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1. Introduction 
Code smells indicate design issues that violate basic design principles such as hierarchy encapsulation, 

abstraction, and others, potentially affecting software quality [1], [2]. Detecting code smells is crucial 

for guiding the subsequent refactoring process to improve software quality and reduce software failure 

risk [3], [4]. Code smells usually appear during the design or coding phase due to developers' activities 

in emergencies, inadequate design, or coding solutions [5], [6]. Table 1 lists the four specific code smells 

that we have investigated.  

Software metrics are crucial in measuring and enhancing software quality and are utilized to 

characterize software engineering products [7]. They have diverse applications, including bug 

identification, test complexity prediction, code smell detection, and clone prediction. Object-oriented 

metrics are the most commonly used software metrics [8], [9].  
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 Code smells are prevalent issues in software design that arise when 

implementation or design principles are violated. These issues manifest as 

symptoms or anomalies in the source code. Timely identification of code 

smells plays a crucial role in enhancing software quality and facilitating 

software maintenance.  Previous studies have shown that code smell 

detection can be accomplished through the utilization of machine learning 

(ML) methods. However, despite their increasing popularity, research 

suggests that the suitability of  these methods are not always appropriate 

due to the problem of imbalanced data. Consequently, the effectiveness of 

ML models may be negatively affected. This study aims to propose a novel 

method for detecting code smells by employing five ML algorithms, 

namely decision tree (DT), k-nearest neighbors (K-NN), support vector 

machine (SVM), XGboost (XGB), and multi-layer perceptron (MLP). 

Additionally, to tackle the challenge of imbalanced data, the proposed 

method incorporates the random oversampling technique. Experiments 

were conducted in this study using four datasets that encompassed code 

smells, specifically god-class, data-class, long-method, and feature-envy. 

The experimental outcomes were evaluated and compared using various 

performance metrics. Upon comparing the outcomes of our models on 

both the balanced and original datasets, we found that the XGB model 

achieved the highest accuracy of 100% for detecting the data class and long 

method on the original datasets. In contrast, the highest accuracy of 100% 

was obtained for the data class and long method using DT, SVM, and XGB 

models on the balanced datasets. According to the empirical findings, there 

is significant promise in using ML techniques for the accurate prediction 

of code smells.  
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Table 1.  Lists the four specific code smells that we have investigated [9]. 

Code smells Description Affected entity 

God _Class 

Refers to classes that have many members and implement different 

behaviors. 

Class 

Data _Class Refers to classes that contain data only. Class 

Long _Method Refers to the too-long method. Method 

Feature _Envy 

Refers to a method that displays a greater interest in the properties of 

other classes than those belonging to its class. 

Method 

 

Many techniques and tools have been devised for detecting code smells, encompassing manual, 

automatic, and metrics-based approaches [2], [10]. However, most of these methods employ a heuristic 

two-step approach, which involves calculating metrics first and then applying threshold values to 

differentiate between smelly and non-smelly classes [6]. The dissimilarities among these strategies lie in 

the algorithms employed, the subjective interpretation involved, the lack of consensus among detectors, 

and the dependence on thresholds [11]. Researchers have recently turned to ML algorithms to mitigate 

these limitations in code smell detection to avoid thresholds and reduce the incidence of false positives 

in detection tools [12].  

ML models are mathematical techniques that employ historical data to automatically identify 

intricate patterns and make informed and intelligent decisions [3]. Supervised ML techniques are 

commonly used for code smells detection [13], [14]. With supervised classification algorithms, the 

machine can acquire knowledge of the associations between instances and decision labels [10], [15].  

Studies on code smells detection have recently gained more attention, and scientific researchers have 

presented many studies for code smells detection using ML models. For example, Mhawish and Gupta 

[1] presented an approach for predicting code smells using ML techniques and software metrics. The 

authors utilized datasets obtained from Fontana et al. and their experimental results showed that the 

accurate prediction of code smells can be significantly facilitated by employing ML techniques. Fabiano 

Pecorelli et al. [2] examined five distinct data balancing methods to alleviate issues of data imbalance 

and gauge their effects on ML algorithms in code smell detection. During the experiment, five datasets 

on code smells were utilized. The findings indicate that ML models utilizing the synthetic minority 

oversampling technique exhibited the most promising performance. This technique effectively addressed 

the problem of class imbalance. Fontana et al. [9] presented an approach for identifying code smells that 

involves the use of various ML techniques. The results indicate that all techniques performed 

satisfactorily, however, the imbalanced data adversely affected the performance of certain models. Cruz 

et al. [16] conducted an assessment of seven ML algorithms to identify four distinct types of code smells, 

while also analyzing the influence of software metrics on the detection of code smells. The experimental 

results found that ML algorithms can perform well in detecting bad code smells, and metrics play a 

fundamental role in detecting bad code smells. Martins et al. [17] conducted an empirical study to predict 

classes that are susceptible to change using eight ML techniques. In their study, three distinct training 

scenarios were involved, which included object-oriented metrics, code smells, and a fusion of both. The 

experiments were conducted on a dataset of 32 code odor types and eight object-oriented metrics. The 

experimental results found that some ML algorithms presented the best results based on the training 

scenario of a combination of code smells and object-oriented metrics. Hozano et al. [18] evaluated and 

compared the effectiveness of six ML algorithms in detecting four different code smells across a sample 

of 40 developers. The findings revealed that the ML algorithms performed poorly for the participating 

developers, indicating their susceptibility to the type of smells and the individual developer. These 

algorithms were unable to learn effectively from a limited training set. Sharma et al. [19] presented a 

method for code smells detection based on convolution neural networks and recurrent neural network 

models. The experiment results showed that detecting code smells is feasible using deep learning 

methods. Dewangan et al. [20] proposed an approach based on six ML algorithms to predict code smells 

based on four datasets obtained from 74 open-source systems. The proposed approach's effectiveness was 

assessed using various performance metrics, and two feature selection methods were implemented to 

improve the accuracy of the predictions. The experimental results showed that their approach achieved 

high prediction accuracy. Jain and Saha [21] proposed a method for code smell detection based on several 
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ML models. The method was evaluated based on different performance metrics. The experimental 

results demonstrate that boosted decision trees and Naive Bayes models yielded superior performance 

compared to other models, following dimensionality reduction. 

Our analysis of prior research on code smells detection revealed that most proposed methods overlook 

the issue of class imbalance. However, studies that addressed this problem and implemented data 

balancing methods [2], [22] emphasized such methods' critical and essential role in code smells 

detection.  

Data imbalance in a training data set, where classes are unevenly distributed, hinders the efficiency 

of ML algorithms and biases their performance towards the majority class [3]. That leads to unbalanced 

false-positive and false-negative results, making data imbalance the biggest problem for ML algorithms 

[22]. This study selects imbalanced datasets extracted from 74 open-source systems [9]. Consequently, 

there is a growing impetus to employ data balancing methods and develop unbiased classifiers that 

operate effectively on imbalanced code smells datasets.  

To our knowledge, a few studies have applied ML combined with sampling techniques for code 

smells detection. To address these gaps, our work offers a novel method that aims to achieve the 

following key objectives and contributions: 

• The present study introduces a novel method that combines machine learning (ML) with a random 

oversampling technique to effectively detect code smells. 

• This study evaluates the efficiency of the proposed method utilizing various performance measures 

and compares it with the currently employed methods for detecting code smells. 

• We show that the performance of ML models in code smells detection can be significantly improved 

when balancing the data set by applying data-balancing methods. 

The paper is structured in the following manner: Section 2 specifies the research method. Section 3 

outlines the results and corresponding discussions, while the final Section (Section 4) presents the 

conclusion. 

2. Method 
Our study proposes a method for training and testing code smell detection models, which utilizes 

high-performance supervised machine learning algorithms in combination with a random oversampling 

technique. Fig. 1 illustrates the proposed research process for detecting code smells. The following 

sections describe the steps taken in this study, which encompass dataset description, data pre-processing, 

feature selection, dataset balancing, classification algorithms, model building, and evaluation. 

 

Fig. 1.  Shows the overview of the proposed research process for detecting code smells. 

2.1. Dataset Description 
To perform the analysis and experiments, our method was implemented using the datasets proposed 

by Fontana et al. [9], which include 74 open-source systems of varying sizes and domains sourced from 

Qualitas Corpus (QC) [23], as detailed in Table 2. The justification for selecting these datasets is that 

the systems must be able to calculate metric values correctly. Moreover, these data sets are freely available, 

and researchers can iterate, compare and evaluate their studies. In QC systems, metrics are chosen for 



405 International Journal of Advances in Intelligent Informatics   ISSN 2442-6571 

 Vol. 9, No. 3, November 2023, pp. 402-417 

 

 Khleel and Nehéz (Detection of code smells using machine learning techniques combined with data-balancing methods) 

both class and method levels. The metrics chosen comprise a standardized set of metrics that address 

various aspects of the code, such as size, cohesion, encapsulation, etc. [9]. The computed metrics for all 

74 systems of the QC are displayed in Table 3. 

Table 2.  A summary of the QC systems [9]. 

The count of systems Code Lines The count of packages The count of classes 
74  6,785,568 3420 51,826 

Table 3.  Metrics computed on all 74 systems of the QC [9]. 

Size Complexity Cohesion Coupling Encapsulation Inheritance 
LOCNAMM* WMC LCOM5 ATFD NOAM NOII 

NOM CYCLO TCC FANOUT NOPA NOI 

LOC WOC  CINT LAA NIM 

NOA AMWNAMM*  RFC  NMO 

NOMNAMM* NOP  CDISP  NOC 

NOCS  MAXNESTING  CFNAMM*  DIT 

NOPK WMCNAMM*  FDP   

 CLNAMM  CBO   

 AMW  MeMCL§   

 NOLV  MaMCL§   

 ATLD*  NMCS§   

 NOAV  CM   

   CC   

2.2. Data Pre-processing and Features Selection 
Before constructing the model, it is essential to carry out pre-processing of the collected data. To 

ensure the production of an optimal model, careful attention must be paid to the quality of the data 

[24]. Data pre-processing refers to a collection of procedures utilized to enhance data quality before 

constructing a model. Its primary objectives are the removal of noise and extraneous outliers, managing 

missing values, converting feature types, and more [10], [11], [25]. Selecting the most informative 

features from a list of features through suitable methods is a crucial step commonly referred to as Feature 

Selection (FS). [26]–[28]. FS aims to identify the most relevant features for the target class from a high-

dimensional feature set and eliminate redundant and uncorrelated features [1], [17], [21], [29]. There 

are three distinct categories of FS methods, which are wrapper methods, embedded methods, and filter 

methods, each method has rules for selecting the most relevant features as independent variables for 

training ML models [29]. In this study, our models were based on embedded methods because these 

methods fit ML models. 

2.3. Class Imbalance and Sampling Techniques 
Class imbalance is a common issue in code smells detection, wherein one class has significantly fewer 

examples than the others. That is particularly relevant since code smells datasets often consist of a small 

number of smelly instances and many non-smelly ones [3]. Therefore, the class imbalance problem can 

often lead to misclassifying cases in the minority class [30]. To address this problem, various techniques 

have been proposed, including data sampling methods, boosting-based ensemble methods, bagging-

based ensemble methods, cost-sensitive learning approaches, and other similar approaches [2]. the 

dataset used for code smells detection in this study is significantly imbalanced [15]. Specifically, the 

initial datasets consisted of 561 smelly instances and 1119 non-smelly instances. The first two datasets 

pertain to code smells at the class level, specifically for the god class (with 140 smelly cases and 280 non-

smelly instances) and data class (with 140 smelly cases and 280 non-smelly instances). In contrast, the 

remaining two datasets focus on code smells at the method level, namely feature envy (with 140 smelly 

instances and 280 non-smelly instances) and long method (with 141 smelly instances and 279 non-smelly 

instances). We address the class imbalance issue by enhancing the original datasets to make the data 

more realistic. We mitigate the class imbalance problem by using the random oversampling technique, 

which involves randomly selecting examples to increase the minority class [2], [17]. Fig. 2 illustrates the 

learning instances distribution in all datasets. 
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Fig. 2.  illustrates the learning instances distribution in all datasets. 

2.4. Classification Algorithms 
This section briefly describes the classification algorithms used to detect and classify code smells in 

our study. 

2.4.1. DT 
DT is a supervised ML algorithm utilized for carrying out both regression and classification tasks [9]. 

DTs function by segregating instances based on feature values and branching them out. In an ID3 

decision tree, all features are initially assigned as root nodes. Subsequently, the features are separated by 

computing their Entropy, which measures data homogeneity. Entropy values fall within the range of 0 

to 1[12], [13]. Mathematically, entropy for a single attribute is represented as: 

 E(F)  =  -∑  c
i=1 pi  log2 pi (1) 

Where C is the number of outputs, 𝑝𝑝𝑖𝑖 Is the probability of occurrences of each output from all outputs, and F is a 

feature with some data. 

2.4.2. K-NN 
K-NN is a basic supervised ML algorithm that operates by examining K neighboring objects and 

selecting the most commonly occurring class or calculating the distance between them [28]. 

Additionally, it is a lazy-learning technique that categorizes elements according to their spatial 

arrangement on a hyperplane. The algorithm necessitates the selection of k closest points. Therefore, 

the first stage involves determining the distance between the input data point and other points in our 

training data [29], [31]. The distance between these two points can be calculated using: 

𝑑𝑑(𝑥𝑥,𝑦𝑦) =  �∑ (𝑥𝑥𝑖𝑖 −  𝑦𝑦𝑖𝑖)2 𝑝𝑝
𝑖𝑖=1  (2) 

Suppose x is a point with coordinates (𝑥𝑥1,𝑥𝑥2,...,𝑥𝑥𝑝𝑝) and y is a point with coordinates (𝑦𝑦1,𝑦𝑦2,..., 𝑦𝑦𝑝𝑝). 

2.4.3. SVM 
SVM is a widely-used and regularized machine learning algorithm employed mainly for classification 

and regression purposes. SVMs leverage a margin on both sides of a hyperplane to separate two features, 

and they optimize the hyperplane to maximize the margin between features [2], [29]. The general form 

of the SVM function is defined as: 

 F(x)  =  W ∗  Q(x)  +  b  (3) 

In this context, the weight vector is denoted by w, the input vector is represented by x, and the 

hyperplane equations' intercept and bias terms are indicated by b. 
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2.4.4. XGB 
XGB is a robust ML algorithm that has been recently introduced. It is grounded in the principle of 

gradient boosting and utilizes parallel tree boosting to predict the target through the consolidated results 

of numerous weak models. XGB delivers exceptional speed and accuracy. The formula for the XGB 

model is given as: 

𝑌𝑌𝑖𝑖   =  𝑤𝑤𝑞𝑞(𝑥𝑥𝑖𝑖) = ∑ 𝑓𝑓𝑡𝑡𝑇𝑇
𝑡𝑡 =1 (𝑥𝑥𝑖𝑖)  (4) 

Where 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)  =  𝑤𝑤𝑞𝑞(𝑥𝑥) represents the domain of classification trees, while 𝑤𝑤𝑞𝑞(𝑥𝑥) represents the score of 

a particular sample, x represents the predicted value generated by the model. In addition, q signifies the 

structure of each tree, T refers to the total number of trees, and each 𝑓𝑓𝑡𝑡 corresponds to a different tree 

structure q with its corresponding leaf weight w. 

2.4.5. MLP 
MLP is an artificial neural network composed of multiple layers of interconnected perceptrons, 

specifically designed to handle intricate data inputs and execute diverse tasks such as regression or 

classification. The network employs nodes with specific weights to create connections between these 

layers. The backpropagation algorithm is used to train the model in the MLP network [7]. The formula 

of the MLP model is as follows: 

𝑌𝑌𝑖𝑖   =  𝑓𝑓𝑖𝑖(  ∑ 𝑋𝑋𝑗𝑗𝑛𝑛
𝑗𝑗 =1 𝑊𝑊𝑖𝑖𝑗𝑗 +   𝑏𝑏𝑖𝑖)  (5) 

The given context states that the output is denoted by𝑌𝑌𝑖𝑖 , while n represents the overall number of inputs 

that are provided to the neuron. Additionally, 𝑋𝑋𝑗𝑗 represents the input to the network, The weights of 

the connections between input and output nodes are denoted by𝑊𝑊𝑖𝑖𝑗𝑗 , the bias term is represented by𝑏𝑏𝑖𝑖, 
and the transfer function is symbolized by𝑓𝑓𝑖𝑖. 

2.5. Models Building and Evaluation 
The proposed models were built and evaluated by utilizing 80% of the dataset for training and 

keeping the remaining 20% for validation. Table 4 outlines the various parameters used for creating each 

model independently. We assess the effectiveness of our proposed models by utilizing standard evaluation 

metrics, namely the confusion matrix, which includes measures such as (accuracy, precision, recall, and 

𝑓𝑓- measure), MCC, and AUC. MCC is a widely adopted metric for model assessment, which captures 

the variation between predicted and actual values through true and false positives and negatives. AUC is 

a visual depiction of classifier efficacy that plots the true positive rate versus the false positive rate at 

varying classification thresholds. A confusion matrix is a table that assists in evaluating the performance 

of a classification model by comparing the predicted class labels to the actual class labels of a dataset as 

illustrated in Table 5. 

Table 4.  Shows the parameters setting for the models 

Models Parameters setting 
DT No passing parameters (default parameters) 

K-NN N_neighbors = 3 

SVM Probability = True, kernel = 'linear' 

XGB Max_depth=3, n_estimators=100, n_jobs=2, objectvie='binary:logistic', learning_rate=0.01, 

Subsample=0.7, colsample_bytree=0.8 

MLP Hidden_layer_sizes=(10,5), max_iter=1000 

Table 5.  Shows the confusion matrix 

Predicted class  Actual class 
Yes No 

Yes TP FN 

No FP TN 
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Accuracy =   (TP+TN) 
(TP+FP+FN+TN)

  (6) 

Precision =   TP  
(TP+FP)

  (7) 

Recall =   TP 
(TP + FN) 

  (8) 

F − Measure =   (2 ∗ Recall ∗Precision)
(Recall + Precision) 

  (9) 

MCC =  TP ∗ TN −  FP ∗ FN / �(TP + FP) ∗ (TP + FN) ∗ (TN +  FP) ∗ (TN + FN) (10) 

AUC =   
∑ rank(𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖)− M(M+1)

2    
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

M .  N
  (11) 

In this given scenario, the sum of ranks for all positive samples is represented 

by∑ rank(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)    
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 , while the number of positive examples is denoted by "𝑀𝑀," and the 

number of negative examples is represented by "𝑁𝑁". 

3. Results and Discussion 
The experimental setup was implemented in Python, and the training and validation datasets were 

obtained from the same project. To ensure reliable performance evaluation, the proposed models were 

trained and tested on large datasets with over 6,785,568 lines of source code. Table 6 to Table 9, and 

Fig. 3 to Fig. 7 show the results.  

Table 6.  The results for the class-level dataset: god class _ original and balanced datasets 

Original datasets 
Machine 

Learning Models 
Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.95 0.97 0.92 0.94 0.90 0.94 

K-NN 0.90 0.97 0.81 0.88 0.81 0.94 

SVM 0.92 0.94 0.86 0.90 0.83 0.97 

XGB 0.98 0.97 0.97 0.97 0.95 0.99 

MLP 0.93 0.97 0.86 0.91 0.85 0.99 

Averages 0.93 0.96 0.88 0.92 0.86 0.96 
Balanced datasets 

Machine 
Learning Models 

Performance measurement 
Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 0.97 1.00 0.98 0.96 0.98 

K-NN 0.97 0.97 0.98 0.98 0.94 0.97 

SVM 0.96 0.95 0.98 0.97 0.92 0.99 

XGB 0.96 0.95 0.97 0.96 0.90 0.98 

MLP 0.97 0.97 0.98 0.98 0.94 0.98 

Averages 0.96 0.96 0.98 0.97 0.93 0.98 
 

Based on the DT model, we observed that accuracy values varied from 0.92 to 0.99 on the original 

datasets and from 0.98 to 1.00 on the balanced datasets. In terms of precision, the values ranged from 

0.86 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The recall values 

ranged from 0.89 to 0.96 on the original datasets and were 1.00 on the balanced datasets. In the context 

of f-measure, the values varied from 0.87 to 0.98 on the original datasets and from 0.98 to 1.00 on the 

balanced datasets. Moreover, MCC values ranged from 0.81 to 0.97 on the original datasets and from 

0.96 to 1.00 on the balanced datasets, whereas AUC values ranged from 0.90 to 0.98 on the original 

datasets and from 0.98 to 1.00 on the balanced datasets. 
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Table 7.  The results for the class-level dataset: data class_ original and balanced datasets 

 Original datasets 
Machine 

Learning Models 
Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 1.00 0.91 0.95 0.94 0.95 

K-NN 0.89 0.75 0.91 0.82 0.75 0.97 

SVM 0.96 0.92 0.96 0.94 0.91 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.92 1.00 0.96 0.94 0.99 

Averages 0.96 0.91 0.95 0.93 0.90 0.98 
Balanced datasets 

Machine 
Learning Models 

Performance measurement 
Accuracy Precision Recall F- measure MCC AUC 

DT 1.00 1.00 1.00 1.00 1.00 1.00 

K-NN 0.96 0.93 0.98 0.96 0.91 0.98 

SVM 0.97 0.95 1.00 0.97 0.94 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.97 1.00 0.98 0.96 0.99 

Averages 0.98 0.97 0.99 0.98 0.96 0.99 
 

The K-NN model demonstrates that the accuracy values vary between 0.86 to 0.92 on the original 

datasets and from 0.91 to 0.97 on the balanced datasets. Additionally, the precision values on the original 

datasets vary from 0.75 to 0.97 and from 0.88 to 0.97 on the balanced datasets. The recall values vary 

from 0.70 to 0.91 on the original datasets and from 0.97 to 0.98 on the balanced datasets. In the context 

of f-measure, the values range from 0.76 to 0.88 on the original datasets and from 0.92 to 0.98 on the 

balanced datasets. Furthermore, the MCC values range from 0.66 to 0.81 on the original datasets and 

from 0.82 to 0.94 on the balanced datasets. Finally, the AUC values range from 0.85 to 0.97 on the 

original datasets and from 0.93 to 0.98 on the balanced datasets. 

Table 8.  The results for the method-level dataset: long method_ original and balanced datasets 

Original datasets 
Machine 

Learning Models 
Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.99 1.00 0.96 0.98 0.97 0.98 

K-NN 0.92 0.92 0.81 0.86 0.80 0.94 

SVM 0.98 0.96 0.96 0.96 0.94 0.99 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.94 0.87 0.96 0.91 0.87 0.98 

Averages 0.96 0.95 0.93 0.94 0.91 0.97 
Balanced datasets 

Machine 
Learning Models 

Performance measurement 
Accuracy Precision Recall F- measure MCC AUC 

DT 1.00 1.00 1.00 1.00 1.00 1.00 

K-NN 0.96 0.93 0.98 0.95 0.91 0.97 

SVM 1.00 1.00 1.00 1.00 1.00 1.00 

XGB 1.00 1.00 1.00 1.00 1.00 1.00 

MLP 0.98 0.96 1.00 0.98 0.96 1.00 

Averages 0.98 0.97 0.99 0.98 0.97 0.99 
 

Following the SVM model, it can be observed that the accuracy values vary between 0.90 and 0.98 

on the original datasets, and from 0.96 to 1.00 on the balanced datasets. On the original datasets, the 

precision values vary from 0.85 to 0.96, while on the balanced datasets, the precision values vary from 

0.94 to 1.00. In the context of recall, the values range from 0.85 to 0.96 on the original datasets, and 

from 0.98 to 1.00 on the balanced datasets. In the context of f-measure, the values range from 0.85 to 
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0.96 on the original datasets and from 0.97 to 1.00 on the balanced datasets. The MCC values range 

from 0.78 to 0.94 on the original datasets and from 0.92 to 1.00 on the balanced datasets. The AUC 

values range from 0.96 to 0.99 on the original datasets and from 0.97 to 1.00 on the balanced datasets. 

Table 9.  The results for the method-level dataset: feature envy_ original and balanced datasets 

Original datasets 
Machine 

Learning Models 
Performance measurement 

Accuracy Precision Recall F- measure MCC AUC 

DT 0.92 0.86 0.89 0.87 0.81 0.90 

K-NN 0.86 0.83 0.70 0.76 0.66 0.85 

SVM 0.90 0.85 0.85 0.85 0.78 0.96 

XGB 0.95 0.87 1.00 0.93 0.89 0.99 

MLP 0.88 0.87 0.74 0.80 0.72 0.90 

Averages 0.90 0.85 0.83 0.84 0.77 0.92 
Balanced datasets 

Machine 
Learning Models 

Performance measurement 
Accuracy Precision Recall F- measure MCC AUC 

DT 0.98 0.97 1.00 0.98 0.96 0.98 

K-NN 0.91 0.88 0.97 0.92 0.82 0.93 

SVM 0.96 0.94 1.00 0.97 0.92 0.97 

XGB 0.98 0.97 1.00 0.98 0.96 0.98 

MLP 0.96 0.97 0.97 0.97 0.92 0.98 

Averages 0.95 0.94 0.98 0.96 0.91 0.96 
 

 

Based on the XGB model, it can be observed that the accuracy values range between 0.95 to 1.00 for 

the original datasets and between 0.96 to 1.00 for the balanced datasets. In the context of precision, the 

values range between 0.87 to 1.00 for the original datasets and between 0.95 to 1.00 for the balanced 

datasets. In the context of recall, the values range between 0.97 to 1.00 for the original datasets and 

between 0.97 to 1.00 for the balanced datasets. In the context of f-measure, the values range between 

0.93 to 1.00 for the original datasets and between 0.96 to 1.00 for the balanced datasets. Additionally, 

the MCC values range between 0.89 to 1.00 for the original datasets and between 0.90 to 1.00 for the 

balanced datasets, whereas the AUC values range between 0.99 to 1.00 for the original datasets and 

between 0.98 to 1.00 for the balanced datasets. 

Based on the MLP model, it was observed that the accuracy values ranged from 0.88 to 0.98 on the 

original datasets and from 0.96 to 0.98 on the balanced datasets. Furthermore, the precision values 

ranged from 0.87 to 0.97 on the original datasets and from 0.96 to 0.97 on the balanced datasets, while 

the recall values ranged from 0.74 to 1.00 on the original datasets and from 0.97 to 1.00 on the balanced 

datasets. In the context of f-measure, the values ranged from 0.80 to 0.96 on the original datasets and 

from 0.97 to 0.98 on the balanced datasets. Furthermore, the MCC values range from 0.72 to 0.94 on 

the original datasets and from 0.92 to 0.96 on the balanced datasets. Finally, the AUC values range from 

0.90 to 0.99 on the original datasets and from 0.98 to 1.00 on the balanced datasets. 

 Concerning each type of code smell, the top-performing models attain the subsequent results: DT 

model scores 100% accuracy on data class and long method (balanced datasets). K-NN model achieves 

97% accuracy on god class (balanced datasets). The SVM model scores 100% accuracy on the long 

method (balanced datasets). XGB model achieves 100% accuracy on data class and long method (original 

and balanced datasets). MLP model scores 98% accuracy on data class (original and balanced datasets) 

and 98% on the long method (balanced datasets). 

Fig. 3 shows the best accuracy values of the models for all considered code smells on the original and 

balanced datasets. The best accuracy on the original datasets (god class) is 98% obtained by the XGB 

model, while the best accuracy on the balanced datasets (god class) is 98% obtained by the DT model. 

The best accuracy on the original datasets (data class) is 100% which the XGB model gets, while the 

best accuracy on the balanced datasets (data class) is 100% obtained by the DT and XGB models. The 
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best accuracy on the original datasets (long method) is 100% which the XGB model gets, while the best 

accuracy on the balanced datasets (long method) is 100% which is obtained by the DT, SVM, and XGB 

models. The best accuracy on the original datasets (feature envy) is 95% which the XGB model gets. 

The best accuracy on the balanced datasets (feature envy) is 98%, obtained by the DT and XGB models. 

 
Fig. 3. The best models' accuracy values on original and balanced data sets. 

Fig. 4 exhibits box plots that display the averages of several performance measures, including accuracy, 

precision, recall, f-measure, MCC, and AUC based on the original datasets. The overall average 

performance of all models is 0.93, 0.96, 0.88, 0.92, 0.86, and 0.96, respectively, for the god class. 

Similarly, for the data class, the overall average performance of all models is 0.96, 0.91, 0.95, 0.93, 0.90, 

and 0.98, respectively. In the context of the long method, the overall average of all models is 0.96, 0.95, 

0.93, 0.94, 0.91, and 0.97, respectively. Lastly, for feature envy, the overall average performance of all 

models is 0.90, 0.85, 0.83, 0.84, 0.77, and 0.92, respectively. 

 

 

Fig. 4. Box Plots represent the models' performance measures on all considered code smells_ original datasets. 

 

Fig. 5 exhibits box plots that display the averages of several performance measures, including accuracy, 

precision, recall, f-measure, MCC, and AUC based on the balanced datasets. The overall average 

performance of all models is 0.96, 0.96, 0.98, 0.97, 0.93, and 0.98, respectively, for the god class. 

Similarly, for the data class, the overall average performance of all models is 0.98, 0.97, 0.99, 0.98, 0.96, 
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and 0.99, respectively. In the context of the long method, the overall average of all models is 0.98, 0.97, 

0.99, 0.98, 0.97, and 0.99, respectively. Lastly, for feature envy, the overall average performance of all 

models is 0.95, 0.94, 0.98, 0.96, 0.91, and 0.96, respectively. 

 

 

Fig. 5. Box Plots represent the models' performance measures on all considered code smells_ balanced datasets. 

Fig. 6 shows the AUC of the models for all considered code smells on the original datasets; the 

highest AUC on the original datasets (god class) is 99%, obtained by XGB and MLP models.  

 

 

Fig. 6. The ROC curves obtained by the models on all considered code smells_ original datasets. 
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In comparison, the lowest AUC is 94%, obtained by DT and K-NN models. The highest AUC on 

the original datasets (data class) is 100% obtained by the XGB model, while the lowest AUC is 95% 

obtained by the DT model. The highest AUC on the original datasets (long method) is 100% obtained 

by the XGB model, while the lowest AUC is 94% obtained by the K-NN model. The highest AUC on 

the original datasets (feature envy) is 99%, obtained by the XGB model, while the lowest AUC is 85%, 

obtained by the K-NN model. 

 Fig. 7 shows the AUC of the models for all considered code smells on the balanced datasets, the 

highest AUC on the balanced datasets (god class) is 99%, obtained by the SVM model, while the lowest 

AUC is 97%, and the K-NN model gets. The highest AUC on the balanced datasets (data class) is 100% 

obtained by DT and XGB models, while the lowest AUC is 98% obtained by the K-NN model.  

The highest AUC on the balanced datasets (long method) is 100% acquired by DT, SVM, XGB, and 

MLP models, while the lowest AUC is 97%, which the K-NN model obtains. The highest AUC on the 

balanced datasets (feature envy) is 99%, obtained by DT, XGB, and MLP models, while the lowest AUC 

is 93% which the K-NN model gets. 

 

Fig. 7. The ROC curves obtained by the models on all considered code smells_ balanced datasets. 

The performance of our models was compared with those of previous studies based on accuracy and 

AUC. The comparison results are presented in Table 10 and Table 11, where the best values are indicated 

in bold, and "- " denotes the missing performance measures for specific methods in certain datasets. 

Overall, our method outperforms the other state-of-the-art methods in most cases.  A comparison of 

machine learning techniques using four datasets of code smells, with a specific emphasis on their Area 

Under the Curve (AUC) metrics. The AUC is a fundamental statistic used in binary classification. The 

examination focuses on the evaluation of Random Forest, Naive Bayes, SVM, and K-Nearest Neighbors 

(KNN) algorithms. Additionally, the study investigates Our models sing Decision Tree (DT), K-NN, 

Support Vector Machines (SVM), XGBoost (XGB), and Multilayer Perceptron (MLP). The AUC values 

are presented for the software code metrics known as "god class," "data class," "long method," and 

"feature envy." Our models section demonstrates excellent performance, particularly when applied to 
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datasets that are balanced. The AUC values ranges from 0.97 to 1.00, which signifies a high level of 

discriminatory ability. The results presented in this study showcase the potential of Our models in 

detecting software development code quality issues, despite the lack of information regarding the datasets 

and code quality metrics utilized.  

Table 10.  Outlines a comparison between the proposed method and other pre-existing methods, with emphasis 

on their respective accuracy values 

Datasets 
Methods god class data class long method feature envy 

DT [1] - - - 0.97 

RF [1] - 0.99 0.95 - 

RF [9] 0.96 0.98 0.99 0.96 

NB [9] 0.97 0.97 0.97 0.91 

NB [17] 0.96 - 0.97 0.91 

MLP [17] 0.97 - 0.99 0.92 

DT [17] 0.98 - 0.97 0.95 

RF [19] 0.76 0.81 0.60 0.66 

NB [19] 0.74 0.66 0.74 0.76 

SVM [19] 0.66 0.66 0.66 0.60 

K-NN [21] 0.97 0.97 0.97 0.91 

NB [21] 0.96 0.84 0.95 0.92 

MLP [21] 0.97 0.97 0.96 0.95 

DT [21] 0.97 0.98 0.98 0.98 

RF [21] 0.97 0.98 0.99 0.97 

Logistic Regression [21] 0.97 0.97 0.99 0.97 

RF [22] 0.69 0.70 0.68 0.71 

NB [22] 0.82 0.75 0.81 0.83 

SVM [22] 0.74 0.83 0.81 0.83 

K-NN [22] 0.80 0.82 0.81 0.82 

Our models (DT, K-NN, 

SVM, XGB, MLP) - Original 

Datasets 

0.95, 0.90, 0.92, 

0.98, 0.93 

0.98, 0.89, 

0.96,1.00, 0.98 

0.99, 0.92, 0.98, 

1.00, 0.94 

0.92, 0.86, 0.90, 

0.95, 0.88 

Our models (DT, K-NN, 

SVM, XGB, MLP) - Balanced 

Datasets 

0.98, 0.97, 0.96, 

0.96, 0.97 

1.00, 0.96, 

0.97, 1.00, 0.98 

1.00, 0.96, 1.00, 

1.00, 0.98 

0.98, 0.91, 0.96, 

0.98, 0.96 

 

Table 11.  Outlines a comparison between the proposed method and other pre-existing methods, with emphasis 

on their respective AUC values 

Datasets 
Methods god class data class long method feature envy 

RF [22] 0.59 0.65 0.52 0.59 

NB [22] 0.88 0.85 0.86 0.86 

SVM [22] 0.65 0.88 0.66 0.82 

K-NN [22] 0.83 0.86 0.86 0.83 

Our models (DT, K-NN, 

SVM, XGB, MLP) - 

Original Datasets 

0.94, 0.94, 0.97, 

0.99, 0.99 

0.95, 0.97, 

0.99, 1.00, 0.99 

0.98, 0.94, 0.99, 

1.00, 0.98 

0.90, 0.85, 0.96, 

0.99, 0.90 

Our models (DT, K-NN, 

SVM, XGB, MLP) - 

Balanced Datasets 

0.98, 0.97, 0.99, 

0.98, 0.98 

1.00, 0.98, 

0.99, 1.00, 0.99 

1.00, 0.97, 1.00, 

1.00, 1.00 

0.98, 0.93, 0.97, 

0.98, 0.98 

 

After analysing the outcomes generated by our presented ML models across all datasets, It is clear 

from the results that the models achieved impressive scores on all of the datasets. This suggests that our 
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proposed models performed well, and the data balancing methods utilized were instrumental in 

enhancing the accuracy of ML models for code smells detection. 

4. Conclusion 
Code smells detection has significant positive effects on software quality. In this study, we presented 

a method based on ML techniques combined with a data balancing method (random oversampling 

technique) to detect code smells; Our proposed method was evaluated by considering four different types 

of code smells. The evaluation involved conducting experiments using five different ML algorithms and 

assessing the results using various performance measures. The proposed models' average accuracy on the 

original datasets was found to be 93% for god class, 96% for data class, 96% for long method, and 90% 

for feature envy. Meanwhile, on the balanced datasets, the proposed models' average accuracy was 96% 

for god class, 98% for data class, 98% for long method, and 95% for feature envy. The results indicate 

that the proposed models' accuracy improved by 3%, 2%, 2%, and 5% on the balanced datasets 

compared to the original datasets. The experimental result showed that combining ML algorithms with 

a random oversampling technique can enhance the process of code smells detection and that software 

metrics play significant and critical roles in detecting code smells. By analyzing the results, it is clear that 

our method gives better results when compared with the other methods previously studied for code 

smells detection in performance evaluations using the same datasets. However, the limitation of this 

study is that some of the results obtained with our models (K-NN and MLP) are not very high. So, in 

our future work, we will try to improve the architecture of these models to get better results. In addition, 

we intend to assess the robustness of our method by testing it on various datasets. Furthermore, our 

goal is to enhance the accuracy of models in detecting code smells by incorporating additional ML 

algorithms, such as neural networks and deep learning, and utilizing random under sampling techniques 

for data balancing. 
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