while making MAHHOI more likely to accept mutations increasing the number of 1-bits while on the negative 
slope, with values between these two boundaries providing a mix of both behaviours. �

Theorem 20 implies that Metropolis is preferable for CliffJumpd,r,s when the fitness differences between adjacent points 
on the negative slope are smaller in magnitude than between adjacent points on the positive slopes, while MAHHOI is 
preferable when the opposite is true.

MAHHOI is efficient for CliffJumpd,r,s while the radius of the local optima’s basin is constant, for any s > 0, as it is able 
to escape the jump and cliff sections in polynomial time. We now prove that Metropolis, however, is only efficient when 
the negative slope is gentle, short, and far away from the global optimum.

Theorem 21. The expected runtime of Metropolis for CliffJumpd,r,s with r ≥ 1 is super-polynomial if s = ω(1). Furthermore, if 
d < (0.5 − c)n for any constant 0 < c < 0.5, the expected runtime is polynomially bounded if and only if r = O (log n) and rs = O (1).

Proof. Recall from Theorem 8 that the expected runtime of Metropolis is polynomially bounded on OneMax if and only if 
α(n) = �(n/ log n), and this bound on α(n) must hold in order to guarantee polynomial expected runtime on the OneMax

sections of CliffJumpd,r,s .
Metropolis is initialised with a solution containing at most n/2 − 1 1-bits with probability 1/2, in which case it is 

required to descend the entirety of the negative slope of CliffJumpd,r,s before finding the global optimum. Metropolis

accepts moves which increase the number of 1-bits on the negative slope with probability α(n)−s , and such a move will 
take at least α(n)s expected time. Since α(n) = �(n/ log n) is required for polynomial expected runtime in the two OneMax

slopes, a bound of s = O (1) is required for polynomial expected runtime in the negative slope (of length r ≥ 1). Therefore, 
s = O (1) is necessary in order to bound the overall expected runtime by a polynomial, and the setting s = ω(1) will give a 
super-polynomial expected runtime.

We know from Theorem 15 that for r = ω(log n) and d < (0.5 − c)n for some constant 0 < c < 0.5, the expected runtime 
of Metropolis on CliffJumpd,r,s is super-polynomial. Therefore, we consider the case where r = O (log n).

Let E(TLM) denote the expected time required to reach the local maximum (i.e., the expected time to find a solution with 
i = n − d 1-bits for the first time) after initialisation. By Lemma 9, the expected time to take one step down the negative 
slope is (for constants c > 0 and c′ > 0):

c · α(n)s + c′α(n)s−1 · E(TLM) = 
(α(n)s),

since E(TLM) = O (n). Furthermore, by reusing arguments from the proof of Theorem 14 (i.e., the repeated application of 
Lemma 9), we can show that the expected time to take r fitness-decreasing steps down the negative slope is 
(α(n)rs).

Therefore, since α(n) = �(n/ log n) is required for polynomial expected runtime in the two OneMax slopes, rs = O (1)

(and r = O (log n)) is necessary to give a polynomial expected runtime for Metropolis on CliffJumpd,r,s with these settings, 
and rs = ω(1) will give a super-polynomial expected runtime. �
7. When Metropolis outperforms the move acceptance hyper-heuristic

In the previous sections we analysed the performance of MAHHOI and Metropolis for several multimodal landscapes 
with typical characteristics. The analysis has showed how MAHHOI is more robust than Metropolis at escaping local optima 
since it is not sensitive to the fitness-gradients in the basins-of-attraction that have to be overcome. On the other hand
Metropolis exhibits better performance on smooth basins of attraction exhibiting slow fitness-decreasing slopes.

In this section we present an analysis on the GentleNegativeSlope (GNS) function, which was designed to show how
Metropolis can take advantage of a very long, slowly decreasing slope that is surrounded by points of considerably lower 
fitness. Since Metropolis is unlikely to accept moves which take it away from the smooth fitness-decreasing gradient 
towards the optimum, and MAHHOI has a high chance to accept such disadvantageous moves, this function allows us to 
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highlight landscape characteristics where Metropolis considerably outperforms MAHHOI. In particular, MAHHOI is penalised 
by not taking fitness-differences into account when accepting worsening solutions, the same characteristic that was crucial 
for the HH to either outperform or be a preferable choice to Metropolis on all the fitness landscapes previously considered 
in this paper.

The following theorem proves that Metropolis can optimise GNS in expected polynomial time when using a parameter 
setting that allows it to both efficiently hill-climb the steep OneMax slope and perform a random walk across the ridge 
linking the local optimum to the global optimum due to a large fitness difference between the ridge and the rest of the 
search space.

Theorem 22 ([38, Theorem 11]). The expected runtime of Metropolis, with α(n) = n4/2n
, for GNS is O (n3).

The Metropolis algorithm with α(n) = n4/2n
will reach the local optimum at 1n in O (n log n) expected iterations, before 

a random search along the path leads the algorithm to the global optimum at 0n in expected O (n3) time [38]. Jansen and 
Wegener also proved that the (1 + 1) EA has exponential expected runtime for GNS, i.e., at least 2�(n) for any choice of the 
mutation rate [38]. The initialised solution of the (1 + 1) EA will have at least n/3 1-bits with probability 1 − 2−�(n) , and 
finding a path point 1i0n−i with i ≤ n/6 will take exponential time. If a path point 1i0n−i is sampled with i > n/6, a large 
jump is required to find the global optimum, taking exponential expected time.

The following theorem proves that MAHHOI also exhibits poor performance for GNS regardless of the choice of the 
parameter p. Essentially, since MAHHOI does not take fitness differences into account when choosing whether to accept 
fitness-decreasing offspring, it is not able to stay on and efficiently navigate the gentle ridge between the local optimum 
and the global optimum of GNS.

Theorem 23. The runtime of MAHHOI for GNS, with any 0 ≤ p ≤ 1, is at least nω(1) with probability at least 1 − n−ω(1) .

Proof. As GNS has a unique global optimum at 0n , Theorem 6 applies, and the expected runtime of MAHHOI for GNS is at 
least as large as the expected runtime of MAHHOI on OneMax for the same p. For p = ω

(
(
√

n log n)/n
)
, applying Theorem 5

thus yields that MAHHOI requires at least nω(1) iterations with probability at least 1 − n−ω(1) to optimise GNS.
Suppose p < n3/4/n, and consider the behaviour of MAHHOI in the region where the OneMax value of MAHHOI’s current 

solution is between 4
√

n/4 and 4
√

n/2. MAHHOI can only decrease the OneMax value of its current solution when it flips 
one of the remaining 1-bits and applies the AM selection operator, which occurs with probability p · OneMax(x)/n ≤ 1/(2n). 
Within this region, MAHHOI can always increase the OneMax value of its current solution when it flips the first 0-bit in 
the solution, which occurs with probability 1/n. Thus, conditional on the OneMax value of the current solution changing 
in an iteration of MAHHOI, it increases by 1 (as MAHHOI applies the RLS mutation operator) with probability at least 
(1/n)/(1/n + 1/(2n)) ≥ 2/3, and decreases by 1 with probability at most (1/(2n))/(1/n + 1/(2n)) ≤ 1/3.

Let Xt be the OneMax value of MAHHOI’s current solution after its t ’th change. We focus on the region of length 
	 = 4

√
n/4 between Xt ≥ a := 4

√
n/4 and Xt ≤ b := 4

√
n/2. Then,

E(Xt+1 − Xt | 4
√

n/4 ≤ Xt ≤ 4
√

n/2) ≥ 2/3 − 1/3 = 1/3.

Since MAHHOI applies RLS mutation, Pr(|Xt+1 − Xt | > 1) = 0. Thus, all the conditions to apply the Negative Drift Theorem 
(Theorem 2) are satisfied, and the first hitting time of Xt ≤ a is at least 2�(n1/4) with probability at least 1 − 2−�(n1/4) .

It remains to note that MAHHOI is initialised with at least n/4 1-bits in the current solution with probability at least 
1 − e−�(n) . Thus, X0 > b, and as the runtime of MAHHOI for GNS is at least the number of iterations before a solution with 
Xt < a is first constructed during which the OneMax value of its solution changes, it holds that the runtime of MAHHOI

with p ≤ n3/4/n for GNS is at least 2�(n1/4) ∈ nω(1) with probability at least 1 − 2−�(n1/4) ∈ 1 − n−ω(1) .
Finally, we note that n3/4/n ∈ ω((

√
n log n)/n). Therefore, regardless of what value p is set to, at least one of the two 

arguments above applies. Hence MAHHOI requires, with probability at least 1 − n−ω(1) , at least nω(1) iterations to find the 
global optimum of GNS. �

Hence, we have completed the picture by providing fitness landscape characteristics which allow Metropolis to find the 
global optimum efficiently, while MAHHOI requires exponential time for any parameter setting.

8. Conclusions

We have presented an analysis of the performance of the Move Acceptance Hyper-Heuristic (MAHHOI) for multimodal 
optimisation. The hyper-heuristic chooses at random the OnlyImproving (OI) acceptance operator with probability 1 − p, 
and the AllMoves (AM) acceptance operator with probability p. All the statements given in the paper for MAHHOI also hold 
for MAHHIE, a variant of MAHHOI which chooses the ImprovingandEqual acceptance operator with probability 1 − p, and 
the AllMoves acceptance operator with probability p. We summarise our findings in Table 1.

We first identified parameter values that allow the algorithm to hillclimb up to local or global optima. We have shown 
that setting the parameter value to p = O ((log log n)1−ε/n), for any constant ε > 0, allows to hillclimb the OneMax function 
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Table 1
Comparative performance of MAHHOI, Metropolis and the (1 + 1) EA for the functions considered in this paper. 
For further details, see the relevant theorems. ∗ Formal theorems are not presented but proofs are straightforward.

Function MAHHOI Metropolis (1 + 1) EA

OneMax O (n log n) O (n log n) O (n log n)

Cliffd O
(

n logn + n3

d2

) (
n

log n

)d−1/2

(nd)

Jumpm O
(

n logn + (1+ε)m−1n2m

m2m!
)

2�(n) 
(nm)

CliffJumpd,r,s (0 < s < 1) slower faster 
(nd)∗
CliffJumpd,r,s (1 < s) faster slower 
(nd)∗
GNS nω(1) O (n3) 
(nn)∗

in expected O (n log n) runtime as desired. On the other hand, for too large parameter values we have shown how the 
runtime becomes exponential for any function with unique optimum.

Afterwards we considered several multimodal function classes with different characteristics which may be encountered in 
applications involving an optimisation process. Firstly we showed that for local optima from which a gradient of increasing 
fitness is close, MAHHOI is efficient. For the purpose we used the Cliffd function class where MAHHOI matches the best 
possible asymptotic expected runtime of any unary unbiased randomised search heuristic for any problem with up to a 
polynomial number of optima [3]. On the other hand, elitist search heuristics and Metropolis require exponential runtime 
in the distance between the local and global optima.

We then considered fitness landscapes with harder to escape local optima with large basins of attraction of decreasing 
fitness that have to be traversed for the global optimum to be identified. For the purpose, we considered the standard
Jumpm function class. While Metropolis requires exponential runtime in the problem size with overwhelming probability 
independent from the size of the basin of attraction of the local optima, MAHHOI has polynomial expected runtime for not 
too large basins as its runtime is only exponential in the size of the basin of attraction with overwhelming probability. We 
pointed out that using higher mutation rates has been shown to be beneficial compared to non-elitism in such settings. 
Obviously such advantages can also benefit MAHHOI if it is incorporated with such a mutation operator rather than just 
allowing it to flip one bit per iteration.

The reason for the better performance of MAHHOI over Metropolis in the considered landscapes is the particular sen-
sitivity of the latter algorithm to the magnitude of the fitness difference between the parent and offspring solutions. To 
shed further light on this aspect we designed a more general function class called CliffJumpd,r,s where the steepness and 
smoothness of the slopes of the local optima’s basin of attraction may be tuned. The analysis for this function class reveals 
that while Metropolis may be tuned to outperform MAHHOI on smooth basins with gently decreasing fitness, the oppo-
site occurs on ragged basins where fitness values may change drastically. In particular, depending on the magnitude of the 
negative slope of CliffJumpd,r,s , the parameters of Metropolis or MAHHOI can be set so as to outperform the other algo-
rithm regardless of its choice of parameters. However, if the basin is not too large MAHHOI always optimises the function in 
polynomial time independent from the steepness of the gradient, while Metropolis also requires that the basin decreases 
gently to be efficient.

We conclude the paper by capitalising on this sensitivity of Metropolis to present a scenario where Metropolis sig-
nificantly outperforms MAHHOI. The GNS function, introduced originally by Jansen and Wegener [38], consists of a steep
OneMax style fitness gradient followed by a path of slowly decreasing fitness surrounded by points of drastically lower 
fitness. While Metropolis is able to follow the gradient by ignoring the drastically worse solutions, MAHHOI falls off the 
path with overwhelming probability by accepting the points of considerably lower fitness.

Overall, apart from this pathological scenario, we believe the analysis presented in this paper provides considerable 
theoretical evidence of the advantages of MAHHOI over Metropolis for multimodal optimisation. Furthermore, our analysis 
of CliffJumpd,r,s sheds light on a wide range of basins of attraction where the non-elitist MAHHOI outperforms elitist 
evolutionary algorithms even up to polynomial versus exponential runtimes. We believe that by allowing arbitrarily large 
radii of attraction, the benchmark function provides a much more convincing example of the importance of non-elitism for 
combinatorial optimisation than the commonly used Cliffd function class. Indeed, results “giving a mildly general advice 
which of the existing approaches to cope with local optima are preferable in which situations” have recently been deemed 
by Doerr as “highly desirable” [20]. We believe our contribution sheds much light on the topic.

The analysis points to various aspects that should be investigated to build upon the results. On one hand, experimental 
and theoretical comparisons of the two non-elitist heuristics for classical combinatorial optimisation problems should be 
undertaken to validate the insights presented herein or shed further light on the differences in behaviour and performance 
of the two forms of non-elitism. On the other hand, studies should be undertaken regarding equipping MAHHOI with more 
sophisticated mutation operators which would give the hyper-heuristic further options for escaping from local optima. 
Given that MAHHOI and Metropolis can outperform each other in different scenarios, the analysis of a HH that selects 
which of the two algorithms should be applied at different stages of the optimisation process may be a promising route to 
be explored for more general effectiveness in multimodal optimisation.

Concerning the general fields of automated algorithm selection and hyper-heuristics the use of more sophisticated move 
acceptance operators should be explored. One interesting option would be to allow the MAHH to automatically adapt the 
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value of the parameter p during the optimisation process rather than keeping it static, similarly to the adaptation of the 
learning period for heuristic selection hyper-heuristics [25,47]. Another natural direction is to investigate when even more 
sophisticated move-acceptance approaches commonly used in the hyper-heuristics literature, such as Monte Carlo approaches 
[2], would lead to improved performance. Finally, more comprehensive hyper-heuristics that choose between multiple pa-
rameter sets (e.g., mutation, selection and population size) should be analysed.
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