36 research outputs found

    A Taxonomy of Explainable Bayesian Networks

    Get PDF
    Artificial Intelligence (AI), and in particular, the explainability thereof, has gained phenomenal attention over the last few years. Whilst we usually do not question the decision-making process of these systems in situations where only the outcome is of interest, we do however pay close attention when these systems are applied in areas where the decisions directly influence the lives of humans. It is especially noisy and uncertain observations close to the decision boundary which results in predictions which cannot necessarily be explained that may foster mistrust among end-users. This drew attention to AI methods for which the outcomes can be explained. Bayesian networks are probabilistic graphical models that can be used as a tool to manage uncertainty. The probabilistic framework of a Bayesian network allows for explainability in the model, reasoning and evidence. The use of these methods is mostly ad hoc and not as well organised as explainability methods in the wider AI research field. As such, we introduce a taxonomy of explainability in Bayesian networks. We extend the existing categorisation of explainability in the model, reasoning or evidence to include explanation of decisions. The explanations obtained from the explainability methods are illustrated by means of a simple medical diagnostic scenario. The taxonomy introduced in this paper has the potential not only to encourage end-users to efficiently communicate outcomes obtained, but also support their understanding of how and, more importantly, why certain predictions were made

    Defining and Detecting Toxicity on Social Media: Context and Knowledge are Key

    Get PDF
    As the role of online platforms has become increasingly prominent for communication, toxic behaviors, such as cyberbullying and harassment, have been rampant in the last decade. On the other hand, online toxicity is multi-dimensional and sensitive in nature, which makes its detection challenging. As the impact of exposure to online toxicity can lead to serious implications for individuals and communities, reliable models and algorithms are required for detecting and understanding such communications. In this paper We define toxicity to provide a foundation drawing social theories. Then, we provide an approach that identifies multiple dimensions of toxicity and incorporates explicit knowledge in a statistical learning algorithm to resolve ambiguity across such dimensions

    Explainable Artificial Intelligence: Concepts, Applications, Research Challenges and Visions

    Get PDF
    The development of theory, frameworks and tools for Explainable AI (XAI) is a very active area of research these days, and articulating any kind of coherence on a vision and challenges is itself a challenge. At least two sometimes complementary and colliding threads have emerged. The first focuses on the development of pragmatic tools for increasing the transparency of automatically learned prediction models, as for instance by deep or reinforcement learning. The second is aimed at anticipating the negative impact of opaque models with the desire to regulate or control impactful consequences of incorrect predictions, especially in sensitive areas like medicine and law. The formulation of methods to augment the construction of predictive models with domain knowledge can provide support for producing human understandable explanations for predictions. This runs in parallel with AI regulatory concerns, like the European Union General Data Protection Regulation, which sets standards for the production of explanations from automated or semi-automated decision making. Despite the fact that all this research activity is the growing acknowledgement that the topic of explainability is essential, it is important to recall that it is also among the oldest fields of computer science. In fact, early AI was re-traceable, interpretable, thus understandable by and explainable to humans. The goal of this research is to articulate the big picture ideas and their role in advancing the development of XAI systems, to acknowledge their historical roots, and to emphasise the biggest challenges to moving forward

    The Privacy Pillar -- A Conceptual Framework for Foundation Model-based Systems

    Full text link
    AI and its relevant technologies, including machine learning, deep learning, chatbots, virtual assistants, and others, are currently undergoing a profound transformation of development and organizational processes within companies. Foundation models present both significant challenges and incredible opportunities. In this context, ensuring the quality attributes of foundation model-based systems is of paramount importance, and with a particular focus on the challenging issue of privacy due to the sensitive nature of the data and information involved. However, there is currently a lack of consensus regarding the comprehensive scope of both technical and non-technical issues that the privacy evaluation process should encompass. Additionally, there is uncertainty about which existing methods are best suited to effectively address these privacy concerns. In response to this challenge, this paper introduces a novel conceptual framework that integrates various responsible AI patterns from multiple perspectives, with the specific aim of safeguarding privacy.Comment: 10 page

    Wider Vision: Enriching Convolutional Neural Networks via Alignment to External Knowledge Bases

    Get PDF
    Deep learning models suffer from opaqueness. For Convolutional Neural Networks (CNNs), current research strategies for explaining models focus on the target classes within the associated training dataset. As a result, the understanding of hidden feature map activations is limited by the discriminative knowledge gleaned during training. The aim of our work is to explain and expand CNNs models via the mirroring or alignment of CNN to an external knowledge base. This will allow us to give a semantic context or label for each visual feature. We can match CNN feature activations to nodes in our external knowledge base. This supports knowledge-based interpretation of the features associated with model decisions. To demonstrate our approach, we build two separate graphs. We use an entity alignment method to align the feature nodes in a CNN with the nodes in a ConceptNet based knowledge graph. We then measure the proximity of CNN graph nodes to semantically meaningful knowledge base nodes. Our results show that in the aligned embedding space, nodes from the knowledge graph are close to the CNN feature nodes that have similar meanings, indicating that nodes from an external knowledge base can act as explanatory semantic references for features in the model. We analyse a variety of graph building methods in order to improve the results from our embedding space. We further demonstrate that by using hierarchical relationships from our external knowledge base, we can locate new unseen classes outside the CNN training set in our embeddings space, based on visual feature activations. This suggests that we can adapt our approach to identify unseen classes based on CNN feature activations. Our demonstrated approach of aligning a CNN with an external knowledge base paves the way to reason about and beyond the trained model, with future adaptations to explainable models and zero-shot learning

    Bias in knowledge graphs - An empirical study with movie recommendation and different language editions of DBpedia

    Get PDF
    Public knowledge graphs such as DBpedia and Wikidata have been recognized as interesting sources of background knowledge to build content-based recommender systems. They can be used to add information about the items to be recommended and links between those. While quite a few approaches for exploiting knowledge graphs have been proposed, most of them aim at optimizing the recommendation strategy while using a fixed knowledge graph. In this paper, we take a different approach, i.e., we fix the recommendation strategy and observe changes when using different underlying knowledge graphs. Particularly, we use different language editions of DBpedia. We show that the usage of different knowledge graphs does not only lead to differently biased recommender systems, but also to recommender systems that differ in performance for particular fields of recommendations
    corecore