3 research outputs found

    Detection of code smells using machine learning techniques combined with data-balancing methods

    Get PDF
    Code smells are prevalent issues in software design that arise when implementation or design principles are violated. These issues manifest as symptoms or anomalies in the source code. Timely identification of code smells plays a crucial role in enhancing software quality and facilitating software maintenance. Previous studies have shown that code smell detection can be accomplished through the utilization of machine learning (ML) methods. However, despite their increasing popularity, research suggests that the suitability of these methods are not always appropriate due to the problem of imbalanced data. Consequently, the effectiveness of ML models may be negatively affected. This study aims to propose a novel method for detecting code smells by employing five ML algorithms, namely decision tree (DT), k-nearest neighbors (K-NN), support vector machine (SVM), XGboost (XGB), and multi-layer perceptron (MLP). Additionally, to tackle the challenge of imbalanced data, the proposed method incorporates the random oversampling technique. Experiments were conducted in this study using four datasets that encompassed code smells, specifically god-class, data-class, long-method, and feature-envy. The experimental outcomes were evaluated and compared using various performance metrics. Upon comparing the outcomes of our models on both the balanced and original datasets, we found that the XGB model achieved the highest accuracy of 100% for detecting the data class and long method on the original datasets. In contrast, the highest accuracy of 100% was obtained for the data class and long method using DT, SVM, and XGB models on the balanced datasets. According to the empirical findings, there is significant promise in using ML techniques for the accurate prediction of code smells

    Crowdsmelling: The use of collective knowledge in code smells detection

    Full text link
    Code smells are seen as major source of technical debt and, as such, should be detected and removed. However, researchers argue that the subjectiveness of the code smells detection process is a major hindrance to mitigate the problem of smells-infected code. We proposed the crowdsmelling approach based on supervised machine learning techniques, where the wisdom of the crowd (of software developers) is used to collectively calibrate code smells detection algorithms, thereby lessening the subjectivity issue. This paper presents the results of a validation experiment for the crowdsmelling approach. In the context of three consecutive years of a Software Engineering course, a total "crowd" of around a hundred teams, with an average of three members each, classified the presence of 3 code smells (Long Method, God Class, and Feature Envy) in Java source code. These classifications were the basis of the oracles used for training six machine learning algorithms. Over one hundred models were generated and evaluated to determine which machine learning algorithms had the best performance in detecting each of the aforementioned code smells. Good performances were obtained for God Class detection (ROC=0.896 for Naive Bayes) and Long Method detection (ROC=0.870 for AdaBoostM1), but much lower for Feature Envy (ROC=0.570 for Random Forrest). Obtained results suggest that crowdsmelling is a feasible approach for the detection of code smells, but further validation experiments are required to cover more code smells and to increase external validity

    On the role of data balancing for machine learning-based code smell detection

    No full text
    Code smells can compromise software quality in the long term by inducing technical debt. For this reason, many approaches aimed at identifying these design flaws have been proposed in the last decade. Most of them are based on heuristics in which a set of metrics (e.g., code metrics, process metrics) is used to detect smelly code components. However, these techniques suffer of subjective interpretation, low agreement between detectors, and threshold dependability. To overcome these limitations, previouswork applied Machine Learning techniques that can learn from previous datasets without needing any threshold definition. However, more recent work has shown that Machine Learning is not always suitable for code smell detection due to the highly unbalanced nature of the problem. In this study we investigate several approaches able to mitigate data unbalancing issues to understand their impact on MLbased approaches for code smell detection. Our findings highlight a number of limitations and open issues with respect to the usage of data balancing in ML-based code smell detection
    corecore