29 research outputs found

    On the relations between Markov chain lumpability and reversibility

    Get PDF
    In the literature, the notions of lumpability and time reversibility for large Markov chains have been widely used to efficiently study the functional and non-functional properties of computer systems. In this paper we explore the relations among different definitions of lumpability (strong, exact and strict) and the notion of time-reversed Markov chain. Specifically, we prove that an exact lumping induces a strong lumping on the reversed Markov chain and a strict lumping holds both for the forward and the reversed processes. Based on these results we introduce the class of λρ-reversible Markov chains which combines the notions of lumping and time reversibility modulo state renaming. We show that the class of autoreversible processes, previously introduced in Marin and Rossi (Proceedings of the IEEE 21st international symposium on modeling, analysis and simulation of computer and telecommunication systems MASCOTS, pp. 151–160, 2013), is strictly contained in the class of λρ-reversible chains

    Reverse Bisimilarity vs. Forward Bisimilarity

    Get PDF
    Reversibility is the capability of a system of undoing its own actions starting from the last performed one, in such a way that a past consistent state is reached. This is not trivial for concurrent systems, as the last performed action may not be uniquely identifiable. There are several approaches to address causality-consistent reversibility, some including a notion of forward-reverse bisimilarity. We introduce a minimal process calculus for reversible systems to investigate compositionality properties and equational characterizations of forward-reverse bisimilarity as well as of its two components, i.e., forward bisimilarity and reverse bisimilarity, so as to highlight their differences. The study is conducted not only in a nondeterministic setting, but also in a stochastic one where time reversibility and lumpability for Markov chains are exploited

    Proportional lumpability and proportional bisimilarity

    Get PDF
    3noIn this paper, we deal with the lumpability approach to cope with the state space explosion problem inherent to the computation of the stationary performance indices of large stochastic models. The lumpability method is based on a state aggregation technique and applies to Markov chains exhibiting some structural regularity. Moreover, it allows one to efficiently compute the exact values of the stationary performance indices when the model is actually lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can be altered by relatively small perturbations of the transition rates in such a way that the new resulting Markov chain is lumpable. In this case, only upper and lower bounds on the performance indices can be derived. Here, we introduce a novel notion of quasi-lumpability, named proportional lumpability, which extends the original definition of lumpability but, differently from the general definition of quasi-lumpability, it allows one to derive exact stationary performance indices for the original process. We then introduce the notion of proportional bisimilarity for the terms of the performance process algebra PEPA. Proportional bisimilarity induces a proportional lumpability on the underlying continuous-time Markov chains. Finally, we prove some compositionality results and show the applicability of our theory through examples.openopenMarin A.; Piazza C.; Rossi S.Marin, A.; Piazza, C.; Rossi, S

    Efficient Computation of Renaming Functions for ρ-reversible Discrete and Continuous Time Markov Chains

    Get PDF
    With the introduction of ρ-reversibility, the basic notion of reversible Markov chain has been relaxed by allowing a wider range of scenarios. Specifically, the reversibility properties are not just sought on the chain itself, but also on all the possible topology-preserving renamings of its state space. Such renamings, called Renaming Functions, exhibit many interesting properties which can be exploited in different contexts. Unfortunately, finding a renaming function for a Markov chain is a very computationally intensive task. Using a naive approach it could require to check for all the possible state space permutations, which is unfeasible for all but the most trivial chains. As a matter of fact, we prove that the corresponding decision problem is polynomially equivalent to Graph Isomorphism. Nevertheless, we introduce an algorithm that, exploiting some necessary conditions for ρ-reversibility, is able to efficiently prune the search space and then verify the remaining renaming candidates. The correctness of the method is theoretically demonstrated and its practical effectiveness is shown over a significant set of discrete and continuous ρ-reversible Markov chains

    Information Landscape and Flux, Mutual Information Rate Decomposition and Entropy Production

    Full text link
    We explore the dynamics of information systems. We show that the driving force for information dynamics is determined by both the information landscape and information flux which determines the equilibrium time reversible and the nonequilibrium time-irreversible behaviours of the system respectively. We further demonstrate that the mutual information rate between the two subsystems can be decomposed into the time-reversible and time-irreversible parts respectively, analogous to the information landscape-flux decomposition for dynamics. Finally, we uncover the intimate relation between the nonequilibrium thermodynamics in terms of the entropy production rates and the time-irreversible part of the mutual information rate. We demonstrate the above features by the dynamics of a bivariate Markov chain.Comment: 16 page

    Fluid aggregations for Markovian process algebra

    Get PDF
    Quantitative analysis by means of discrete-state stochastic processes is hindered by the well-known phenomenon of state-space explosion, whereby the size of the state space may have an exponential growth with the number of objects in the model. When the stochastic process underlies a Markovian process algebra model, this problem may be alleviated by suitable notions of behavioural equivalence that induce lumping at the underlying continuous-time Markov chain, establishing an exact relation between a potentially much smaller aggregated chain and the original one. However, in the modelling of massively distributed computer systems, even aggregated chains may be still too large for efficient numerical analysis. Recently this problem has been addressed by fluid techniques, where the Markov chain is approximated by a system of ordinary differential equations (ODEs) whose size does not depend on the number of the objects in the model. The technique has been primarily applied in the case of massively replicated sequential processes with small local state space sizes. This thesis devises two different approaches that broaden the scope of applicability of efficient fluid approximations. Fluid lumpability applies in the case where objects are composites of simple objects, and aggregates the potentially massive, naively constructed ODE system into one whose size is independent from the number of composites in the model. Similarly to quasi and near lumpability, we introduce approximate fluid lumpability that covers ODE systems which can be aggregated after a small perturbation in the parameters. The technique of spatial aggregation, instead, applies to models whose objects perform a random walk on a two-dimensional lattice. Specifically, it is shown that the underlying ODE system, whose size is proportional to the number of the regions, converges to a system of partial differential equations of constant size as the number of regions goes to infinity. This allows for an efficient analysis of large-scale mobile models in continuous space like ad hoc networks and multi-agent systems

    Applying Reversibility Theory for the Performance Evaluation of Reversible Computations

    Get PDF
    Reversible computations have been widely studied from the functional point of view and energy consumption. In the literature, several authors have proposed various formalisms (mainly based on process algebras) for assessing the correctness or the equivalence among reversible computations. In this paper we propose the adoption of Markovian stochastic models to assess the quantitative properties of reversible computations. Under some conditions, we show that the notion of time-reversibility for Markov chains can be used to efficiently derive some performance measures of reversible computations. The importance of time-reversibly relies on the fact that, in general, the process’s stationary distribution can be derived efficiently by using numerically stable algorithms. This paper reviews the main results about time-reversible Markov processes and discusses how to apply them to tackle the problem of the quantitative evaluation of reversible computationsReversible computations have been widely studied from the functional point of view and energy consumption. In the literature, several authors have proposed various formalisms (mainly based on process algebras) for assessing the correctness or the equivalence among reversible computations. In this paper we propose the adoption of Markovian stochastic models to assess the quantitative properties of reversible computations. Under some conditions, we show that the notion of time-reversibility for Markov chains can be used to efficiently derive some performance measures of reversible computations. The importance of time-reversibly relies on the fact that, in general, the process's stationary distribution can be derived efficiently by using numerically stable algorithms. This paper reviews the main results about time-reversible Markov processes and discusses how to apply them to tackle the problem of the quantitative evaluation of reversible computations

    Quantitative Analysis of Concurrent Reversible Computations

    Get PDF
    Reversible computing is a paradigm of computation that extends the standard forward-only programming to reversible programming, so that programs can be executed both in the standard, forward direction, and backward, going back to past states. In this paper we present novel quantitative stochastic model for concurrent and cooperating computations. More precisely, we introduce the class of ρ-reversible stochastic automata and define a semantics for the synchronization ensuring that this class of models is closed under composition. For this class of automata we give an efficient way of deriving the equilibrium distribution. Moreover, we prove that the equilibrium distribution of the composition of reversible automata can be derived as the product of the equilibrium distributions of each automaton in isolation

    Persistent Stochastic Non-Interference

    Get PDF
    In this paper we present an information flow security property for stochastic, cooperating, processes expressed as terms of the Performance Evaluation Process Algebra (PEPA). We introduce the notion of Persistent Stochastic Non-Interference (PSNI) based on the idea that every state reachable by a process satisfies a basic Stochastic Non-Interference (SNI) property. The structural operational semantics of PEPA allows us to give two characterizations of PSNI: the first involves a single bisimulation-like equivalence check, while the second is formulated in terms of unwinding conditions. The observation equivalence at the base of our definition relies on the notion of lumpability and ensures that, for a secure process P, the steady state probability of observing the system being in a specific state P' is independent from its possible high level interactions.Comment: In Proceedings EXPRESS/SOS 2018, arXiv:1808.0807
    corecore