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Abstract

Quantitative analysis by means of discrete-state stochastic processes is hindered
by the well-known phenomenon of state-space explosion, whereby the size of the
state space may have an exponential growth with the number of objects in the
model. When the stochastic process underlies a Markovian process algebra
model, this problem may be alleviated by suitable notions of behavioural equiv-
alence that induce lumping at the underlying continuous-time Markov chain,
establishing an exact relation between a potentially much smaller aggregated
chain and the original one. However, in the modelling of massively distributed
computer systems, even aggregated chains may be still too large for efficient nu-
merical analysis. Recently this problem has been addressed by fluid techniques,
where the Markov chain is approximated by a system of ordinary differential
equations (ODEs) whose size does not depend on the number of the objects
in the model. The technique has been primarily applied in the case of mas-
sively replicated sequential processes with small local state space sizes. This
thesis devises two different approaches that broaden the scope of applicability
of efficient fluid approximations. Fluid lumpability applies in the case where ob-
jects are composites of simple objects, and aggregates the potentially massive,
naively constructed ODE system into one whose size is independent from the
number of composites in the model. Similarly to quasi and near lumpability,
we introduce approximate fluid lumpability that covers ODE systems which can
be aggregated after a small perturbation in the parameters. The technique of
spatial aggregation, instead, applies to models whose objects perform a random
walk on a two-dimensional lattice. Specifically, it is shown that the underlying
ODE system, whose size is proportional to the number of the regions, converges
to a system of partial differential equations of constant size as the number of
regions goes to infinity. This allows for an efficient analysis of large-scale mobile
models in continuous space like ad hoc networks and multi-agent systems.
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Zusammenfassung

Die auf stochastischen Prozessen mit diskretem Zustandsraum basierende quan-
titative Analyse wird im Allgemeinen durch das Phänomen der Zustandsraum-
explosion erschwert, da die Anzahl der Zustände in der Regel exponentiell
abhängig von der Anzahl der Objekte im Modell ist. Wenn der stochastische
Prozess durch eine Markowsche Prozessalgebra induziert wird und somit eine
Markow-Kette in stetiger Zeit ist, kann dieses Problem mit Hilfe von Äquivalenz-
relationen, welche ein Lumping der Markow-Kette ermöglichen, gemildert wer-
den. Das Lumping erlaubt dabei, die ursprüngliche Markow-Kette mit einer
potentiell deutlich kleineren, aggregierten Markow-Kette exakt in Beziehung zu
bringen. Leider kommt es vor, dass beim Modellieren massiv verteilter Com-
putersysteme selbst aggregierte Markow-Ketten für eine effiziente numerische
Analyse zu groß sind. Dieses Problem wurde kürzlich mit Hilfe von fluiden
Methoden analysiert. Die Idee ist dabei die Markow-Kette durch ein System von
gewöhnlichen Differentialgleichungen (GDL) zu approximieren, dessen Größe
nicht von der Anzahl der Objekte im Modell abhängt. Dies wurde im Fall
der massiven Replikation von Prozessen mit kleinen lokalen Zustandsräumen
erfolgreich getan. Diese Dissertation führt zwei unterschiedliche Methoden ein,
welche den effektiven Anwendungsbereich der fluiden Approximation erweitern.
So kann die fluid lumpability immer dann angewendet werden, wenn Objekte
als Kompositionen einfacher Objekte dargestellt werden können und aggregiert
das potentiell massive GDL System zu einem kleineren GDL System, dessen
Größe unabhängig von der Anzahl der Kompositionen im Modell ist. Ähnlich
zu quasi und near lumpability, betrachten wir die Methode der approximativen
fluid lumpability, mit deren Hilfe GDL Systeme nach einer kleinen Veränderung
der Parameter aggregiert werden können. Dagegen kann die Methode der
räumlichen Aggregation auf Modelle angewendet werden, deren Objekte eine
Irrfahrt auf einem zweidimensionalen Gitter vollführen. Hier zeigen wir, dass
das betreffende GDL System, dessen Größe proportional zur Anzahl der Git-
terpunkte ist, gegen ein System von partiellen Differentialgleichungen von kon-
stanter Größe konvergiert, wenn das Gitter immer feinmaschiger wird. Dies
erlaubt eine effiziente Analyse von umfangreichen mobilen Modellen in einem
Kontinuum, etwa ad-hoc-Netzen und Multiagentensystemen.
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ohne unerlaubte Beihilfe angefertigt worden ist.

Max Tschaikowski
München, den 16. Juni 2014

v



vi



Acknowledgements

First of all, I would like to thank my supervisor Mirco Tribastone for his amazing
support and the opportunity to work with him. It is fair to say that without
his help and advice the present thesis would not have been possible. I also want
to thank Jane Hillston who agreed to be my external examiner, endured my
rather dry mathematical style and provided me with a lot of valuable comments
while being under permanent time pressure as a head of a research group and
the coordinator of the QUANTICOL project. The third person I would like to
thank is Martin Wirsing who gave me the possibility to carry out my research
in a time when Mirco had no research grants. On a personal note, I would like
to thank Mirco and Martin for the probably best time of my life so far: being
paid for doing mainly math in the beautiful city of Munich in an open-minded
environment like Martin’s PST group is simply unbeatable. At this point, also
thanks to the whole PST group for the unforgettable time, in particular for the
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Chapter 1

Introduction

Markov processes have proven useful in the quantitative modelling of systems.
In the case of discrete-state Markov chains, either in (homogeneous) discrete
or in continuous time, the solution for transient and steady-state analysis is
cast into a classical linear algebra problem for which a wide range of efficient
numerical techniques exist [1]. Markov chain models are however intrinsically
based on an interleaving semantics, which causes the infamous problem of state-
space explosion: the state space size may grow exponentially with the number
of elements of the system. A number of approaches to state-space reduction
have been devised, including product-form solutions (e.g., [2]), decompositions
(e.g., [3]), matrix analytics methods (e.g. [4]) and lumping techniques, where
a (hopefully much smaller) chain may be defined which preserves the system’s
original stochastic behaviour, either exactly, as in the case of ordinary and exact
lumpability (e.g., [5]), or in an approximate manner (e.g., near [5] and quasi
lumpability [6]).

In this thesis we are concerned with continuous-time Markov chains (CTMCs)
inferred by Markovian process algebra (e.g., [7, 8, 9]). In this context, lumpabil-
ity has been at the basis of suitable notions of behavioural equivalence between
processes which induce an aggregated Markov chain; in the literature, these re-
lations are known as strong equivalence in PEPA [7, Chap. 8], strong Markovian
bisimilarity in MTIPP [10] and EMPA [11] and strong performance equivalence
in MPA [12]. Although, in general, lumping techniques require the availability
of the full CTMC to be aggregated, exploiting results of congruence of such
relations with respect to parallel composition has allowed for methods that are
able to construct the lumped CTMC on-the-fly, i.e., directly without construct-
ing the original CTMC first [13, 14]. Although these methods may not yield
optimal lumping, they have proven successful in exploiting structural symme-
tries [15, 16]. For instance, distinct states which are syntactically equal up to a
permutation, e.g., P | Q and Q | P , can be lumped into the same macro-state of
the aggregated CTMC. This typically reduces the computational complexity of
the state-space size from exponential to polynomial in the number of sequential
processes. In the case of massively distributed systems, however, a polynomial
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2 CHAPTER 1. INTRODUCTION

growth may still lead to CTMCs which are hard to tackle from a numerical
point of view [17].

To cope with these difficulties, more recent work has been carried out to-
wards equipping stochastic process algebra with fluid semantics. The underly-
ing mathematical object for the analysis is now a system of ordinary differential
equations (ODEs) which gives an approximate time-course evolution of the pop-
ulation of processes exhibiting a particular local state. Especially in the case
of large population processes, this approximation is very accurate but typically
much more compact than the lumped CTMC, as it is independent of the actual
population sizes but is only dependent on the number of local behaviours of
the distinct sequential processes. The relationship between the CTMC and the
fluid semantics has been studied in the context of PEPA [18], an extension called
PEPA + Π, useful for the analysis of biochemical systems [19], Bio-PEPA [20],
Cardelli’s stochastic interacting processes [21], and stochastic Concurrent Con-
straint Programming [22]. In the context of queueing networks, [23, 24] derive
limit solutions for steal and push strategies if the size of the network goes to
infinity, whereas [25] shows an insensitivity result on the fluid level. Another
instance of fluid approximation is [26], where a fluid model of a peer-to-peer
network with many nodes is given. More generally, [27, 28] devise frameworks
for interacting objects and identify conditions under which the underlying pop-
ulation based Markov chains converge to a fluid limit as the number of objects
tends to infinity. Building on fluid semantics, it is possible to express rewards
like energy consumption in terms of ODEs, rather than CTMCs. This allows for
an efficient analysis and is studied in [29, 30]. In [31], instead, fluid semantics
are used to derive the stochastic behaviour of a single object within a population
of similar objects, allowing therefore for stochastic model checking.

Unfortunately, ODE models of realistic complex systems may still be too
large for feasible analysis. During the last forty years this issue was tackled, in
essence, by two different approaches. The first approach tries to approximately
relate the original ODE system to a smaller one. For instance, [32] splits the
original ODE system into a fast and a slow part, while [33, 34] identify parts
of the ODE system which have a negligible impact on the overall trajectory.
The method of proper orthogonal projection [35], instead, bounds the distance
to the solution of an approximating ODE system of smaller size. The second
approach, instead, is similar to the idea of stochastic lumping and tries to exactly
relate the original ODE system to a smaller, aggregated one. To the best of our
knowledge, this idea was first applied in the context of control theory [36] and
adopted afterwards in economics [37], theoretical ecology [38] and biological
chemistry [39]. The more recent work [40] can be seen as an extension of [36].

In this thesis, we study both exact and approximative aggregations in the
context of the stochastic process algebra PEPA, the first process algebra to be
equipped with a fluid semantics [18]. In particular, we consider a fluid frame-
work of PEPA called Fluid Process Algebra (FPA), originating from Grouped
PEPA [17].
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Exact Fluid Lumpability It is well-known [41] that if the CTMC states
within the same element of an exactly lumpable partition are initially equiprob-
able, then they will be equiprobable at all future time points. The analogous
notion of exact fluid lumpability, cf. Chapter 3, is intuitively defined as a par-
tition over the ODEs of a model whereby two ODEs belonging to the same
partition element have indistinguishable solutions if their initial conditions are
the same; an aggregated ODE model may be defined which only considers a rep-
resentative ODE for each partition element. Similarly to stochastic lumpability,
such partitions are called exactly fluid lumpable. Here, we want to stress that
the aggregations induced by exact fluid lumpability can be used to fully recover
the original ODE system. In contrast to this, aggregations stemming from [40]
are usually not reversible, meaning that the original ODE system cannot be
recovered from the aggregated one. Indeed, to the best of our knowledge, only
this thesis and its precursor paper [42] propose such an aggregation.

As discussed above, aggregation may be induced by suitable behavioural
relationships at the process algebra level. In PEPA, this may be accomplished
by means of a strong equivalence relation over the states of a labelled transition
system. The set of equivalence classes produced by such a relation represents
the partition of the underlying lumped CTMC. Similarly, we define a notion
of behavioural equivalence for FPA, called projected label equivalence, which
induces an exactly fluid lumpable partition.

In PEPA, different strong equivalence relations may be merged to obtain
possibly coarser partitions. More formally, the transitive closure of the union of
several strong equivalence relations always induces an ordinarily lumpable par-
tition [7]. An analogous result holds for FPA, where, under certain conditions,
it is shown that the transitive closure of the union of several projected label
equivalences induces an exactly fluid lumpable partition. This is important,
since there exist exactly fluid lumpable partitions for which construction of at
least two different projected equivalences are needed. At last, we show that
the notion of projected label equivalence implies a form of stochastic equiva-
lence, called semi-isomorphism. Informally, two graphs are semi-isomorphic if
a suitable merging of transitions in both makes them isomorphic.

Nested FPA Models In Chapter 4 we introduce the class of nested FPA
models and show how its elements can be aggregated using the notion of exact
fluid lumpability.

A nested model is a model with a syntactic element that describes replicas
of composite processes. To build on intuition, let us consider the sequential
components C, T and U given by

C
def
= (exec, r).Ĉ T

def
= (exec, r).T̂ U

def
= (io, z).Û

Ĉ
def
= (reset , s).C T̂

def
= (io, s′).T Û

def
= (idle, z′).U.

Informally, C models a CPU which performs exec- and reset-actions in successive
order. Similarly, T describes a thread and U a resource. In PEPA, a group of
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NC CPUs which are working independently from each other is expressed by the
compact bracket notation

C[NC ] = C ‖ C ‖ . . . ‖ C︸ ︷︷ ︸
NC times

, (1.1)

where ‖ is an abbreviation of BC
∅

which denotes a CSP-style parallel composi-
tion over an empty action set. Using this notation, a resource which is shared
by a group of D machines C[NC ] BC

{exec}
T [NT ] can be written as(

C[NC ] BC
{exec}

T [NT ]
)
‖
(
C[NC ] BC

{exec}
T [NT ]

)
‖ . . . ‖

(
C[NC ] BC

{exec}
T [NT ]

)︸ ︷︷ ︸
D times

BC
{io}

U [NU ],

(1.2)
where BC

L
models synchronisation. For instance, BC

{exec}
incorporates the con-

tention for the same core by more threads. It can be shown that (1.2) has an
ODE system of size D(2+2)+2. Thanks to the notion of exact fluid lumpability,
however, one can recover its solution by solving an aggregated ODE system of
size 1 · (2 + 2) + 2, making the problem independent of the multiplicity D.

In FPA, a replication of a sequential PEPA processes P [NP ] corresponds to
the fluid atom P and an external population function V that maps sequential
components to non-negative integers. For instance, together with V (C) = NC
and V (Ĉ) = 0, the FPA process C would represent C[NC ] in PEPA. This
approach is similar to the notion of reduced context presented in [43] or to the
species-oriented view of the system in Bio-PEPA [20]. Using this, (1.2) can be
encoded by the FPA processes(

C BC
{exec}

T
)
‖
(
C BC
{exec}

T
)
‖ . . . ‖

(
C BC
{exec}

T
)︸ ︷︷ ︸

D times

BC
{io}

U, (1.3)

and a corresponding population function V .
Nested FPA models introduce the syntactic element JMKDL , which stands for

a cooperation of D replicas of a given nested FPA model M over the actions set
L. For instance, (1.3) is abbreviated to

r
C BC
{exec}

T
zD

∅
BC
{io}

U,

because the machines are modelled as being working independently from each
other. Note that this generalises the notation given in (1.1) which applies only
to sequential processes. The level of nesting can be arbitrary. Let us consider

sr
C BC
{exec}

T
zD

∅
BC
{io}

U

{D′

∅
BC
{exec}

E, (1.4)

where E
def
= (exec, x).Ê and Ê

def
= (think , x′).E. Intuitively, the above model

considers a situation where D′ applications, each made of D machines sharing a
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common resource U , serve a group of users which are given by E. For instance,
in the case of D′ = 2 and D = 2, (1.4) abbreviates the FPA model((

(C BC
{exec}

T ) ‖ (C BC
{exec}

T ) BC
{io}

U
)
‖
(
(C BC

{exec}
T ) ‖ (C BC

{exec}
T ) BC

{io}
U
))

BC
{exec}

E,

which induces in turn (with a suitable population function) the PEPA model((
(C[NC ] BC

{exec}
T [NT ]) ‖ (C[NC ] BC

{exec}
T [NT ]) BC

{io}
U [NU ]

)
‖(

(C[NC ] BC
{exec}

T [NT ]) ‖ (C[NC ] BC
{exec}

T [NT ]) BC
{io}

U [NU ]
))

BC
{exec}

E[NE ].

In general, the ODE system size of a nested FPA model will grow polynomially
with the number of levels of nesting; in this example, the number of ODEs is
D′(D(2 + 2) + 2) + 2, where the factors 2 + 2 and 2 are due to the local state
space sizes of the term’s sequential components, i.e. C, T , U and E. Similarly
to before, the notion of exact fluid lumpability allows us to solve the original
ODE system by solving a system of size 1 · (1 · (2 + 2) + 2) + 2. That is, the
size of the aggregated ODE system is independent of the multiplicities D′ and
D. Indeed, it turns out that this applies for any nested FPA model.

Ordinary Fluid Lumpability In contrast to exact lumpability, if a partition
is ordinary lumpable, it holds that the probabilities of the CTMC states in the
same partition element sum up to the probability of the underlying macro state
in the lumped CTMC [5]. For the analogous notion of ordinary fluid lumpability
introduced in [44] and discussed in Chapter 5 of the present thesis, the sum of
the ODE solutions belonging to the same partition element are fully recovered
from the solution of a (smaller) ODE system consisting of one single ODE for
each partition element. That is, ordinary fluid lumpability can be seen as an
analogy of ordinary stochastic lumpability in the domain of ODE systems. For
instance, the ODE system belonging to the PEPA model(

T [N1] ‖ . . . ‖ T [ND]
)
BC
{exec}

U [NU ], (1.5)

is of size D · 2 + 2 and can be related, thanks to the notion of ordinary fluid
lumpability, to an aggregated ODE system of size 1 · 2 + 2. In contrast to the
notion of exact fluid lumpability, the aggregated ODE system keeps track of
the total number of threads in the system. That is, while it is possible to have
different initial populations N1, . . . ND, the ODEs of each single thread group
cannot be recovered from the aggregated ODE system. Here, we want to point
out that ODE aggregation induced by the notion of ordinary fluid lumpability
may be seen as a special case of the aggregation technique [40]. However, since
ordinary fluid lumpability is developed in the context of FPA, it is possible
to show that it is a congruence with respect to parallel composition of FPA
and implies, under certain assumptions, that the aggregated processes are semi-
isomorphic.



6 CHAPTER 1. INTRODUCTION

Fluid ε-Lumpability In Chapter 6 we study approximate versions of ordi-
nary and exact fluid lumpability, as a means to relaxing symmetry in the ODE
systems. In essence, a partition is ordinary fluid ε-lumpable, if a small pertur-
bation ε in the parameters of the ODE system makes the partition ordinary
fluid lumpable. For instance, let us consider the variation(

T1[N1] ‖ . . . ‖ TD[ND]
)
BC
{exec}

U [NU ]

of (1.5) where Td
def
= (exec, rd).T̂d, T̂d

def
= (io, s′).Td and rd = r + εd for all

1 ≤ d ≤ D. It can be shown that the underlying ODE system applies for
ordinary fluid lumpability only if r1 = . . . = rD. However, since the ODE
system is, intuitively, almost fluid lumpable if ε = ‖(ε1, . . . , εD)‖ ≈ 0, it is
reasonable to ask how close the solution of the perturbed ODE system will be
to the original one. By exploiting the fluid semantics of FPA, we derive in the
case of ordinary fluid ε-lumpability a bound for the distance which is linear in
ε. In the case of exact fluid lumpability, instead, it is not sufficient to consider
only perturbations in the ODE parameters, because assumptions are also made
on the initial conditions. Therefore, its approximate counterpart considers a
perturbation ε in ODE parameters and a perturbation δ in initial conditions.
Similarly to ordinary fluid ε-lumpability, we derive a bound which is linear in
both ε and δ. Moreover, it is shown that exact and ordinary fluid ε-lumpability
imply, under certain assumptions, the notion of ε-semi-isomorphism, a natural
extension of semi-isomorphism which coincides with the latter when ε = 0.

Spatial Aggregation All the previous approaches consider aggregations of
ODE systems that are themselves ODEs. Instead, in Chapter 7 we consider
aggregations that lead to systems of partial differential equations (PDEs). This
technique is motivated by FPA models that exhibit an explicit notion of space
and mobility. Specifically, we study the case where the sequential processes of
an FPA model perform a random walk on a two-dimensional lattice in the unit
square. Typical situations of practical interest to which this would apply are,
for instance, personal communication services [45]: there are many base stations
(e.g., in a wide-area cellular network) and each base station can be modelled as
a region, which can contain potentially many mobile nodes that may migrate
across the lattice. Another interesting application would be the modelling of
spread patterns of smartphone viruses [46].

In order to allow users from (1.4) to perform a random walk on a lattice,

we define sequential components E(x,y) and Ê(x,y) for each region (x, y) on the
lattice. This is done by lifting the definition of a “stationary” component to
space by labelling it with the location where it is, and by adding the possibility
of moving across locations. For example, since the stationary component E is

given by E
def
= (exec, x).Ê and Ê

def
= (think , x′).E, we define

E(x,y) def
= (exec(x,y), x).Ê(x,y) + (δ, µ).E(x−∆s,y)+

+ (δ, µ).E(x+∆s,y) + (δ, µ).E(x,y−∆s) + (δ, µ).E(x,y+∆s),
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where ∆s and δ denote the spatial step size and the diffusion action, respec-
tively. Consequently, if ∆s = 1/K for some fixed lattice granularity K ≥ 1, the
number of sequential components needed will be of order O(K2). Since this re-
mains valid for an arbitrary FPA model whose sequential components are lifted
to the spatial domain and each sequential component induces one ODE, even
fluid approximation is numerically tedious in the case of a fine grained lattices.
However, under the assumption that the migration speed across the lattice is
invariant under K, it can be shown that the ODE systems converge, as K →∞,
to a PDE system independent from the lattice granularity and only dependent
on the number of local states of the original stationary sequential processes.
This allows for an efficient analysis of large-scale mobile systems in, intuitively,
continuous space.

After giving some underlying background work, the following chapters discuss
the aforementioned results in detail.
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Chapter 2

Preliminaries

After giving a brief overview of stochastic lumping, this chapter presents the
background material on PEPA, its behavioural equivalences and fluid interpre-
tation. Specifically, Section 2.1 discusses the notions of ordinary and exact
(stochastic) lumpability, whereas Section 2.2 and Section 2.3 overview syntax
and semantics of PEPA and its behavioural equivalences. Afterwards, the fluid
semantics of PEPA are rigourously formulated in terms of a Fluid Process Alge-
bra (FPA), cf. Section 2.4. The chapter is concluded by Section 2.5 where the
new notion of well-posedness is introduced. This will prove to be useful in Chap-
ter 3 and 5, where it will be shown that well-posedness implies a behavioural
equivalence relation called semi-isomorphism.

2.1 Stochastic Lumpability

This exposition of lumpability is based on the results of [5, 41, 47, 48]. Using
standard notation we will hereby denote the state space of the original CTMC
by {1, . . . , n}, the probability of being in state i at time t by πt(i), the steady
state probability of state i by π(i), and the transition rate from i to j by q(i, j).
Moreover we define

q(X, j) :=
∑
i∈X

q(i, j) and q(i,X) :=
∑
j∈X

q(i, j)

for a set X ⊆ {1, . . . , n}.
Definition 1 (Ordinary and Exact Lumpability). Let a partition of the state
space of the original CTMC be denoted by χ = {X1, . . . , XN}.

• χ is called ordinarily lumpable if

∀XI , XJ ∈ χ. ∀xi, x′i ∈ XI .
(
q(xi, XJ) = q(x′i, XJ)

)
.

• χ is called exactly lumpable if

∀XI , XJ ∈ χ. ∀xj , x′j ∈ XJ .
(
q(XI , xj) = q(XI , x

′
j)
)
.

9



10 CHAPTER 2. PRELIMINARIES

Ordinarily and exactly lumpable partitions can be used to transform the
original CTMC into a smaller (lumped) CTMC.

Theorem 1 (Ordinarily and Exactly Lumped CTMCs). It holds that:

• An ordinarily lumpable partitionχ of the state space of the original CTMC
{1, . . . , n} induces an ordinarily lumped CTMC with state space χ, initial
distribution π0(XI) :=

∑
xi∈XI π0(xi) and transition rates

q(XI , XJ) := q(xi, XJ),

where xi ∈ XI can be chosen arbitrarily.

• An exactly lumpable partition χ of the state space of the original CTMC
{1, . . . , n} induces an exactly lumped CTMC with state space χ, initial
distribution π0(XI) :=

∑
xi∈XI π0(xi) and transition rates

q(XI , XJ) :=
|XJ |
|XI |

q(XI , xj),

where xj ∈ XJ can be chosen arbitrarily.

The next two theorems relate the stochastic behaviour of the original CTMC
to ordinarily, respectively exactly, lumped CTMCs.

Theorem 2. The ordinarily lumped CTMC which arises from the original
CTMC and an ordinarily lumpable partition χ on {1, . . . , n}, satisfy for all
initial distributions π0 and XI ∈ χ,

• π(XI) =
∑
xi∈XI π(xi) if the original CTMC is irreducible.

• πt(XI) =
∑
xi∈XI πt(xi).

In contrast to an ordinarily lumped CTMC, an exactly lumped CTMC com-
pletely determines the stochastic behaviour of the original CTMC, as stated in
the following theorem.

Theorem 3. The exactly lumped CTMC which arises from the original CTMC
and an exactly lumpable partition χ on {1, . . . , n} satisfies

• π(xi) =
1

|XI |
π(XI) for all initial distributions π0, XI ∈ χ and xi ∈ XI if

the original CTMC is irreducible.

• πt(xi) =
1

|XI |
πt(XI) for all XI ∈ χ, xi ∈ XI and t ≥ 0, if π0 is equidis-

tributed on χ, i.e., π0(xi) = π0(x′i) for all XI ∈ χ and xi, x
′
i ∈ XI .



2.2. SYNTAX AND SEMANTICS OF PEPA 11

2.2 Syntax and Semantics of PEPA

In this section we introduce PEPA [7]. Although the original PEPA incorporates
hiding, we drop it for the sake of consistency with [42, 49]. Also, we drop the
concept of passive rates, because it may lead to ODE systems with discontinuous
right-hand sides [50]. Finally, since it is more convenient in fluid analysis to
identify populations by constants rather than arbitrary process terms, and each
PEPA process in its original formulation can be rewritten in such a way [13],
the following non-standard definition of PEPA will be used.

Definition 2 (PEPA). Let A denote the set of all action types and Act :=
A × R>0 be the set of all activities. The syntax of a PEPA model is given by
the grammar

S ::= P |
∑
i∈I

(αi, ri).Pi, G ::= S | GBC
L
G,

where (α, r) ∈ Act, L ⊆ A and P
def
= S denotes a constant.

The terms S introduce sequential components, with
∑
i∈I(αi, ri).Pi a choice

between activities. The value ri in activity (αi, ri) denotes a coefficient that
contributes to determine the rate of the exponential distribution at which the
activity is defined to occur. The terms G define model components and allow for
synchronisation via shared action types in the set L. We use G ‖ G whenever
L = ∅. Also, for any N ≥ 1, we let P [N ] abbreviate (P ‖ . . . ‖ P ), where the
constant P is present N times.

The notion of apparent rate is formally introduced in the following as a
function which associates a nonnegative real number with a process term. In-
formally, it can be interpreted as the maximum rate at which a process can
perform an action [51].

Definition 3 (Apparent Rate). The apparent rate of action α in a PEPA com-
ponent P , denoted by rα(P ), is defined as follows:

rα(P ) = rα(S) if P
def
= S

rα

(∑
i∈I

(αi, ri).Pi

)
=

∑
i∈I:αi=α

ri

rα(G0 BC
L
G1) =

{
rα(G0) + rα(G1) , α 6∈ L
min(rα(G0), rα(G1)) , α ∈ L

Using the structured operational semantics of PEPA given in Figure 2.1, we

write G
(α,r)−−−→ G′ whenever there is an α-transition with rate r from process G

to process G′. We say that G′ is a derivative of G. The set of all derivatives
reachable from a process term is defined as follows.

Definition 4 (Derivative Set). The derivative set of a PEPA component G,
denoted by ds(G), is defined as the smallest set such that:
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∑
i∈I(αi, ri).Pi

(αj ,rj)−−−−−→ Pj

where j ∈ I S
(α,r)−−−→ S′

P
(α,r)−−−→ S′

P
def
= S

G0
(α,r1)−−−−→ G′0

G0 BC
L
G1

(α,r1)−−−−→ G′0 BCL G1

α /∈ L G1
(α,r2)−−−−→ G′1

G0 BC
L
G1

(α,r2)−−−−→ G0 BC
L
G′1

α /∈ L

G0
(α,r1)−−−−→ G′0 G1

(α,r2)−−−−→ G′1

G0 BC
L
G1

(α,R)−−−−→ G′0 BCL G′1

α ∈ L, R =
r1

rα(G0)

r2

rα(G1)
rα(G0 BC

L
G1)

Figure 2.1: Structured operational semantics of PEPA.

• G ∈ ds(G);

• if G′ ∈ ds(G) and G′
(α,r)−−−→ G′′ then G′′ ∈ ds(G).

The derivative set forms the nodes of the derivation graph, which gives the
overall behaviour of the process in terms of a transition system labelled with
activities, formally defined as follows.

Definition 5 (Derivation Graph). The derivation graph dg(G) of a PEPA
component G has ds(G) as the set of nodes. The multiset of transitions T ⊆
ds(G)×Act× ds(G) is such that

G0
(α,r)−−−→ G1 ⇔ (G0, (α, r), G1) ∈ T ,

with multiplicity equal to the number of distinct derivations of G0
(α,r)−−−→ G1.

Let us demonstrate the above notions on an example. For instance, a CPU
core and a thread could be modelled by means of the following two-state se-
quential components.

C
def
= (exec, r).Ĉ Ĉ

def
= (reset , s).C

T
def
= (exec, r).T̂ T̂

def
= (io, s′).T (2.1)

The CPU core cycles through the states C, where it is executable (as indicated

by the action type exec) with rate r, and Ĉ, where it does a reset action which
makes it available for a further execution. Thus, the derivative set of C is
ds(C) = {C, Ĉ}. Similarly, a thread evolves through states T , where it wishes

to execute on a CPU, and T̂ , where it performs input/output bound operations
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Ĉ BC
L

(T ‖ T )

C BC
L

(T ‖ T )

C BC
L

(T̂ ‖ T̂ )

C BC
L

(T̂ ‖ T ) Ĉ BC
L

(T̂ ‖ T̂ ) C BC
L

(T ‖ T̂ )

Ĉ BC
L

(T̂ ‖ T ) Ĉ BC
L

(T ‖ T̂ )

(re, s)

(ex , r/2) (ex , r/2)

(io, s′) (io, s′)

(re, s)

(io, s′)

(ex , r)

(io, s′)

(io, s′) (io, s′)

(ex , r)

(io, s′)

(re, s)

(io, s′)

Figure 2.2: Derivation graph of (2.2) in the case of NC = 1 and NT = 2.
L := {exec}; transition labels: ex stands for exec and re stands for reset .

(i.e., ds(T ) = {T, T̂}). Building on that, one could model a machine with NC
cores and NT threads using the process

Sys := C[NC ] BC
{exec}

T [NT ]. (2.2)

Thus, in the situation where NC = 1, NT = 2 the system consists of one CPU
and two threads. The derivation graph for such a case is shown in Figure 2.2.

A derivation graph is interpreted as a CTMC in a straightforward way, by
ignoring self-loops and associating vertices with states and transitions with arcs;
two distinct transitions between the same two states are merged into the same
CTMC transition with a total rate equal to the sum of the two.

2.3 Behavioural Equivalences of PEPA

Before we turn to the fluid semantics, we discuss several notions of behavioural
equivalence which will be used in the remainder of the thesis. The first is
isomorphism and is given by a map between the derivative sets of two processes
which induces a one-to-one correspondence, i.e. a graph isomorphism, between
their derivation graphs.

Definition 6 (Isomorphism, cf. Definition 6.2.1 in [7]). Two PEPA processes G
and G̃ are isomorphic if there is a bijection σ : ds(G)→ ds(G̃) which satisfies,
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for all Gi, Gj ∈ ds(G) and (α, r) ∈ Act

{|(α, r) | (Gi, (α, r), Gj) ∈ TG|} = {|(α, r) |
(
σ(Gi), (α, r), σ(Gj)

)
∈ TG̃|},

where TG and TG̃ denotes the multiset of transitions in dg(G) and dg(G̃), re-
spectively.

For instance, in the case of

B
def
= (exec, r).B̂ B′

def
= (exec, r).B̂′

B̂
def
= (reset , s).B B̂′

def
= (reset , s).B′,

the processes B and B′ are isomorphic.
We introduce next a slightly weaker notion, called semi-isomorphism, which

relates two processes with respect to their merged derivation graphs (cf. Defi-
nition 8), defined as the graphs obtained by replacing multiple equally-labelled
transitions between two states with a single transition with the same action type
and a rate which is the sum across all such transition rates.

Definition 7 (Semi-Isomorphism). Two PEPA processes G and G̃ are semi-
isomorphic if there is a bijection σ : ds(G)→ ds(G̃) which satisfies

∑
Gi

(α,r)−−−→Gj
r

=
∑
σ(Gi)

(α,r)−−−→σ(Gj)
r for all Gi, Gj ∈ ds(G) and α ∈ A. We shall call such a

σ a semi-isomorphism.

As an example, let us consider the processes

C
def
= (exec, r).Ĉ C ′

def
= (exec, r/2).Ĉ ′ + (exec, r/2).Ĉ ′

Ĉ
def
= (reset , s).C Ĉ ′

def
= (reset , s).C ′. (2.3)

Then, it can be shown that C is semi-isomorphic to C ′. However, C and C ′ are
not isomorphic because the number of transitions in their derivation graphs is
different.

The notion of merged derivation graph given below relates isomorphism to
semi-isomorphism.

Definition 8 (Merged Derivation Graph). The merged derivation graph dgm(G)
of G arises from dg(G), if, for all α ∈ A, all α-transitions between any two
states whose rate-sum across all transitions is equal to q are replaced by a single
transition (α, q).

Though easy to prove, due to its importance the following is stated as a
theorem.

Theorem 4. Let σ : ds(G)→ ds(G̃) be a semi-isomorphism between the PEPA
processes G and G̃. Then it holds that dgm(G) and dgm(G̃) stand in a one-to-
one correspondence.
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Proof. We fix the unique G′ ∈ ds(G) which satisfies σ(G′) = G̃. Since G′ is
in dg(G), G′ is also in dgm(G). Hence, σ(G′) is in dgm(σ(G)) which implies,
in turn, that σ(G′) is in dg(σ(G)). Since σ(G) is obviously in dg(σ(G′)), we
infer dg(σ(G)) = dg(σ(G′)). As this implies dgm(σ(G)) = dgm(G̃) and dgm(G)
stands in an one-to-one correspondence to dgm(σ(G)), this shows the claim.

In general, it is easy to see that PEPA isomorphism induces semi-isomorphism
and that the CTMCs of semi-isomorphic PEPA processes stand in a one-to-one
correspondence. Next comes PEPA’s version of bisimulation.

Definition 9 (Strong Bisimulation, cf. Definition 7.2.1 in [7]). Let G denote
the set of all PEPA components. Then

• R ⊆ G×G is a strong bisimulation if (G0, G1) ∈ R implies

– ∀α ∈ A
[
rα(G0) = rα(G1)

]
– ∀a ∈ Act

[
G0

a−−→ G′0 ⇒ ∃G′1 ∈ G
(
G1

a−−→ G′1 ∧ (G′0, G
′
1) ∈ R

)]
– ∀a ∈ Act

[
G1

a−−→ G′1 ⇒ ∃G′0 ∈ G
(
G0

a−−→ G′0 ∧ (G′0, G
′
1) ∈ R

)]
• G0, G1 ∈ G are strongly bisimilar, if there exists a strong bisimulation
R ⊆ G×G such that (G0, G1) ∈ R.

Like strong bisimulation in CCS, cf. Chapter 4 in [52], strong bisimulation in
PEPA relates processes whose behaviour cannot be distinguished by an external
observer. We end the section with the notion of strong equivalence.

Definition 10 (Strong Equivalence, cf. Definition 8.2.1 in [7]). Let G denote
the set of all PEPA components. Then

• An equivalence relation R ⊆ G0 ×G0, where G0 ⊆ G, is a strong equiva-
lence on G0 if (G0, G1) ∈ R implies

∀α ∈ A. ∀S ∈ G0/R.
(
qα(G0, S) = qα(G1, S)

)
,

where qα(G′, S′) :=
∑
Ĝ′∈S′

∑
G′

(α,r)−−−→Ĝ′

r.

• Two PEPA components G0, G1 ∈ G are strongly equivalent, if there is a
strong equivalence R on G such that (G0, G1) ∈ R.

It can be shown that for any two strongly equivalent PEPA processes G1

and G2 there exist strong equivalences R1 and R2 on ds(G1) and ds(G2), re-
spectively, such that ds(Gi)/Ri is ordinarily lumpable, with i = 1, 2, and the
corresponding lumped CTMCs are isomorphic, cf. Section 8.5 in [7].



16 CHAPTER 2. PRELIMINARIES

(VC + 1,VĈ − 1,VT ,VT̂ )

(VC ,VĈ ,VT ,VT̂ ) (VC − 1,VĈ + 1,VT − 1,VT̂ + 1)

(VC ,VĈ ,VT + 1,VT̂ − 1)

sVĈ

rmin(VC ,VT )

s′VT̂

Figure 2.3: Generic state of the lumped CTMC defined in (2.4).

2.4 Fluid Process Algebra

In this section, we study the fluid semantics of PEPA. Let us start by recalling
that the model Sys from (2.2) has |ds(Sys)| = 2NC+NT states. As a first step
toward fluid analysis, we now consider a smaller CTMC which can be exactly
related to the original one in the sense of ordinary lumpability, cf. Theorem 2.
This lumped CTMC is a population process, i.e. it keeps track of the number
of copies of each sequential component in the model. We will make use of the
following preliminaries.

Definition 11. Fix a PEPA model G.
i) The set of sequential components of G, denoted by B(G), is defined as

B(S) := ds(S), B(G0 BC
L
G1) := B(G0) ∪ B(G1).

ii) For any P ∈ B(G), the number of occurrences of P in a PEPA process
G′ ∈ ds(G) is denoted by C(G′, P ).

Note that B(G) is not a multiset. Rather, any sequential component which
is a subprocess of some G′ ∈ ds(G), must be an element of B(G).

Let Sys(t) denote the CTMC induced by Sys. Then, the stochastic process

V(t) = (VC(t),VĈ(t),VT (t),VT̂ (t)), with VP (t) := C(Sys(t), P ), (2.4)

where P ∈ B(Sys) = {C, Ĉ, T, T̂} and t ≥ 0, can be shown to be the lumped
CTMC of Sys(t). (A proof is given in Appendix A.1.) The lumped CTMC has
(NC+1)(NT +1) states and is fully characterised by its generic state in Fig. 2.3.
By assuming that the initial populations scale with N , i.e. NC = vc(0)N and
NT = vT (0)N for some vT (0), vC(0) > 0, we can consider the scaled version of
the lumped CTMC 1

NV(t). Note that the rates in Figure 2.3 can be expressed in

terms of concentrations, e.g. 1
N (rmin(VC ,VT )) = rmin(VC

N , VTN ), 1
N

(
sVĈ

)
=

s
VĈ
N and 1

N

(
s′VT̂

)
= s′

VT̂
N . Since the generic state ( 1

NVC , 1
NVĈ ,

1
NVT , 1

NVT̂ )
makes jumps of order 1/N , e.g. the synchronisation leads to a change in the
state with a vector (− 1

N ,+
1
N ,−

1
N ,+

1
N ), this motivates to approximate the

scaled CTMC in the case of large N by the ODE system

v̇C = −rmin(vC , vT ) + svĈ v̇Ĉ = +rmin(vC , vT )− svĈ
v̇T = −rmin(vC , vT ) + s′vT̂ v̇T̂ = +rmin(vC , vT )− s′vT̂ (2.5)
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subjected to the initial condition for the concentrations

vC(0) = (1/N)NC vĈ(0) = (1/N)NĈ
vT (0) = (1/N)NT vT̂ (0) = (1/N)NT̂

The above discussion suggests that fluid approximation is the limit of a
sequence of CTMCs indexed by N .

Instead of working with PEPA, we find it more convenient to introduce a
new process algebra called Fluid Process Algebra (FPA). Each FPA process is
a generator of a sequence of PEPA models, indexed by the parameter N , such
that larger N lead to larger initial populations of sequential processes. This
allows us to state the convergence to a system of ODEs as N →∞.

Definition 12 (FPA Model). An FPA model M is given by the grammar

M ::= M BC
L
M | P,

where L ⊆ A and P is a PEPA constant. Without loss of generality, for any
distinct constants in M , P and P ′, we require that ds(P ) ∩ ds(P ′) = ∅, where
equality between processes is intended to be syntactical equality.

The following is needed to define the sequence of generated PEPA models.

Definition 13. Let M be an FPA model. Then:

1. The set of labels or fluid atoms of M , denoted by G(M), is given by

G(P ) := {P}, G(M0 BC
L
M1) := G(M0) ∪ G(M1).

2. The set of sequential components of M , B(M), is given by

B(P ) := ds(P ), B(M0 BC
L
M1) := B(M0) ∪ B(M1).

3. A function v : X → R≥0 with B(M) ⊆ X is a concentration function of
M .

4. A function V : X → N0 with B(M) ⊆ X is a population function of M .

5. For a population function V of M , the underlying PEPA model MV is
inductively given as follows.

• If M = P : Using VP := V (P ) for all P ∈ domain(V ), we define

PV := P1[VP1 ] ‖ P2[VP2 ] ‖ . . . ‖ Pn[VPn ], for ds(P ) = {P1, . . . , Pn}.

• If M = M0 BC
L
M1: We define then MV := M0

V
BC
L
M1
V .
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For instance, let us fix the FPA model

M := C BC
{exec}

T, (2.6)

where C and T are as in (2.1), and the population function V (0) of M such
that

V (0)C = NC , V (0)Ĉ = 0, V (0)T = NT , V (0)T̂ = 0.

Then, the lumped CTMC of MV (0) corresponds to the lumped CTMC of Sys.
We now turn to the general case, starting with the definition of the lumped

CTMC V(t). For an arbitrary FPA model M and a population function V (0) of
M , let G(t) denote the CTMC induced by MV (0). Then, the population process

V(t) = (V(t)P )P∈B(M), with V(t)P = C(G(t), P ),

is a CTMC which is related in the sense of ordinary lumpability to G(t), cf.
Appendix A.1. The next definitions are needed to define the underlying ODE
system of an FPA model M and are similar to those in [17, 42].

Definition 14 (Fluid Apparent Rate). For an FPA model M , α ∈ A and a
concentration function v, the fluid apparent rate is given as follows.

rα(M0 BC
L
M1, v) :=

{
rα(M0, v) + rα(M1, v) , α /∈ L
min(rα(M0, v), rα(M1, v)) , α ∈ L

rα(P, v) :=
∑

P ′∈ds(P )

vP ′rα(P ′),

where rα(P ′) denotes the apparent rate according to Definition 3.

Definition 15 (Fluid Component Rate). Let M be an FPA model, α ∈ A and
v be a concentration function. The fluid component rate of P ′ ∈ B(M) is given
by

• Synchronised cooperation: if P ′ ∈ G(Mi), i = 0, 1, and α ∈ L then

Rα(M0 BC
L
M1, v, P

′) :=
Rα(Mi, v, P

′)

rα(Mi, v)
rα(M0 BC

L
M1, v).

• Unsynchronised cooperation: if P ′ ∈ G(Mi), i = 0, 1, and α /∈ L then

Rα(M0 BC
L
M1, v, P

′) := Rα(Mi, v, P
′).

• Fluid atom: then it holds that M = P and

Rα(P, v, P ′) := vP ′rα(P ′).
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Before defining the underlying ODE system of an FPA model M using the
notion of fluid component rate, we connect the latter to the CTMC G(t) using
Theorem 2.15 from [17]. For this, let us first introduce the derivative weighting
function

pα(P, P ′) :=
1

rα(P )

∑
P

(α,r)−−−→P ′

r.

Informally, pα(P, P ′) refers to the probability that P becomes P ′ after perform-
ing an α action. Then, according to the aforementioned theorem, it holds that
the sum of the α-transitions rates of G(t) which increase the number of P ’s in
the model is ∑

P ′∈B(M)\{P}

pα(P ′, P )Rα(M,V(t), P ′),

while the sum of the α-transitions rates of G(t) which decrease the number of
P ’s is ∑

P ′∈B(M)\{P}

pα(P, P ′)Rα(M,V(t), P ),

where α ∈ A and P ∈ B(M). Intuitively, this allows us to calculate the net
change of VP (t) due to all α-transitions as the difference∑
P ′∈B(M)\{P}

pα(P ′, P )Rα(M,V(t), P ′)−
∑

P ′∈B(M)\{P}

pα(P, P ′)Rα(M,V(t), P )

=
∑

P ′∈B(M)

pα(P ′, P )Rα(M,V(t), P ′)−
∑

P ′∈B(M)

pα(P, P ′)Rα(M,V(t), P )

=
∑

P ′∈B(M)

pα(P ′, P )Rα(M,V(t), P ′)−Rα(M,V(t), P ),

where the last equation follows by
∑
P ′∈B(M) pα(P, P ′) = 1. This motivates the

following definition.

Definition 16. Throughout the thesis, we adopt Newton’s dot notation for
derivatives with respect to time, i.e. ẋ refers to d

dtx. The ODE system of
an FPA model M , v̇ = F (M, v), is defined, in components, by

v̇P =
∑
α∈A

(( ∑
P ′∈B(M)

pα(P ′, P )Rα(M,v, P ′)
)
−Rα(M, v, P )

)
, with P ∈ B(M).

We are now in a position to formally state the convergence result of the fluid
approximation.

Theorem 5. Let us fix an FPA model M and an initial concentration function
v(0) : B(M) → R≥0. Then, v̇ = F (M, v) subject to v(0) has a unique solution
v in R|B(M)| whose time domain contains [0;∞). Moreover, define V N (0) to be
the population function(

V N (0)
)
P

= bNv(0)P c, with P ∈ B(M),
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and let VN (t) denote the lumped CTMC induced by MV N (0). Then, for all
T > 0,

lim
N→∞

P
{

sup
0≤t≤T

∥∥∥∥ 1

N
VN (t)− v(t)

∥∥∥∥ > ε

}
= 0, ∀ε > 0.

Proof. The proof is routine, by modern standards, and is a combination of
Theorem 2.11 from [53], Theorem 2.15 from [17] and Lemma B.1 from [54]. It
can be found in Appendix A.1.

For instance, the above theorem ensures that ( 1
NVN (t))t≥0 from (2.4) con-

verges in probability to the solution of the ODE (2.5) as N → ∞, provided
that

VN (0) = (VNC (0),VN
Ĉ

(0),VNT (0),VN
T̂

(0)) = (bNvC(0)c, 0, bNvT (0)c, 0).

2.5 Well-Posedness

This section introduces the notion of well-posedness, which will be shown later
to be a necessary condition to imply semi-isomorphism in the context of fluid
lumpability. Moreover, it is shown that for any FPA modelM there exists a well-
posed model Θ(M) with an ODE system which is, after a renaming of variables,
equal to the one induced by M . We start with the definition of well-posedness.

Definition 17 (Well-Posedness). An FPA model M is well-posed if for all
occurrences M1 BC

L
M2 in M it holds ∃v1.

(
rα(M1, v1) > 0

)
∧ ∃v2.

(
rα(M2, v2) >

0
)

for all α ∈ L.

In essence, a model is well-posed whenever any synchronised action may be
performed by both operands, for some concentration function. In order to build
intuition on such a restriction, it is useful to consider a sample model which is
not well-posed, that is, ill-posed. The model is defined as

IP := P1 BC
{α,δ1,δ2}

Q1, (2.7)

with

P1
def
= (α, r).P2 + (δ3, u).P2 Q1

def
= (δ1, u).Q2

P2
def
= (δ2, u).P1 Q2

def
= (α, r).Q1 + (δ3, u).Q1 (2.8)

The model is ill-posed with respect to action types δ1 and δ2. For δ1, it is clear
that there exists no concentration function v such that rδ1(P1, v) 6= 0, whereas
rδ1(Q1, v) = uvQ1 ; a similar observation holds for δ2. Clearly, the presence of
ill-posedness may be a symptom of potential problems in the model description,
since synchronising a process which can perform a certain action α with another
model which cannot is not meaningful.

Since well-posedness is only concerned with action types belonging to coop-
eration sets, IP could be transformed into a well-posed model by removing δ1



2.5. WELL-POSEDNESS 21

and δ2 from its only cooperation set and considering only BC
{α}

. However, just

this change would give rise to a completely different behaviour, because now δ1-
and δ2-activities may be observed. Let us now stop the occurrence of such action
by replacing the strictly positive rate u with 0. Formally, we are considering an
extension of PEPA/FPA. However, this is harmless because all the definitions,
statements and proofs defined herein carry over straightforwardly. Intuitively,
this is because zero-transitions disappear in the underlying mathematical object
for the analysis: in the case of a CTMC, such transitions would correspond to
zero-entries in the generator matrix, whereas in the fluid semantics zero-rates for
unsynchronised actions provide symbolic component rates and apparent rates
that always evaluate to zero. Thus, let us consider the as-transformed well-posed
model

ˆIP := P̂1 BC{α} Q̂1

with

P̂1
def
= (α, r).P̂2 + (δ3, u).P̂2 P̂2

def
= (δ2, 0).P̂1

Q̂1
def
= (δ1, 0).Q̂2 Q̂2

def
= (α, r).Q̂1 + (δ3, u).Q̂1

and denote the fluid approximation of IP and ˆIP by v and v, respectively. It is
easy to see that IP and ˆIP yield, after a renaming of variables, the same ODE
systems. Indeed, it holds that vT (t) = vT̂ (t) for all T ∈ B(IP) and t > 0, if the
same holds at t = 0.

To sum up, by removing blocked actions from cooperation sets and stopping
them in the sequential components, we transformed an ill-posed model into a
well-posed model in such a way that the underlying ODE systems are equal up
to a renaming of variables. In particular, the transformation of M into Θ(M)
happens by modifying only the sequential components and cooperation sets of
the former, meaning that the global structure of M is not affected. Thus, we
may study the well-posed model ˆIP , instead of the ill-posed one IP for the
purposes of fluid analysis.

The remainder of this section provides concepts and results for carrying out
this transformation in general. Definition 18 performs the transformation of an
FPA model by introducing zero-transitions.

Definition 18 (Stop Function). Let M be an FPA model and α ∈ A. The stop
function is given by

st(M0 BC
L
M1, α) := st(M0, α) BC

L
st(M1, α)

st(S, α) := st ′(S, α)

where st ′(S, α) arises from S by setting the rates of all α transitions to 0, i.e.

st ′
(∑
i∈I

(αi, ri).Pi, α
)

:=
∑

i∈I:αi 6=α

(αi, ri).st ′(Pi, α) +
∑

i∈I:αi=α
(αi, 0).st ′(Pi, α)

st ′(P, α) := P♦ and P♦
def
= st ′(S, α), if P

def
= S
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For instance, applying st to P1 from (2.8) using δ2, st(P1, δ2), yields P♦1
where P♦1

def
= (α, r).P♦2 + (δ3, u).P♦2 and P♦2

def
= (δ2, 0).P♦1 . A further ap-

plication with respect to δ3 would yield st(P♦1 , δ3) = P♦♦1 where P♦♦1
def
=

(α, r).P♦♦2 + (δ3, 0).P♦♦2 and P♦♦2
def
= (δ2, 0).P♦♦1 . That is, the stop function

transforms the constants by appending the FPA label under which the PEPA
component is placed at each application. However, the function does not add
or remove constants. Therefore, there is a bijection between the constants of
a model M and those of st(M,α), for any α. In what follows, ♦(P ) denotes
the unique counterpart of P in a model M subjected to the stop function. This
notion is formalised in the next proposition which is the key ingredient of our
transformation.

Proposition 1. Let M0 and M1 be two well-posed FPA models such that
∃v.(rδ(M0, v) 6= 0) and ∀v.(rδ(M1, v) = 0) for some δ ∈ L ⊆ A. Together
with

♦(P ) =

{
P , P ∈ B(st(M0, δ) BC

L\{δ}
M1)

♦(P♦) , otherwise

where P ∈ B(M0 BC
L
M1), the following can be shown.

• For all α ∈ A, P ∈ B(M0 BC
L
M1) and concentration functions v of

M0 BC
L
M1 it holds that

rα(M0 BC
L
M1, v) = rα(st(M0, δ) BC

L\{δ}
M1, v)

Rα(M0 BC
L
M1, v, P ) = Rα(st(M0, δ) BC

L\{δ}
M1, v,♦(P )),

where v♦(P ) := vP for all P ∈ B(M0 BC
L
M1). That is, by stopping and

removing the δ-action, the fluid rates of M0 BC
L
M1 can be expressed by

those of st(M0, δ) BC
L\{δ}

M1.

• The ODE systems underlying M0 BC
L
M1 and st(M0, δ) BC

L\{δ}
M1 are equal

up to a renaming of variables. Thus, if v(0) is the initial concentration
function of M0 BC

L
M1 and v♦(P )(0) := vP (0) for all P ∈ B(M0 BC

L
M1),

then it holds that v♦(P )(t) = vP (t) for all P ∈ B(M0 BC
L
M1) and t ≥ 0, if

v and v are the fluid approximation of M0 BC
L
M1 and st(M0, δ) BC

L\{δ}
M1,

respectively.

Proof. We prove the statements separately.

• If α = δ, we note that the definition of st implies rδ(st(M0, δ), v) = 0
and that rδ(M1, v) = 0 due to the assumption ∀v.(rδ(M1, v) = 0). The
case α 6= δ follows by showing that for all FPA models M , concentration
functions v of M and α ∈ A \ {δ} it holds

rα(M,v) = rα(st(M, δ), v),

Rα(M, v, P ) = Rα(st(M, δ), v,♦(P )), ∀P ∈ B(M),



2.5. WELL-POSEDNESS 23

where v♦(P ) := vP for all P ∈ B(M). The proof is by means of structural
induction and is straightforward.

• Let us fix an arbitrary P ∈ B(M0 BC
L
M1). Using the abbreviation S :=

B
(
M0 BC

L
M1

)
, the first half implies

∑
α∈A

(∑
P̃∈S

pα(P̃ , P )Rα(M0 BC
L
M1, v, P̃ )−Rα(M0 BC

L
M1, v, P )

)
=

=
∑
α∈A

(∑
P̃∈S

pα(♦(P̃ ),♦(P ))Rα(st(M0, δ) BC
L\{δ}

M1, v,♦(P̃ ))

−Rα(st(M0, δ) BC
L\{δ}

M1, v,♦(P ))
)
,

where v♦(P ) := vP for all P ∈ B(M0 BC
L
M1), and Definition 16 yields the

claim.

Let us use the above proposition to transform the ill-posed model IP from
(2.7). As fluid atoms are always well-posed, the proposition asserts that the
fluid approximation of IP is exactly related to that of st(P1, δ2) BC

{α,δ1}
Q1 =

P♦1 BC
{α,δ1}

Q1. A further application of the proposition shows that the fluid

approximation of P♦1 BC
{α,δ1}

Q1 is related in an exact way to that of WP :=

P♦1 BC
{α}

st(Q1, δ1) = P♦1 BC
{α}

Q♦1 . Thus, the fluid approximation of the ill-posed

model IP is related in an exact way to that of a well-posed model WP .

Proposition 1 can be used to transform more complex models. Consider, for
instance, the model IP BC

{α,δ3}
R1, where IP cooperates with a fluid atom given

by R1
def
= (α, r).R2 and R2

def
= (β, s).R1. Note that in this model the ill-posedness

arises not only from δ1 and δ2, but also from δ3. Fortunately, Proposition 1
applies for compositional reasoning. To see this, we need the following auxiliary
result which states, informally, that if the models M i and M̃ i have the same
fluid rates, where i = 1, 2, then so do also the compositions M1 BC

L
M2 and

M̃1 BC
L
M̃2.

Lemma 1. For a given FPA model M i, where i = 1, 2, assume that there
exist an FPA model M̃ i and a bijection σi : B(M i) → B(M̃ i) such that for
all concentration functions vi of M i, α ∈ A and P ∈ B(M i) it holds that
rα(M i, vi) = rα(M̃ i, vi) and Rα(M i, vi, P ) = Rα(M̃ i, vi, σi(P )) with viσi(Q) :=

viQ for all Q ∈ B(M i). Then, for any cooperation set L and vσ(Q) := vQ, where

vP :=

{
v1
P , P ∈ B(M1)

v2
P , P ∈ B(M2)

σ(P ) :=

{
σ1(P ) , P ∈ B(M1)

σ2(P ) , P ∈ B(M2)
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it holds that

rα(M1 BC
L
M2, v) = rα(M̃1 BC

L
M̃2, v)

Rα(M1 BC
L
M2, v, P ) = Rα(M̃1 BC

L
M̃2, v, σ(P )), ∀P ∈ B(M1 BC

L
M2)

Proof. A straightforward application of Definition 14 and 15 yields the claim.

For instance, to derive the well-posed transform of IP BC
{α,δ3}

R1, we first trans-

form IP into WP . In the second step, we observe that the ODE systems of
IP BC

{α,δ3}
R1 and WP BC

{α,δ3}
R1 are equal up to renaming. We do so by noting

that the first half of Proposition 1 implies the assumptions of Lemma 1 in the
case of M1 := IP , M̃1 := WP and M2 := M̃2 := R1. At last, we apply
in the third step Proposition 1 to the well-posed models WP and R1. This
shows that the ODE system of WP BC

{α,δ3}
R1 is equal up to renaming to that of

st(WP , δ3) BC
{α}

R1 = (P♦♦1
BC
{α}

Q♦♦1 ) BC
{α}

R1, where

P♦♦1
def
= (α, r).P♦♦2 + (δ3, 0).P♦♦2 P♦♦2

def
= (δ2, 0).P♦♦1

Q♦♦1
def
= (δ1, 0).Q♦♦2 Q♦♦2

def
= (α, r).Q♦♦1 + (δ3, 0).Q♦♦1

The algorithm discussed in the above example is generalised in the next
definition.

Definition 19. Let us fix an FPA model M . The well-posed transformation
Θ(M) of M is given by

Θ(P ) := P, Θ(M0 BC
L
M1) := Θ0

(
Θ(M0) BC

L
Θ(M1)

)
,

where Θ0 transforms a not necessarily well-posed cooperation M0 BC
L
M1 of two

well-posed models M0 and M1 into a well-posed cooperation Θ0(M0 BC
L
M1) by

means of the following case distinction.

• M0 BC
L
M1 is well-posed: we set then Θ0(M0 BC

L
M1) := M0 BC

L
M1.

• M0 BC
L
M1 is not well-posed: let us fix all actions η1, . . . , ηk ∈ L such that

∀v.(rηn(M0, v) = 0 ∧ rηn(M1, v) = 0), where 1 ≤ n ≤ k, and all actions
δ1, . . . , δm ∈ L such that ∃.v(rδn(Min , v) 6= 0) and ∀v.(rδn(Mi′n

, v) = 0)
for some in ∈ {0, 1} and i′n := 1 − in, where 1 ≤ n ≤ m. Then, we
first remove all ηn- and δn-actions from L and stop afterwards each δn-
action present in M0 and M1. More formally, we set Θ0(M0 BC

L
M1) :=

Mm
0

BC
L\{η1,...,ηk,δ1,...,δm}

Mm
1 , where M0

j := Mj and

Mn
j :=

{
st(Mn−1

j , δn) , ∃v.(rδn(Mn−1
j , v) 6= 0)

Mn−1
j , otherwise

for j = 0, 1 and 1 ≤ n ≤ m.
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Similarly to Proposition 1, ♦(P ) ∈ B(Θ(M)) refers to the unique counterpart
of P ∈ B(M) and is given as follows.

Definition 20. For a given FPA model M and P ∈ B(M), define ♦(P ) ≡
♦(P,M) by

♦(P,M) =

{
P , P ∈ B(Θ(M))

♦(P♦,M) , otherwise

We are now in a position to state the main result of this section.

Theorem 6. The ODE systems underlying an FPA model M and its well-posed
transformation Θ(M) are equal up to a renaming of variables. Specifically, if
v(0) is the initial concentration function of M and v♦(P )(0) := vP (0) for all
P ∈ B(M), then it holds v♦(P )(t) = vP (t) for all P ∈ B(M) and t ≥ 0, where v
and v denote the fluid approximation of M and Θ(M), respectively.

Proof. We show the following three properties which readily imply the claim.

1) rα(M, v) = rα(Θ(M), v) for all α ∈ A.

2) Rα(M,v, P ) = Rα(Θ(M), v,♦(P )) for all α ∈ A and P ∈ B(M).

3) The ODE systems of M and Θ(M) are equal up to a renaming of variables.

The proof is by means of structural induction on M .

• M = P : In the case where M is a fluid atom, the claim trivially holds
since Θ(M) is syntactically equivalent to M .

• M = M0 BC
L
M1: The induction hypothesis ensures that 1) - 3) hold for

Θ(M0) and Θ(M1). Using Lemma 1, we infer that 1) and 2) apply also for

M0 BC
L
M1. By making a case distinction on the value of pα(♦(P̃ ),♦(P )),

where P, P̃ ∈ B(M) are arbitrary but fixed, we next show that

pα(P̃ , P )Rα(M0 BC
L
M1, v, P̃ ) =

= pα(♦(P̃ ),♦(P ))Rα(Θ(M0) BC
L

Θ(M1), v,♦(P̃ )) (2.9)

Let us assume without loss of generality that there exists a Q ∈ G(M)

such that P, P̃ ∈ ds(Q).

a) pα(♦(P̃ ),♦(P )) > 0: Definition 19 implies that the α-action was

not stopped in the fluid atom Q, meaning that pα(♦(P̃ ),♦(P )) =

pα(P̃ , P ). This and the fact that M0 BC
L
M1 satisfies 2) shows (2.9).

b) pα(♦(P̃ ),♦(P )) = 0 and pα(P̃ , P ) = 0: trivial.

c) pα(♦(P̃ ),♦(P )) = 0 and pα(P̃ , P ) > 0: Definition 19 implies that the

α-action was stopped in the fluid atom Q, hence rα(♦(P̃ )) = 0. This

yields 0 = Rα(Θ(M0) BC
L

Θ(M1), v,♦(P̃ )) = Rα(M0 BC
L
M1, v, P̃ ),

where the last equality follows by 2), which readily implies (2.9).
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Using 2) and (2.9) we infer∑
α∈A

( ∑
P̃∈B(M)

pα(P̃ , P )Rα(M0 BC
L
M1, v, P̃ )−Rα(M0 BC

L
M1, v, P )

)
=
∑
α∈A

( ∑
P̃∈B(M)

pα(♦(P̃ ),♦(P ))Rα(Θ(M0) BC
L

Θ(M1), v,♦(P̃ ))

−Rα(Θ(M0) BC
L

Θ(M1), v,♦(P ))
)
,

which shows that the ODE systems of M0 BC
L
M1 and Θ(M0) BC

L
Θ(M1)

are equal up to a renaming of variables. Since Proposition 1 ensures that
Θ(M0) BC

L
Θ(M1) and Θ0(Θ(M0) BC

L
Θ(M1)) satisfy 1) - 3), this yields the

claim.



Chapter 3

Exact Fluid Lumpability

This chapter discusses the theory of exact fluid lumpability which was intro-
duced in [42] and extended in [49]. The idea behind exact fluid lumpability is to
partition the set of fluid atoms of an FPA model M in such a way that the fluid
atoms belonging to the same block have, intuitively, the same ODE trajectories.
Notice that a necessary condition is that any two fluid atoms within the same
block must have the same initial condition. Such a partitioning allows one to
relate the solution of the original ODE system to that of a smaller, lumped
ODE system with the ODEs of only one label for each element of the partition.
Thereby, the name of exactly fluid lumpable partitions stems from the parallel
with the theory of exact lumpability for Markov chains, where a partition over
the state space has to satisfy the requirement that states within the same block
must have the same initial probability, cf. Theorem 3 in Section 2.1.

The chapter is organised as follows. We start by introducing in Section 3.1 a
motivating example which suggests that the theory is particularly convenient in
practice to exploit symmetries in large-scale models with replicated behaviour.
After defining exact fluid lumpability in Section 3.2, we introduce in Section 3.3
a notion of behavioural equivalence, called label equivalence, which induces ex-
actly fluid lumpable partitions. We continue with Section 3.3.2 by studying the
relationship between label equivalence and PEPA’s behavioural equivalences
from Section 2.3. Specifically, it is shown that well-posedness implies semi-
isomorphism. Using this result, we infer in Section 3.3.3 that well-posedness
allows for a merging of different label equivalences, thereby yielding coarser
ODE partitions.

3.1 Motivating Example

Let us consider the variation C BC
{exec}

C ′ BC
{exec}

T of (2.6), where C, T and C ′ are

as in (2.1) and (2.3), that is

27
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C
def
= (exec, r).Ĉ, C ′

def
= (exec, r/2).Ĉ ′ + (exec, r/2).Ĉ ′, T

def
= (exec, r).T̂ ,

Ĉ
def
= (reset , s).C, Ĉ ′

def
= (reset , s).C ′, T̂

def
= (io, s′).T.

In the following, we study the FPA process which arises by composing D
copies of C BC

{exec}
C ′ BC
{exec}

T with U , where

U
def
= (io, z).Û , Û

def
= (idle, z′).U.

This may be interpreted as a collection of D different environments serving
client requests whose overall frequency is modulated by an external process U
(where, intuitively, the smaller the rate z the larger the probability that the
clients are not issuing a request, thus the less utilised the system will be). The
corresponding FPA process is then

Sys ′ :=
((
C1 BC

{exec}
C ′1 BC

{exec}
T1

)
BC
∅
. . . BC

∅

(
CD BC

{exec}
C ′D BC

{exec}
TD
))

BC
{io}

U, (3.1)

where, for all 1 ≤ d ≤ D,

Cd
def
= (exec, r).Ĉd, C ′d

def
= (exec, r/2).Ĉ ′d + (exec, r/2).Ĉ ′d, Td

def
= (exec, r).T̂d,

Ĉd
def
= (reset , s).Cd, Ĉ ′d

def
= (reset , s).C ′d, T̂d

def
= (io, s′).Td.

These define distinct copies of C,C ′ and T . The usage of subscripts enforces
the technical requirement that ds(P1) ∩ ds(P2) = ∅ for any two labels P1, P2 ∈
G(Sys ′), cf. Definition 12. In the following, we fix the initial concentrations

vCd(0) = cC vC′d(0) = cC vTd(0) = cT

vĈd(0) = 0 vĈ′d
(0) = 0 vT̂d(0) = 0 (3.2)

vU (0) = cU vÛ (0) = 0

where 1 ≤ d ≤ D. For instance, in the case of D = 2, the above concentrations
yield the sequence of PEPA processes((

C1[bcCNc] BC
{exec}

C ′1[bcCNc] BC
{exec}

T1[bcTNc]
)
BC
∅(

C2[bcCNc] BC
{exec}

C ′2[bcCNc] BC
{exec}

T2[bcTNc]
))

BC
{io}

U [bcUNc],

where N ≥ 1 denotes the scaling parameter from Theorem 5. At this point, it
is reasonable to ask in which sense the above model differs from(

C1[bcC2Nc] BC
{exec}

C ′1[bcC2Nc] BC
{exec}

T1[bcT 2Nc]
)
BC
{io}

U [bcUNc].

Intuitively, the first model considers a distributed computer architecture with
two identical subsystems, while the second one has a single subsystem of doubled
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size. This question is studied in detail in Section 4.3 where it is shown that such
models share a common fluid approximation but are in general not isomorphic,
not strongly bisimilar and not strongly equivalent. Recalling that the underlying
stochastic processes are indistinguishable from the fluid model if N tends to
infinity, this implies, intuitively, that the “stochastic difference” between both
models vanishes as N →∞.

Returning back to our discussion, we observe that each Cd BC
{exec}

C ′d BC
{exec}

Td,

with 1 ≤ d ≤ D, contributes |ds(Cd)| + |ds(C ′d)| + |ds(Td)| = 6 ODEs. Hence,
the size of the fluid approximation of Sys ′ is 6D + |ds(U)| = 6D + 2 and the
underlying ODE system is

v̇Cd = −rmin
(
vCd , vC′d , vTd

)
+ svĈd v̇Ĉd = −v̇Cd

v̇C′d = −rmin
(
vCd , vC′d , vTd

)
+ svĈ′d

v̇Ĉ′d
= −v̇C′d

v̇Td = −rmin
(
vCd , vC′d , vTd

)
+ v̇T̂d = −v̇Td

+
s′vT̂d

s′
∑D
d′=1 vT̂d′

min
(
s′

D∑
d′=1

vT̂d′
, zvU

)

v̇U = −min
(
s′

D∑
d′=1

vT̂d′
, zvU

)
+ z′vÛ v̇Û = −v̇U (3.3)

for all 1 ≤ d ≤ D. When D is large, ODE analysis may become problematic
from a computational viewpoint.

We now exploit two basic intuitions. The first one is that the FPA triples
Cd BC

{exec}
C ′d BC

{exec}
Td are all similar to each other, in two ways: (i) the fluid atoms

describe the same sequential behaviour; and (ii) they operate in a similar con-
text: each triple is independent of each other, but they are all synchronised with
the same fluid atom U . Therefore, it is reasonable to assume that, on average,
all triples behave in the same way. This fact yields a potential candidate for
aggregation. Overall, this intuition leads to making the assumption that the
ODE solution satisfies the equalities

vC1(t) = vCd(t), vĈ1
(t) = vĈd(t),

vC′1(t) = vC′d(t), vĈ′1
(t) = vĈ′d

(t), (3.4)

vT1(t) = vTd(t), vT̂1
(t) = vT̂d(t),

for all 1 ≤ d ≤ D and t ≥ 0.
The other intuition that can be exploited is that, although C and C ′ are

syntactically different, their behaviour is essentially the same because the total
rate from C to Ĉ for action exec is the same as that for the transition from C ′

to Ĉ ′. Thus, it is reasonable to also assume that the trajectories of the concen-
trations of C-components and C ′-components are indistinguishable. Formally,
this leads to claiming the following:

vCd(t) = vC′d(t) vĈd(t) = vĈ′d
(t) (3.5)
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for all 1 ≤ d ≤ D and t ≥ 0.
Although these can be written as

vC1(t) = vCd(t) vĈ1
(t) = vĈd(t)

vC1
(t) = vC′d(t) vĈ1

(t) = vĈ′d
(t) (3.6)

vT1(t) = vTd(t) vT̂1
(t) = vT̂d(t)

for all 1 ≤ d ≤ D and t ≥ 0, we prefer to state them as two separate groups of
equations because (3.4) and (3.5) will be shown to be inferred from two relations,
called projected label equivalences (cf. Definition 24), directly arising from two
distinct label equivalences on G(Sys ′); Equation (3.6) is instead induced by
the transitive closure of the union of such relations, which will yield a coarser
partition but does not arise from a label equivalence.

If those assumptions hold, the underlying ODE systems admit a simple exact
reduction. Simplifying (3.3) for a fixed d, say d = 1, and using (3.6) allow us
to rewrite the fractions and summations in the right-hand sides in a way that
is independent of labels different from C1, T1 and U :

v̇C1
= −rmin (vC1

, vT1
) + svĈ1

v̇Ĉ1
= −v̇C1

v̇T1 = −rmin (vC1 , vT1) + (1/D) min
(
s′D · vT̂1

, zvU

)
v̇T̂1

= −v̇T1 (3.7)

v̇U = −min
(
s′D · vT̂1

, zvU

)
+ z′vÛ v̇Û = −v̇U

By using the initial concentrations (3.2) of (3.3) and assuming that both ODE
systems have a unique solution, through (3.6) we can exactly relate the solution
of (3.3), which has (2 + 2 + 2)D + 2 equations, to that of (3.7), which has only
(2 + 2) + 2 equations, thus making the problem independent of D.

3.2 Definitions

The ideas presented in the previous section are now generalised for any FPA
model. Each formal definition will be accompanied by a simple application to
our motivating example.

We begin with the notion of exact fluid lumpability.

Definition 21 (Exact Fluid Lumpability). Let P = {P 1
, . . . , P

n}, where P
i

=
{P ij | 1 ≤ j ≤ ki}, be a partition of the label set of an FPA model M . The
partition is called exactly fluid lumpable if there exist bijections

σP ij : ds(P i1)→ ds(P ij ), 1 ≤ i ≤ n, 1 ≤ j ≤ ki,

where σP i1 ≡ idds(P i1), such that for all initial concentrations v(0) which satisfy

vP (0) = vσ
Pi
j

(P )(0), ∀1 ≤ i ≤ n. ∀P ∈ ds(P i1). ∀1 ≤ j ≤ ki
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the same holds for all t ≥ 0 in the corresponding ODE solution v, i.e.

vP (t) = vσ
Pi
j

(P )(t), ∀1 ≤ i ≤ n. ∀P ∈ ds(P i1). ∀1 ≤ j ≤ ki. ∀t ≥ 0.

We shall say that σ• establishes the exact fluid lumpability of P and that P
i
,

where 1 ≤ i ≤ n, is related to P i1.

Informally, for each element P
i

= {P ij | 1 ≤ j ≤ ki} of an exactly fluid

lumpable partition P , we identify a representative P i1 which is associated to any

other element of P
i
, P ij , by means of a bijection σP ij : ds(P i1) → ds(P ij ) such

that the following holds: if, for t = 0 and all 1 ≤ i ≤ n and 1 ≤ j ≤ ki, the
concentrations of ds(P ij ) are given by that of ds(P i1) by means of σP ij , the same

holds true for any t > 0.

Remark 1. One could also consider bijections from ds(P ij ) to ds(P i1) in the
above definition. However, due to technical reasons and matter of taste, we
prefer to use the present formulation.

For instance, assumption (3.6) holds if{
P

1
, P

2
, P

3}
=
{
{C1, C

′
1, . . . , CD, C

′
D}, {T1, . . . , TD}, {U}

}
(3.8)

is an exactly fluid lumpable partition which is established by the family

σP (Q) :=



Cd , ∃1 ≤ d ≤ D. (P = Cd) ∧Q = C1

Ĉd , ∃1 ≤ d ≤ D. (P = Cd) ∧Q = Ĉ1

C ′d , ∃1 ≤ d ≤ D. (P = C ′d) ∧Q = C1

Ĉ ′d , ∃1 ≤ d ≤ D. (P = C ′d) ∧Q = Ĉ1

Td , ∃1 ≤ d ≤ D. (P = Td) ∧Q = T1

T̂d , ∃1 ≤ d ≤ D. (P = Td) ∧Q = T̂1

(3.9)

Remark 2. Fox a fixed FPA model M , assume that P = {P 1
, . . . , P

n}, where

P
i

= {P ij | 1 ≤ j ≤ ki}, is an exactly fluid lumpable partition of G(M) which is
established by the bijections

σP ij : ds(P i1)→ ds(P ij ), 1 ≤ i ≤ n, 1 ≤ j ≤ ki.

Then, for arbitrary 1 ≤ ji ≤ ki, where 1 ≤ i ≤ n, the bijections

ρP ij := σP ij ◦ σ
−1
P iji

: ds(P iji)→ ds(P ij ), 1 ≤ i ≤ n, 1 ≤ j ≤ ki,

establish also the exactly fluid lumpability of P . That is, the notion of exactly
fluid lumpability does not depend on the choice of the representatives.
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Let us fix an FPA model M and assume that P = {P 1
, . . . , P

n} is exactly
fluid lumpable. Next, we define the underlying lumped ODE system. The latter
should relate all ODE traces of B(M) to that of the ODE model which considers
only the states of the lumped concentrations, i.e. Blump(M) :=

⋃n
i=1 ds(P

i
1).

Thus, let us fix an arbitrary P ∈ Blump(M) and write its ODE:

v̇P =
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M, v, P ′)−Rα(M, v, P )
)

Then, any concentration vP̃ (t) on the right-hand-side of the ODE can be ex-
pressed by lumped concentrations, as there are unique 1 ≤ i ≤ n and 1 ≤ j ≤ ki
such that P̃ ∈ ds(P ij ) and vP̃ (t) = vσ−1

Pi
j

(P̃ )(t) with σ−1
P ij

(P̃ ) ∈ ds(P i1).

This shows that the ODE v̇P can be expressed in terms of {vQ | Q ∈
Blump(M)}. The next definition formalises this.

Definition 22 (Exactly Lumped Fluid Model). Let P = {P 1
, . . . , P

n} be an
exactly fluid lumpable partition of G(M) which is established by σ•. Moreover,

let Dlump
P , where P ∈ Blump(M), denote the equation which arises from∑

α∈A

(∑
P ′

pα(P ′, P )Rα(M,v, P ′)−Rα(M,v, P )
)

by replacing all vP̃ (t), where P̃ ∈ ds(P ij ) for some 1 ≤ i ≤ n and 1 ≤ j ≤ ki,
with vσ−1

Pi
j

(P̃ )(t). The exactly lumped fluid model of M with respect to σ• and

v(0) is the solution of the lumped ODE system v̇P = Dlump
P , P ∈ Blump(M),

subjected to the initial value v(0)|Blump(M).

For instance, if the family of bijections (3.9) establish the exactly lumpable
partition (3.8), we infer that the exactly lumped fluid model of our motivating
example (3.1) with respect to such a partition is (3.7).

Recall that we assumed that both the original and the lumped ODE system
have a unique solution. To see this, note that a restriction of a Lipschitz function
is again Lipschitz and that the original ODE system is Lipschitz [54].

3.3 Construction of Exactly Fluid Lumpable
Partitions

Section 3.3.1 discusses two related equivalences for the construction of exactly
fluid lumpable partitions. The first, label equivalence is used to construct
a projected label equivalence, and relates tuples of labels. If two tuples, say
(P1, . . . , Pn) and (P ′1, . . . , P

′
n) are related, then this implies that the fluid atoms

Pi and P ′i , 1 ≤ i ≤ n, have the same fluid approximation. This makes Pi and
P ′i projected label equivalent, implying that the two labels belong to the same
block of an exactly fluid lumpable partition. Section 3.3.2 studies the stochastic
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relationship between PEPA components that are related by a projected label
equivalence. In addition to being of interest per se, this study will be instru-
mental for proving that the transitive closure of the union of several projected
label equivalences induces an exactly fluid lumpable partition, as done in Sec-
tion 3.3.3, for the class of well-posed models.

3.3.1 Label Equivalence and Projected Label Equivalence

Definition 23 (Label Equivalence). Let M be an FPA model and let P =

(~P 1, . . . , ~PN ), ~P i = (P i1, . . . , P
i
Ki

), be a tuple partition on G(M), that is, for

each P ∈ G(M) there exist unique 1 ≤ i ≤ N and 1 ≤ k ≤ Ki with P = P ik.

Further, let P = {p1, . . . , pn} denote a partition of P. ~P i and ~P j are said to be

label equivalent, written ~P i ∼P
~P j, if ~P i, ~P j ∈ pl for some 1 ≤ l ≤ n, Ki = Kj

and there exist bijections σk : ds(P ik) → ds(P jk ), where 1 ≤ k ≤ Ki, such that
for all concentration functions v of M and

vσP :=


vσk(P ) ,∃1 ≤ k ≤ Ki. (P ∈ ds(P ik))

vσ−1
k (P ) ,∃1 ≤ k ≤ Ki. (P ∈ ds(P jk ))

vP , otherwise

it holds that

i) The component rates, cf. Definition 15, satisfy:

a) The α-component rate out of each P ∈ ds(P ik) with respect to v is equal

to the α-component rate out of σk(P ) ∈ ds(P jk ) with respect to vσ,

Rα(M,v, P ) = Rα(M,vσ, σk(P ))

b) The sum of α-component rates into each P ∈ ds(P ik) with respect to v

is equal to the sum of the α-component rates into σk(P ) ∈ ds(P jk ) with
respect to vσ,∑

P ′

pα(P ′, P )Rα(M,v, P ′) =
∑
P ′

pα(P ′, σk(P ))Rα(M, vσ, P ′)

c) For all P ∈ ds(P lk) such that P lk /∈ ~P i, ~P j it holds Rα(M,v, P ) =
Rα(M, vσ, P )

ii) The apparent rates, cf. Definition 14, satisfy: rα(M,v) = rα(M, vσ).

Informally, two tuples ~P i, ~P j are label equivalent if the component and ap-
parent rates respect an exchange of fluid atom concentrations within the tuples.
Hence, label equivalence especially applies to symmetries within the model un-
der study. For instance, let us fix the subprocess of (3.1)

Sys :=
(
C1 BC

{exec}
C ′1 BC

{exec}
T1

)
BC
∅
. . . BC

∅

(
CD BC

{exec}
C ′D BC

{exec}
TD
)
,
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the tuple partition P1 := {(C1, C
′
1, T1), . . . , (CD, C

′
D, TD)} of G(Sys), and two

arbitrary 1 ≤ i, j ≤ D. Given the bijections

σ
(Ci,C

′
i,Ti),(Cj ,C

′
j ,Tj)

1 : ds(Ci)→ ds(Cj), Ci 7→ Cj , Ĉi 7→ Ĉj

σ
(Ci,C

′
i,Ti),(Cj ,C

′
j ,Tj)

2 : ds(C ′i)→ ds(C ′j), C ′i 7→ C ′j , Ĉ
′
i 7→ Ĉ ′j

σ
(Ci,C

′
i,Ti),(Cj ,C

′
j ,Tj)

3 : ds(Ti)→ ds(Tj), Ti 7→ Tj , T̂i 7→ T̂j ,

(3.10)

vσ is obtained from v by essentially swapping the concentration functions re-
lated to the (syntactically) same components under two different labels i.e., by
exchanging vCi with vCj , vĈi with vĈj , vC

′
i

with vC′j , vĈ′i
with vĈ′j

, vTi with

vTj and vT̂i with vT̂j . It holds that, for any action type α ∈ A, the (sym-

bolic) α-apparent rate is invariant under such an exchange of concentrations
and the α-component rates into and out of Ci are equal to the corresponding
α-component rates of Cj . The former can be inferred from

rα(Cd BC
{exec}

C ′d BC
{exec}

Td, v
σ) =


rα(Cj BC

{exec}
C ′j BC

{exec}
Tj , v) , d = i

rα(Ci BC
{exec}

C ′i BC
{exec}

Ti, v) , d = j

rα(Cd BC
{exec}

C ′d BC
{exec}

Td, v) , d /∈ {i, j}

and

rα(Sys, v) =

D∑
d=1

rα(Cd BC
{exec}

C ′d BC
{exec}

Td, v),

while the latter follows by

Rα(Sys, v, Ci) = Rα(Ci BC
{exec}

C ′i BC
{exec}

Ti, v, Ci)

=
Rα(Ci, v, Ci)

rα(Ci, v)
rα(Ci BC

{exec}
C ′i BC
{exec}

Ti, v)

=
Rα(Cj , v

σ, Cj)

rα(Cj , vσ)
rα(Cj BC

{exec}
C ′j BC

{exec}
Tj , v

σ)

= Rα(Sys, vσ, Cj)

and

Rα(Sys, v, Cd) = Rα(Cd BC
{exec}

C ′d BC
{exec}

Td, v, Cd)

=
Rα(Cd, v, Cd)

rα(Cd, v)
rα(Cd BC

{exec}
C ′d BC

{exec}
Td, v)

=
Rα(Cd, v

σ, Cd)

rα(Cd, vσ)
rα(Cd BC

{exec}
C ′d BC

{exec}
Td, v

σ)

= Rα(Sys, vσ, Cd)

with d /∈ {i, j}. Note that the above equalities are meant to hold for all con-
centration functions v of Sys. That is, an algorithm which establishes exact
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fluid lumpability has to perform a symbolic checking in the style of a computer
algebra system. Since similar equalities hold for all aforementioned label pairs,
one infers that (Ci, C

′
i, Ti) ∼{P1} (Cj , C

′
j , Tj), for any 1 ≤ i, j ≤ D.

Remark 3. We wish to point out that the above notion of label equivalence
generalises the original one presented in [42] in that only tuples from the same
p ∈ P, rather than from the entire P, are compared. That is, ∼P in the sense of
Definition 12 from [42] is recovered by ∼P if P := {P}. This additional degree
of freedom is crucial for the fluid lumping of nested FPA models discussed in
Chapter 4.

The next theorem relates the fluid trajectories of label equivalent tuples.

Theorem 7. Let M be an FPA model with fluid approximation v, P be a tuple
partition on G(M) and P be a partition of P. Then, ~P i ∼P

~P j implies that

∀P ∈ B(M).
(
vP (0) = vσP (0)

)
⇒ ∀P ∈ B(M). ∀t ≥ 0.

(
vP (t) = vσP (t)

)
,

where vσ is as in Definition 23.

Proof. Since v(0) = vσ(0) and the solution is unique, it suffices to show that
vσ is a solution. For this, we fix an arbitrary P ∈ B(M) and distinguish the

following three cases. First, if P ∈ ds(P lk) such that P lk /∈ ~P i, ~P j , then

v̇σP = v̇P =
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M,v, P ′)−Rα(M,v, P )
)

i)
=
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M, vσ, P ′)−Rα(M, vσ, P )
)
.

Second, if P ∈ ds(P ik), then

v̇σσk(P ) = v̇P =
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M, v, P ′)−Rα(M, v, P )
)

i)
=
∑
α∈A

(∑
P ′

pα(P ′, σk(P ))Rα(M, vσ, P ′)−Rα(M, vσ, σk(P ))
)
.

Third, if P ∈ ds(P jk ), then

v̇σ
σ−1
k (P )

= v̇P =
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M,v, P ′)−Rα(M,v, P )
)

=
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M, (vσ)σ, P ′)−Rα(M, (vσ)σ, P )
)

i)
=
∑
α∈A

(∑
P ′

pα(P ′, σ−1
k (P ))Rα(M,vσ, P ′)−Rα(M,vσ, σ−1

k (P ))
)
.
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For instance, (Ci, C
′
i, Ti) ∼{P1} (Cj , C

′
j , Tj) and Theorem 7 show that

vCi(0) = vCj (0) vC′i(0) = vC′j (0) vTi(0) = vTj (0)

vĈi(0) = vĈj (0) vĈ′i
(0) = vĈ′j

(0) vT̂i(0) = vT̂j (0)

implies

vCi(t) = vCj (t) vC′i(t) = vC′j (t) vTi(t) = vTj (t)

vĈi(t) = vĈj (t) vĈ′i
(t) = vĈ′j

(t) vT̂i(t) = vT̂j (t)

for all t ≥ 0, where v denotes the fluid approximation of Sys with respect to a
given v(0).

This example also illustrates that, in general, one has to consider relations
between tuples of labels, rather than just labels. For clarification, let us assume
that our tuple partition of G(Sys) consists only of trivial tuples, i.e. P2 :=
{(P ) | P ∈ G(Sys)}. Then, for instance, the bijection

σ
(Ci),(Cj)
1 : ds(Ci)→ ds(Cj), Ci 7→ Cj , Ĉi 7→ Ĉj

where 1 ≤ i < j ≤ D, does not establish (Ci) ∼{P2} (Cj). This is because
the fluid atoms C ′i and C ′j or the fluid atoms Ti and Tj may have different
initial concentrations. This problem does not manifest itself if we use the tuple
partition P1, where the concentrations of larger processes, rather than that of
single fluid atoms, are exchanged.

The next theorem states that label equivalence is a congruence with respect
to the parallel composition of FPA.

Theorem 8 (Label Equivalence is a Congruence). Fix an FPA model M , a
tuple partition P on G(M) and a partition P of P. Then the following holds:

• ∼P is an equivalence relation on P.

• Fix an action set L, an FPA model M0, a tuple partition P0 on G(M0)

and a partition P+ of P ∪P0. Then, ~P i ∼P
~P j in M implies ~P i ∼P+ ~P j

in M BC
L
M0, given that ~P i, ~P j ∈ p for some p ∈ P+.

Proof. To increase the readability of the current section, we briefly sketch the
proof strategy. A rigorous proof of this result is provided in Appendix A.2.

1. Reflexivity and symmetry are trivial. For the transitivity of ∼P we assume
that

σik : ds(P ik)→ ds(P jk ), σjk : ds(P jk )→ ds(P νk ), 1 ≤ k ≤ K

establish ~P i ∼P
~P j , ~P j ∼P

~P ν , respectively. One can show then that

(σj ◦ σi)k : ds(P ik)→ ds(P νk ), P 7→ σj(σi(P )), 1 ≤ k ≤ K

establishes ~P i ∼P
~P ν .
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2. Let us fix some P ∈ B(M BC
L
M0) and assume that ~P i ∼P

~P j is established

by σik : ds(P ik) → ds(P jk ), where 1 ≤ k ≤ K. Since the case α /∈ L is
straightforward, we assume α ∈ L and make the following case distinction:

• Case P ∈ B(M): Observing

Rα(M BC
L
M0, v, P ) =

Rα(M, v, P )

rα(M,v)
min(rα(M,v), rα(M0, v)),

rα(M,v) = rα(M,vσ) and rα(M0, v) = rα(M0, v
σ) yields the claim.

Let us remark that the last equality holds because σk, where 1 ≤ k ≤
K, exchange concentrations in M and not M0.

• Case P ∈ B(M0): Observing

Rα(M BC
L
M0, v, P ) =

Rα(M0, v, P )

rα(M0, v)
min(rα(M, v), rα(M0, v)),

rα(M,v) = rα(M,vσ), rα(M0, v) = rα(M0, v
σ) and Rα(M0, v, P )

= Rα(M0, v
σ, P ) yields the claim. Similarly to the previous case,

the last two equalities hold because σk, where 1 ≤ k ≤ K, exchange
concentrations in M and not M0.

As usual, the congruence property is useful for compositional reasoning. For
instance, let us consider Sys ′ defined in (3.1) and fix the tuple partition

P ′1 := P1 ∪ P0 = {(C1, C
′
1, T1), . . . , (CD, C

′
D, TD), (U)} (3.11)

of G(Sys ′), where P0 := {(U)} is obviously the only possible tuple partition of
G(U). Theorem 8 implies (Ci, C

′
i, Ti) ∼{P′1} (Cj , C

′
j , Tj), which yields

P ′1/ ∼{P′1}=
{
{(C1, C

′
1, T1), . . . , (CD, C

′
D, TD)}, {(U)}

}
,

as 1 ≤ i, j ≤ D were chosen arbitrarily. This and Theorem 7 show then that{
{C1, . . . , CD}, {C ′1, . . . , C ′D}, {T1, . . . , TD}, {U}

}
(3.12)

is an exactly fluid lumpable partition. Crucially, the following defines projected
label equivalence, a relation which can be directly obtained (projected) from a
label equivalence in order to relate labels, and not tuples of labels. According
to Theorem 9, this immediately yields an exactly fluid lumpable partition.

Definition 24 (Projected Label Equivalence). Fix an FPA model M , a tuple
partition P on G(M) and a partition P of P. The labels P1, P2 ∈ G(M) are

projected label equivalent, P1 ≈P P2, if ~P i ∼P
~P j and ki = kj in the unique

assignment P1 = P iki , P2 = P jkj .

For instance, the relation (C1, C
′
1, T1) ∼{P′1} (C2, C

′
2, T2) implies C1 ≈{P′1}

C2, C ′1 ≈{P′1} C
′
2 and T1 ≈{P′1} T2.
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Theorem 9. Fix an FPA model M , a tuple partition P on G(M) and a par-
tition P of P. The relation ≈P is then an equivalence relation on G(M) and
G(M)/ ≈P is an exactly fluid lumpable partition.

Proof. Theorem 8 shows that ≈P defines an equivalence relation on G(M) and
Theorem 7 implies that G(M)/ ≈P is an exactly fluid lumpable partition.

Note that {P ′1} induces the exactly fluid lumpable partition (3.12) via ≈{P′1},
which demonstrates the assumption (3.4) for our running example. Intuitively,
this partition relates all fluid atoms expressed with the same sequential compo-
nent, C, C ′, and T , if they are initialised with the same conditions. However, in
general, for the same model there might be more tuple partitions which allow
for a simplification: The partition

P ′2 := P2 ∪ P0 = {(P ) | P ∈ G(Sys ′)}, (3.13)

the family of bijections

σ
(Ci),(C

′
i)

1 : ds(Ci)→ ds(C ′i), Ci 7→ C ′i, Ĉi 7→ Ĉ ′i (3.14)

and Theorem 8 yield (Ci) ∼{P′2} (C ′i) for all 1 ≤ i ≤ D. As these are the only

nontrivial relations on P ′2, we get P ′2/ ∼{P′2}=
{
{(U)}, {(C1), (C ′1)}, {(T1)}, . . .

. . . , {(CD), (C ′D)}, {(TD)}
}

. This shows, in turn, that {P ′2} induces the exactly
fluid lumpable partition

G(Sys ′)/ ≈{P′2}=
{
{C1, C

′
1}, {T1}, . . . , {CD, C ′D}, {TD}, {U}

}
. (3.15)

Such a partition, instead, relates fluid atoms exhibiting distinct sequential com-
ponents, C and C ′, and demonstrates the assumption (3.5) of the running ex-
ample

vCd(t) = vC′d(t), vĈd(t) = vĈ′d
(t), ∀. 1 ≤ d ≤ D∀. t ≥ 0.

Before being in a position to derive assumption (3.6), i.e.

vC1(t) = vCd(t) vĈ1
(t) = vĈd(t)

vC1(t) = vC′d(t) vĈ1
(t) = vĈ′d

(t)

vT1
(t) = vTd(t) vT̂1

(t) = vT̂d(t)

for all 1 ≤ d ≤ D and t ≥ 0, we have to establish a relation between the notions
of label equivalence and semi-isomorphism.

3.3.2 Exact Fluid Lumpability and Semi-Isomorphism

Let M denote a well-posed FPA model, P a tuple partition on G(M) and P
a partition of P. Given that σk : ds(P ik) → ds(P jk ), where 1 ≤ k ≤ K, es-

tablish ~P i ∼P
~P j for some ~P i, ~P j ∈ P, we show next that each σk is a semi-

isomorphism. To build on intuition, we start with a sketch of the proof strategy
used to achieve this result, which is formally stated as Theorem 10.



3.3. CONSTRUCTION 39

Since we need to show∑
P ′

(α,r)−−−→P ′′

r =
∑

σk(P ′)
(α,r)−−−→σk(P ′′)

r

for all P ′, P ′′ ∈ ds(P ik) and α ∈ A, the idea is essentially to start with∑
P∈ds(P ik)

pα(P, P ′′)Rα(M, v, P ) =
∑

P∈ds(P ik)

pα(σk(P ), σk(P ′′))Rα(M,vσ, σk(P ))

from requirement i) of Definition 23 and set

vP :=


1 , P /∈ ds(P ik)

1 , P = P ′

0 , P ∈ ds(P ik) ∧ P 6= P ′

Since this yields

pα(P ′, P ′′)Rα(M,v, P ′) = pα(σk(P ′), σk(P ′′))Rα(M,vσ, σk(P ′))

and requirement i) of Definition 23 asserts Rα(M,v, P ′) = Rα(M,vσ, σk(P ′)),
one can infer pα(P ′, P ′′) = pα(σk(P ′), σk(P ′′)) in the case of Rα(M,v, P ′) > 0,
which is always satisfied, by Lemma 3, if M is well-posed. Then, using the
well-posedness of M it is also possible to show that rα(P ′) = rα(σk(P ′)), if
rα(P ′) > 0, cf. Lemma 4, 5 and 6, which readily yields then the claim if
rα(P ′) > 0. The proof of the case rα(P ′) = 0 relies essentially on requirement
i) of Definition 23 and on the fact that rα(P ′) = 0 implies Rα(M, v, P ′) = 0.

The remainder of this section formalises these ideas.

Lemma 2. Fix an FPA model M . Then, for all α ∈ A, P ∈ B(M) and
concentration functions v of M it holds that Rα(M, v, P ) ≤ rα(M, v).

Proof. Straightforward induction on M .

Lemma 3. Fix a well-posed FPA model M , one of its fluid atoms Pk, a
P ′ ∈ ds(Pk) and assume that rα(P ′) > 0. Then Rα(M, v, P ′) > 0 for the
concentration function

vP :=


1 , P /∈ ds(Pk)

1 , P = P ′

0 , P ∈ ds(Pk) ∧ P 6= P ′

Proof. We prove this by structural induction on M .

• M = P0: Since M has then only one fluid atom, i.e. P0 = Pk, the claim
follows by rα(P ′) > 0.
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• M = M1 BC
L
M2: We assume without loss of generality that Pk ∈ G(M1).

Since the case α /∈ L follows directly from the I.H., we focus on the case
α ∈ L. Let us denote by vi the Mi-part of v. Since Rα(M1, v1, P

′) > 0
by I.H., Lemma 2 yields rα(M1, v1) > 0. Moreover, the well-posedness
of M yields rα(M2, v2) > 0. (Note that well-posedness guarantees only
the existence of some v′2 such that rα(M2, v

′
2) > 0. However, this implies

rα(M2, v2) > 0, since all concentrations of v2 are positive.) This yields
then min(rα(M1, v1), rα(M2, v2)) > 0, implying Rα(M,v, P ′) > 0.

The next three lemmas show that rα(P ′) = rα(σk(P ′)), if rα(P ′) > 0.

Lemma 4. Fix a well-posed FPA model M and one of its fluid atoms Pk. Then
there exist a δ > 0 and a set of concentrations {wP | P ∈ B(M) ∧ P /∈ ds(Pk)}
where

wE = wE′ , ∀Q ∈ G(M), Q 6= Pk. ∀E,E′ ∈ ds(Q),

such that rα(M,v) = rα(Pk, v) for all concentrations v of M which satisfy

∀P ∈ B(M).
(
P /∈ ds(Pk)⇒ vP = wP ∧ P ∈ ds(Pk)⇒ vP ≤ δ

)
.

That is, the apparent rate of M is determined by its fluid atom Pk, if the con-
centrations of B(Pk) are sufficiently smaller than those of B(M) \ B(Pk).

Proof. We prove this by structural induction on M .

• M = P0: Since M has then only one fluid atom, i.e. P0 = Pk, the claim
is trivial.

• M = M1 BC
L
M2: We assume without loss of generality that Pk ∈ G(M1),

fix using the I.H. a δ′ > 0 and a set of concentrations {w′P | P ∈ B(M1) ∧
P /∈ ds(Pk)} such that rα(M1, v1) = rα(Pk, v1) for all v1 which satisfy

∀P ∈ B(M1).
(
P /∈ ds(Pk)⇒ (v1)P = w′P ∧ P ∈ ds(Pk)⇒ (v1)P ≤ δ′

)
(3.16)

and make the following case distinction on α.

– α /∈ L: The definitions δ := δ′ and

wP :=

{
w′P , P ∈ B(M1) ∧ P /∈ ds(Pk)

0 , P ∈ B(M2)

show then the claim.

– α ∈ L: Since M is well-posed, it holds that rα(M2, v2) > 0, where
(v2)P = 1 for all P ∈ B(M2). Hence, there is a δ′′ > 0 such that

rα(M1, δ
′′v1) = δ′′rα(M1, v1) = δ′′rα(Pk, v1) ≤ rα(M2, v2)
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for all v1 which satisfy (3.16). Together with rα(M1, v1) = rα(Pk, v1)
⇔ δ′′rα(M1, v1) = δ′′rα(Pk, v1) ⇔ rα(M1, δ

′′v1) = rα(Pk, δ
′′v1) we

infer then

rα(M1 BC
L
M2, (δ

′′v1, v2)) = rα(M1, δ
′′v1) = rα(Pk, δ

′′v1)

for all such v1. From this we conclude that δ := δ′δ′′ and

wP :=

{
δ′′w′P , P ∈ B(M1) ∧ P /∈ ds(Pk)

(v2)P , P ∈ B(M2)

show the claim.

Lemma 5. Fix an FPA model M , one of its fluid atoms Pk, a P ′ ∈ ds(Pk) and
assume that there are ĉ, δ > 0 and a set of concentrations {wP | P ∈ B(M)∧P /∈
ds(Pk)} such that rα(M, vη) = ĉη for all 0 ≤ η ≤ δ, where

vηP :=


wP , P ∈ B(M) ∧ P /∈ ds(Pk)

η , P = P ′

0 , P ∈ ds(Pk) ∧ P 6= P ′

Then it holds that ĉ = rα(P ′).

Proof. We prove this by structural induction on M .

• M = P0: Since M has then only one fluid atom, i.e. P0 = Pk, the claim
is trivial.

• M = M1 BC
L
M2: We assume without loss of generality that Pk ∈ G(M1),

denote by vηi the Mi-part of vη and observe that vη2 does not depend
on η. This and the assumption yield rα(M1, v

η
1 ) ≤ rα(M2, v

η
2 ) for some

0 < δ′ ≤ δ and all 0 ≤ η ≤ δ′ in the case of α ∈ L and rα(M2, v
η
2 ) = 0 in

the case of α /∈ L. Thus, rα(M1, v
η
1 ) = rα(M,vη) = ĉη for all 0 ≤ η ≤ δ′

and the I.H. yields the claim.

Lemma 6. Fix a well-posed FPA model M , a tuple partition P = (~P 1, . . . , ~PN )

on G(M), P ik ∈ ~P i, P ′ ∈ ds(P ik) and assume that ~P i ∼P
~P j, where P denotes

some partition of P, is established by σl, 1 ≤ l ≤ Ki. Then rα(P ′) = rα(σk(P ′)),
if rα(P ′) > 0.

Proof. We note that rα(M, v) = rα(P ′)vP ′ , if v satisfies the assumption of

Lemma 4 and vP = 0 for all P ∈ ds(P ik) \ {P ′}. This and ~P i ∼P
~P j yield

rα(M,vσ) = rα(M,v) = rα(P ′)vP ′ .

Since vP ′ can be chosen from [0; δ] and vP ′ = vσσk(P ′), Lemma 5 implies rα(P ′) =

rα(σk(P ′)) in the case of rα(P ′) > 0.
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We can now establish the connection between label equivalence and semi-
isomorphism.

Theorem 10. Fix a well-posed FPA model M , a tuple partition P = {~P 1, . . .

. . . , ~PN} on G(M) and assume that ~P i ∼P
~P j for some given partition P of P.

Then, P ik is semi-isomorphic to P jk for all 1 ≤ k ≤ Ki.

Proof. Let us fix a set of bijections σl : ds(P il ) → ds(P jl ), 1 ≤ l ≤ Ki, which

establishes ~P i ∼{P} ~P j and a 1 ≤ k ≤ Ki. We will show that σk is a semi-

isomorphism between P ik and P jk . For this, we fix some P ′, P ′′ ∈ ds(P ik), an
α ∈ A, define

vP :=


1 , P ∈ B(M) ∧ P /∈ ds(P ik)

1 , P = P ′

0 , P ∈ ds(P ik) \ {P ′}

and assume first that rα(P ′) > 0. Property i) of Definition 23 yields then∑
P∈ds(P ik)

pα(P, P ′′)Rα(M,v, P ) =
∑

P∈ds(P ik)

pα(σk(P ), σk(P ′′))Rα(M,vσ, σk(P ))

which implies (together with the definition of v)

pα(P ′, P ′′)Rα(M, v, P ′) = pα(σk(P ′), σk(P ′′))Rα(M,vσ, σk(P ′)).

Since property i) also implies Rα(M,v, P ′) = Rα(M,vσ, σk(P ′)) and Lemma 3
induces Rα(M,v, P ′) > 0, we infer pα(P ′, P ′′) = pα(σk(P ′), σk(P ′′)). This and
Lemma 6 show then the desired equality∑

P ′
(α,r)−−−→P ′′

r =
∑

σk(P ′)
(α,r)−−−→σk(P ′′)

r.

Let us assume now rα(P ′) = 0. Our goal is to show that rα(σk(P ′)) = 0. For
this we observe that rα(P ′) = 0 implies Rα(M,v, P ′) = 0. This and property
i) of Definition 23 yield then Rα(M,vσ, σk(P ′)) = 0. Hence, the contraposition
of Lemma 3 shows that rα(σk(P ′)) = 0. (Note that vσ plays the role of v in the
aforementioned Lemma, as we are considering P jk and not P ik.)

The previous theorem states an implication of semi-isomorphism for pro-
jected label equivalence in the case of well-posedness. We end this section by
discussing that if the model is ill-posed, in general label equivalence does not
imply any of the stochastic notions of behavioural equivalence for PEPA.

To see this, let us consider again the ill-posed model (2.7). Given the tuple
partition P = {(P1), (Q1)}, one can show then that (P1) ∼{P} (Q1), essentially
because P2 is hindered in performing the δ2 and Q1 is hindered in performing
the δ1 action. Because of this, we conclude that label equivalence implies none
of the behavioural equivalences of Section 2.3, since each of those relations
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• Set ≈i:= ≈Pi , ≈:= (≈1 ∪ . . .∪ ≈m)∗ and fix for each 1 ≤ ν ≤ n some
P 1
ν ∈ Eν , where G(M)/ ≈= {E1, . . . , En}.

• Let us fix some arbitrary 1 ≤ ν ≤ n and P ∈ Eν . Since ≈ is the transi-
tive closure of ≈1 ∪ . . .∪ ≈m, there must exist a sequence Q1, . . . , QK
such that Q1 = P 1

ν , QK = P and Qk ≈ik Qk+1 with ik ∈ {1, . . . ,m} for
all 1 ≤ k ≤ K − 1. Note that the definition of ≈ik implies the existence

of tuples ~P ′ik ,
~P ′′ik ∈ Pik which witness Qk ≈ik Qk+1. Thus, we can ex-

tract a bijection ρk : ds(Qk) → ds(Qk+1) from the family of bijections

which establishes ~P ′ik ∼Pik
~P ′′ik . Since each ρk is a semi-isomorphism by

Theorem 10 and a composition of semi-isomorphisms is again a semi-
isomorphism, we can fix a semi-isomorphism ρP : ds(P 1

ν )→ ds(P ) and
define Σν := {ρP | P ∈ Eν}. Specifically, we set ρP 1

ν
:= idds(P 1

ν ).

Figure 3.1: Construction of the bijection family used in Theorem 11.

distinguishes between the types of action performed by a process, and, clearly,
P2 performs a δ2 activity whereas Q1 does not.

On the other hand, even isomorphism between fluid atoms is in general not
sufficient for establishing a projected label equivalence between them. To see
this, let us consider the model (C1 BC

{exec}
T1) BC

∅
C2, where C1, C2 and T1 are as

in (3.1), and take the tuple partition P = {(C1), (C2), (T1)}. Then it does not
hold that (C1) ∼{P} (C2), as C1 is in a context where it is synchronised with
T1, whereas C2 progresses independently. Using similar ideas, one can easily
construct counterexamples for tuples of length greater than one.

3.3.3 Merging of Exactly Fluid Lumpable Partitions

Let us return to our running example Sys ′ given in (3.1) and the corresponding
tuple partitions P ′1, P ′2 defined in (3.11) and (3.13), respectively. Specifically,
recall that G(Sys ′)/ ≈P′1 establishes assumption (3.4), while G(Sys ′)/ ≈P′2 yields
assumption (3.5). However, neither of these tuple partitions allows us to derive
(3.6), that is, (3.4) and (3.5) at the same time. We remark again that the
partition (3.8) would be obtained by G(Sys ′)/(≈{P′1} ∪ ≈{P′2})

∗, where ∗ denotes
the transitive closure. Crucially, one cannot find a tuple partition P of G(Sys ′)
and a partition P of P such that G(Sys ′)/ ≈{P}= G(Sys ′)/(≈{P′1} ∪ ≈{P′2})

∗,
i.e. a combination of several projected label equivalences cannot be expressed
as a projected label equivalence in general.

Fortunately, Theorem 10 can be used to prove the following crucial theorem,
which states that, in the case of well-posedness, the transitive closure of the
union of projected label equivalences induces an exactly fluid lumpable partition.
We wish to point out that the proof of the following result is constructive, as
Figure 3.1 illustrates how to construct the bijections which establish the stated
result.
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Theorem 11. Fix a well-posed FPA model M , tuple partitions P1, . . . ,Pm
of G(M) and let Pi denote the partition of Pi, where 1 ≤ i ≤ m. A set of
bijections Σ1∪ . . .∪Σn as in Figure 3.1 establishes the exact fluid lumpability of
G(M)/(≈P1

∪ . . .∪ ≈Pm)∗. Specifically, Σν relates Eν to P 1
ν , with 1 ≤ ν ≤ n.

Proof. We have to show that Σν relates Eν to P 1
ν , where 1 ≤ ν ≤ n. For this, we

fix for each P ∈ G(M) the unique 1 ≤ ν ≤ n such that P ∈ Eν and denote by ρP
the unique semi-isomorphism σ : ds(P 1

ν )→ ds(P ) in Σν . Further, we choose for
each 1 ≤ i ≤ m and 1 ≤ l ≤ li, where G(M)/ ≈i= {Ei1, . . . , Eili}, some P il ∈ Eil
and define ξiP := ρP ◦ ρ−1

P il
for all P ∈ Eil . Since Remark 2, Theorem 10 and

the definition of ≈i imply that there is a family of semi-isomorphisms σi• which
relates Eil to P il for all 1 ≤ l ≤ li and ξi• is also a family of semi-isomorphisms,
ξi• relates Eil to P il for all 1 ≤ l ≤ li.

Let us now fix some 1 ≤ ν ≤ n and Q ∈ Eν \{P 1
ν }. As Eν ∈ G(M)/ ≈, there

is a sequence of pairwise different Q1, . . . , QK such that Q1 = P 1
ν , QK = Q

and Qk ≈ik Qk+1 with ik ∈ {1, . . . ,m} for all 1 ≤ k ≤ K − 1. Notice that
Q1, . . . , QK ∈ Eν and that there is a unique 1 ≤ l ≤ lik such that Qk, Qk+1 ∈
Eikl for all 1 ≤ k ≤ K−1. Consequently, for all R ∈ ds(P 1

ν ) and 1 ≤ k ≤ K−1,
it holds that

• P ikl 6= Qk, Qk+1: vρQk (R) = v
(ξ
ik
Qk

)−1(ρQk (R))
= vρ

P
ik
l

(R) and vρQk+1
(R) =

= v
(ξ
ik
Qk+1

)−1(ρQk+1
(R))

= vρ
P
ik
l

(R)

• P ikl = Qk: vρQk+1
(R) = v

(ξ
ik
Qk+1

)−1(ρQk+1
(R))

= vρQk (R)

• P ikl = Qk+1: vρQk (R) = v
(ξ
ik
Qk

)−1(ρQk (R))
= vρQk+1

(R)

Since this holds for all 1 ≤ k ≤ K − 1, we infer that

vR = vρQ1
(R) = vρQ2

(R) = . . . = vρQK (R) = vρQ(R)

for all R ∈ ds(P 1
ν ). That is, Σν relates Eν to P 1

ν , where 1 ≤ ν ≤ n.

3.4 Related Work

As an exact form of aggregation, to the best of our knowledge the only related
technique to exact fluid lumpability is [36], its various applications [37, 38, 39]
and the extension [40]. A specialised version of this aggregation that allows
for compositional reasoning in the context of FPA is studied in Chapter 5.
Chapter 4, instead, discusses an application of exact fluid lumpability. It is
fair to say that, in contrast to exact fluid lumpability, aggregations induced
by [40] usually do not allow one to fully recover the original ODE solution from
the aggregated one. For instance, let us consider the well-known susceptible-
infected-recovered ODE model [55]

Ṡ = −βSI, İ = −γI + βSI, Ṙ = γI, (3.17)
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where β and γ refer to the average infection and recovery rate, respectively.
Watson considered in [56] a generalisation of it in which the species may be
classified into K subtypes. Specifically, the author studied the ODE model

Ṡk = −Sk
K∑
l=1

βk,lIl

İk = −γkIk + Sk

K∑
l=1

βk,lIl

Ṙk = γkIk, (3.18)

where 1 ≤ k ≤ K. Let us consider the case where the infection and recovery
rates of all subtypes are equal, i.e. β ≡ βk,l and γ ≡ γk. Then, the above ODE
system can be rewritten into

K∑
k=1

Ṡk = −β
K∑
k=1

Sk ·
K∑
l=1

Il

K∑
k=1

İk = −γ
K∑
k=1

Ik + β

K∑
k=1

Sk ·
K∑
l=1

Il

K∑
k=1

Ṙk = γ

K∑
k=1

Ik.

This implies that the ODE system (3.18) of size 3K can be aggregated to (3.17)
using the relation

S =

K∑
k=1

Sk, I =

K∑
k=1

Ik, R =

K∑
k=1

Rk.

The above aggregation can be expressed in terms of [40]. Note, however, that
the original ODE system (3.18) cannot be recovered from the aggregated one
(3.17), essentially because summation is not bijective.
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Chapter 4

Fluid Lumpability of
Nested FPA Models

This chapter starts with a conservative extension of FPA by a syntactic element
that describes replicas of composite processes, cf. Section 4.1. We convey
those ideas using a motivating example which highlights the fact that nested
models can be used to model distributed computer systems. Note, however,
that repetition patterns arise also in other fields. For instance, in the context of
biological systems [57], the cells of an organism could be expressed by composite
processes, in order to increase the level of detail. By exploiting the new syntactic
element of FPA, we show in Section 4.2 that the notion of exact fluid lumpability
can be used to aggregate the ODE systems underlying nested models to ODE
systems which do not depend on the number of replications. In Section 4.3 we
discuss, among other related work, [58] where the notion of nested models was
introduced and which can be seen as a predecessor of the theory presented in
this chapter. In [58], one aggregates ODE system by performing a model-to-
model simplification, that is one identifies the aggregated ODE system of the
original nested model as the fluid approximation of another, simplified nested
model. Unfortunately, since it can be shown that there are nested models whose
aggregated ODE systems do not arise from a model-to-model simplification, [58]
applies only to a subclass of nested models. Here, we overcome this problem
using the notion of exact fluid lumpability.

4.1 Motivating Example

Let us fix the family of sequential processes

C
~i def

= (exec, r).Ĉ
~i, T

~i def
= (exec, r).T̂

~i, U
~i def

= (io, z).Û
~i,

Ĉ
~i def

= (reset , s).C
~i, T̂

~i def
= (io, s′).T

~i, Û
~i def

= (idle, z′).U
~i, (4.1)

47
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where ~i ∈ N<ω, which replicate, in essence, CPUs, threads and resources from
the running example (3.1). Then, an application in which two independent
machines share an external resource may be described by the FPA model

Sys0 := (C1 BC
{exec}

T 1) BC
∅

(C2 BC
{exec}

T 2) BC
{io}

U1.

Note that the superscript of a label identifies the position within the model.
For instance, the label C1 refers to a group of CPUs which belong to the first
machine. Using the tuple partition P := {(C1, T 1), (C2, T 2), (U1)}, we infer
P / ∼{P}=

{
{(C1, T 1), (C2, T 2)}, {(U1)}

}
, which implies in turn the exact

fluid lumpability of
{
{C1, C2}, {T 1, T 2}, {U1}

}
.

Let us elaborate on the above example by considering two independent appli-
cations which serve a pool of users given by E = (exec, r).Ê and Ê = (io, s′).E:

Sys :=
( [(

C1,1 BC
{exec}

T 1,1
)
BC
∅

(
C2,1 BC

{exec}
T 2,1

)
BC
{io}

U1,1
]
BC
∅[(

C1,2 BC
{exec}

T 1,2
)
BC
∅

(
C2,2 BC

{exec}
T 2,2

)
BC
{io}

U1,2
] )

BC
{exec,io}

E1. (4.2)

Similarly to above, we note that the superscript of a label identifies the
sequential component. For instance, the label C1,2 refers to a group of CPUs
which belong to the first machine within the second application. Specifically,
the length of the sequence gives the number of nested repetitions. For instance,
C arises in several machines within several applications. We shall refer to the
maximal length of all sequences in a model as the nesting depth.

The fact that Sys has a nesting depth of two allows us to consider two
tuple partitions whose exactly fluid lumpable partitions can be merged by The-
orem 11. To see this, we first fix

P1 :=
{

(C1,1, T 1,1), (C2,1, T 2,1), (U1,1), (C1,2, T 1,2), (C2,2, T 2,2), (U1,2), (E1)
}

P2 :=
{

(C1,1, T 1,1, C2,1, T 2,1, U1,1), (C1,2, T 1,2, C2,2, T 2,2, U1,2), (E1)
}
.

Then, using the notion of label equivalence from Chapter 3, we show that

P1/∼{P1} =
{{

(C1,1, T 1,1), (C2,1, T 2,1)
}
,
{

(U1,1)
}
,{

(C1,2, T 1,2), (C2,2, T 2,2)
}
,
{

(U1,2)
}
,
{

(E1)
}}
,

P2/∼{P2} =
{{

(C1,1, T 1,1, C2,1, T 2,1, U1,1), (C1,2, T 1,2, C2,2, T 2,2, U1,2)
}
,
{

(E1)
}}
.

Thus, we finally conclude that

G(Sys)/(≈{P1} ∪ ≈{P2})
∗ =

{{
C1,1, C2,1, C1,2, C2,2

}
,{

T 1,1, T 2,1, T 1,2, T 2,2
}
,
{
U1,1, U1,2

}
,
{
E1
}}
.

This shows that the ODE system of Sys, which depends on the number of
machines and applications, can be aggregated to an ODE system which does
not depend on those multiplicities.
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In order to systematically construct FPA models with (nested) repetitions,
we abbreviate by JMKNL the cooperation of N replicas of a given model M with
respect to some action set L. For instance, (4.1) is induced by the nested FPA
model

S̃ys0 :=
r
C BC
{exec}

T
zNM
∅

BC
{io}

JUK1
∅ , (4.3)

with NM = 2, whereas Sys is induced by the nested FPA model

S̃ys :=

sr
C BC
{exec}

T
zNM
∅

BC
{io}

JUK1
∅

{NI

∅
BC
{exec,io}

JEK1
∅ , (4.4)

with NM = 2 and NI = 2. Note that in (4.4) the replication operator J·K·· is

applied to S̃ys0, leading to labels with sequences of length two. Moreover, the

fluid approximation of S̃ys is given by an ODE system of size

NI
(
NM (|ds(C)|+ |ds(T )|) + |ds(U)|

)
+ |ds(E)| = NI(4NM + 2) + 2.

That is, the ODE representation grows polynomially with the nesting depth and
may hinder the practical feasibility of the analysis of large-scale models.

Using exact fluid lumpability, we show in this chapter that the ODE system
of a nested FPA model may be exactly related to a lumped ODE system whose
size does not depend on the multiplicities. For instance, the lumped ODE system
of (4.4) will have a size of 1 · (4 · 1 + 2) + 2 = 8.

4.2 Definitions and Results

We start with a definition that provides the syntactic means to modelling sys-
tems with arbitrarily nested repetitions.

Definition 25 (Nested FPA Model). The syntax of a nested FPA model is
given by the grammar

M̃ ::= M̃ BC
L
M̃ | JM̃KNL | JMKNL ,

where M is an FPA model, L ⊆ A and N ∈ N. We assume that in a nested
FPA model all constituent FPA models have disjoint label sets and that L = ∅
if N = 1 for all terms JM̃KNL and JMKNL .

As discussed in Section 4.1, JMKNL describes a cooperation of N copies of the
FPA model M over the action set L, whereas JM̃KNL refers to a cooperation of N
copies of processes which itself consists of replicated processes, thus capturing
multiple levels of nesting. Throughout this section, we use M̃ to denote a nested
FPA model, and M to denote an FPA model. Before giving the semantics, we
define the set of fluid atoms of a nested FPA model.
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Definition 26. Fix a nested FPA model M̃ . The label set of M̃ , G̃(M̃), is given
by

G̃(M̃) :=


G̃(M̃0) ∪ G̃(M̃1) , M̃ = M̃0 BC

L
M̃1

G̃(M̃0) , M̃ = JM̃0KNL
G(M0) , M̃ = JM0KNL

For instance, it holds that G̃(S̃ys) = {C, T, U,E}.
Next, we introduce the copies of the fluid atoms of a nested FPA model.

Definition 27. Fix a nested FPA model M̃ . The set of replicated constants

of M̃ is {Q~i |~i ∈ N<ω and Q ∈ ds(P ) for some P ∈ G̃(M̃)} with

Q
~i def

=
∑
j∈J

(αj , rj).Q
~i
j if Q

def
=
∑
j∈J

(αj , rj).Qj .

For instance, the sequential processes C1 and C1,1 in (4.2) are copies of C.
Finally, the following definition permits to replace fluid atoms within an FPA
model.

Definition 28. Let M be an FPA model and G(M) = {P1, . . . , Pn}. For a
set of labels {Q1, . . . , Qn}, the FPA model M [P1/Q1, . . . , Pn/Qn] (alternatively,
M [Pi/Qi | 1 ≤ i ≤ n]) is obtained from M by replacing Pk with Qk, for 1 ≤
k ≤ n.

For instance, it holds that (C BC
L
T )[C/C1, T/T 1] = C1 BC

L
T 1.

We are now in the position to define the semantics of a nested FPA model.

Definition 29 (Interpretation Function). A nested FPA model M̃ is interpreted
as the ordinary FPA model I(M̃), which is recursively given by

I(M̃0) BC
L
I(M̃1) , M̃ = M̃0 BC

L
M̃1

I
(
JI(M̃0)KNL

)
, M̃ = JM̃0KNL

M [P1/Λ(P1, 1), . . . , Pm/Λ(Pm, 1)] , M̃ = JMKNL ∧N = 1 ∧
G(M) = {P1, . . . , Pm}

M [P1/Λ(P1, 1), . . . , Pm/Λ(Pm, 1)] BC
L
· · ·

· · · BC
L
M [P1/Λ(P1, N), . . . , Pm/Λ(Pm, N)] , M̃ = JMKNL ∧N > 1 ∧

G(M) = {P1, . . . , Pm},

where

Λ(P, i) :=

{
Qi , ∃Q ∈ G̃(M̃).

(
P = Q

)
Q
~j,i , ∃Q ∈ G̃(M̃). ∃~j ∈ N<ω.

(
P = Q

~j
)

denotes the superscript appending function.

A simple inductive argument shows that I(M̃) is indeed an ordinary FPA
model if M̃ is a nested FPA model. Crucially, the interpretation function is such
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that the labels preserve all the information about the replication structure of
the nested model. The function Λ carries out a suitable manipulation of labels
which keeps track of the nesting hierarchy by appending unique sequences as
superscripts.

For instance, by applying I to the motivating example (4.4), one infers

I(S̃ys) = I

(s
I
(r

C BC
{exec}

T
z2

∅

)
BC
{io}
I
(
JUK1

∅

){2

∅

)
BC
{exec,io}

I
(
JEK1

∅

)
= I

(r(
C1 BC

{exec}
T 1
)
BC
∅

(
C2 BC

{exec}
T 2
)
BC
{io}

U1
z2

∅

)
BC
{exec,io}

E1

=
( [(

C1,1 BC
{exec}

T 1,1
)
BC
∅

(
C2,1 BC

{exec}
T 2,1

)
BC
{io}

U1,1
]
BC
∅[(

C1,2 BC
{exec}

T 1,2
)
BC
∅

(
C2,2 BC

{exec}
T 2,2

)
BC
{io}

U1,2
] )

BC
{exec,io}

E1

In particular, I(S̃ys) is, as expected, the FPA model Sys.

The following notions will be needed to state the main result of the chapter.

Definition 30. Fix a nested FPA model M̃ and let P ∈ G̃(M̃). Then, P (M̃)
denotes the set of copies of P .

For instance, it holds that C(S̃ys) =
{
C1,1, C2,1, C1,2, C2,2

}
and U(S̃ys) =

{U1,1, U1,2}.

Definition 31. Fix a nested FPA model M̃ . Then, for all P ∈ G̃(M̃) and

P
~i, P

~j ∈ P (M̃), the bijections

ds(P
~i)→ ds(P

~j), Q
~i 7→ Q

~j , where Q ∈ ds(P ),

are called copy-isomorphisms.

Let us fix a nested FPA model M̃ such that I(M̃) is well-posed and G̃(M̃) =
{P1, . . . , Pn}. In the following, we show that {Pi(M̃) | 1 ≤ i ≤ n} is an
exactly fluid lumpable partition of G(I(M̃)) established by copy-isomorphisms,
cf. Theorem 14. We do so by proving first that there exist tuple partitions
P1, . . . ,Pm of G(I(M̃)) and partitions P1, . . . ,Pm of P1, . . . ,Pm, respectively,
such that

1 ) Pl / ∼Pl is established by copy-isomorphisms for all 1 ≤ l ≤ m
2 ) G(I(M̃)) / (≈P1

∪ . . .∪ ≈Pm)∗ = {Pi(M̃) | 1 ≤ i ≤ n} (4.5)

This and Theorem 11 yield then the claim. Before establishing (4.5), however,
one has first to prove the following special case of it.

Theorem 12. Fix an FPA model M and let {P1, . . . , Pn} be the labels of
G(M). Then for the tuple partition P :=

{(
P 1

1 , . . . , P
1
n

)
, . . . ,

(
PN1 , . . . , PNn

)}
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of G(I(JMKNL )) and two arbitrary tuples
(
P i1, . . . , P

i
n

)
and

(
P j1 , . . . , P

j
n

)
, the

copy-isomorphisms

σk : ds(P ik)→ ds(P jk ), P i 7→ P j , P ∈ ds(Pk),

where 1 ≤ k ≤ n, establish
(
P i1, . . . , P

i
n

)
∼{P}

(
P j1 , . . . , P

j
n

)
.

Proof. Let us writeM1 BC
L
. . . BC

L
MN for I(JMKNL ) and define Sys := I(JMKNL ).

Then, for an arbitrary concentration function v of Sys, it holds that

rα(Sys, v) = min{rα(M1, v), . . . , rα(MN , v)}
= min{rα(M1, vσ), . . . , rα(MN , vσ)} = rα(Sys, vσ)

for all α ∈ L and

rα(Sys, v) = rα(M1, v) + . . .+ rα(MN , v)

= rα(M1, vσ) + . . .+ rα(MN , vσ) = rα(Sys, vσ)

for all all α /∈ L, where vσ is as in Definition 23. Moreover, if α ∈ L, it holds
that

Rα(Sys, v, P ) =
Rα(M l, v, P )

rα(M l, v)
rα(Sys, v)

for all 1 ≤ l ≤ N , 1 ≤ k ≤ n and P ∈ ds(P lk). We show this by induction on N :

• N = 1: Clear.

• N → N + 1: Since the case is obvious if l = N + 1, we focus on the case
1 ≤ l ≤ N . Then it holds that

Rα(I(JMKN+1
L ), v, P ) =

Rα(I(JMKNL ), v, P )

rα(I(JMKNL ), v)
rα(I(JMKN+1

L ), v)

and the induction hypothesis

Rα(I(JMKNL ), v, P ) =
Rα(M l, v, P )

rα(M l, v)
rα(I(JMKNL ), v)

yields the claim.

Using this auxiliary result, we infer in the case of α ∈ L that

Rα(Sys, v, P i) =
Rα(M i, v, P i)

rα(M i, v)
rα(Sys, v)

=
Rα(M j , vσ, P j)

rα(M j , vσ)
rα(Sys, vσ) = Rα(Sys, vσ, P j)
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for all 1 ≤ k ≤ n, P i ∈ ds(P ik) and

Rα(Sys, v, P l) =
Rα(M l, v, P l)

rα(M l, v)
rα(Sys, v)

=
Rα(M l, vσ, P l)

rα(M l, vσ)
rα(Sys, vσ) = Rα(Sys, vσ, P l)

for all 1 ≤ k ≤ n, l ∈ {1, . . . , N} \ {i, j} and P l ∈ ds(P lk). Since in the case of
α /∈ L it also holds that

Rα(Sys, v, P i) = Rα(M i, v, P i) = Rα(M j , vσ, P j) = Rα(Sys, vσ, P j)

for all 1 ≤ k ≤ n, P i ∈ ds(P ik) and

Rα(Sys, v, P l) = Rα(M l, v, P l) = Rα(M l, vσ, P l) = Rα(Sys, vσ, P l)

for all 1 ≤ k ≤ n, l ∈ {1, . . . , N} \ {i, j} and P l ∈ ds(P lk), the proof is complete.

Equipped with Theorem 12, (4.5) can be shown by means of structural
induction.

Theorem 13. Fix a nested FPA model M̃0 and let {P1, . . . , Pn} be the labels
G̃(M̃0). Then, under the assumption that I(M̃0) is well-posed, there exist tuple
partitions P1, . . . ,Pm of G(I(M̃0)) and partitions P1, . . . ,Pm of P1, . . . ,Pm,
respectively, such that

1) Pl / ∼Pl , where 1 ≤ l ≤ m, is established by copy-isomorphisms

2) G(I(M̃0)) / (≈P1 ∪ . . .∪ ≈Pm)∗ = {Pi(M̃0) | 1 ≤ i ≤ n}

Proof. We prove this by induction on M̃0.

• M̃0 = JMKNL : Follows from Theorem 12.

• M̃0 = JM̃KNL : Clearly, the well-posedness of I(JM̃KNL ) induces that of
I(M̃) and one can apply the induction hypothesis which ensures that there
are tuple partitions P1, . . . ,Pm of G(I(M̃)) and partitions P1, . . . ,Pm of
P1, . . . ,Pm, respectively, witnessing property 1) and 2) of M̃ . We define

Pkl := {Λ(~P , k) | ~P ∈ Pl}

Pk
l :=

{
{Λ(~P , k) | ~P ∈ p} | p ∈ Pl

}
for all 1 ≤ l ≤ m and 1 ≤ k ≤ N , where Λ caries over to tuples of
labels in straightforward manner. Using Theorem 8, one can prove by
induction on N that ~P ′ ∼Pl

~P ′′ induces Λ(~P ′, k) ∼P1
l∪...∪P

N
l

Λ(~P ′′, k)
for all 1 ≤ k ≤ N . Moreover, since also the converse can be shown by
induction on N , property 2) yields

G
(
I
(
JM̃KNL

))
/ (≈P1

1∪...∪PN1 ∪ . . .∪ ≈P1
m∪...∪PNm)∗ =

=
{

Λ(P1(M̃), 1), . . . ,Λ(Pn(M̃), 1), . . . ,Λ(P1(M̃), N), . . . ,Λ(Pn(M̃), N)
}
.
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Let us identify the labels of G(I(M̃)) by {Y1, . . . , Yν} and define

P :=
{(

Λ(Y1, 1), . . . ,Λ(Yν , 1)
)
, . . . ,

(
Λ(Y1, N), . . . ,Λ(Yν , N)

)}
.

Then, as Theorem 12 induces

P / ∼{P}=
{{(

Λ(Y1, 1), . . . ,Λ(Yν , 1)
)
, . . . ,

(
Λ(Y1, N), . . . ,Λ(Yν , N)

)}}
and

{Λ(Yi, k) | 1 ≤ i ≤ ν} =
⋃
{Λ(Pi(M̃), k) | 1 ≤ i ≤ n}

for all 1 ≤ k ≤ N , one infers that

G
(
I
(
JM̃KNL

))
/ (≈{P} ∪ ≈P1

1∪...∪PN1 ∪ . . .∪ ≈P1
m∪...∪PNm)∗ =

= {Pi(JM̃KNL ) | 1 ≤ i ≤ n} .

Since (P1
l ∪ . . . ∪ PNl ) / ∼P1

l∪...∪P
N
l

, where 1 ≤ l ≤ m, is established by

copy-isomorphisms thanks to property 1) and the same obviously holds
for P / ∼{P}, the case is complete.

• M̃0 = M̃0 BC
L
M̃1: Assume without loss of generality that {P1, . . . , Pn′}

and {Pn′+1, . . . , Pn} are the labels of G̃(M̃0) and G̃(M̃1), respectively.
Since the well-posedness of I(M̃0) induces that of I(M̃ j), the induction
hypothesis may be applied and ensures that there exist tuple partitions
Pj1 , . . . ,P

j
mj of G(I(M̃ j)) and partitions Pj

1, . . . ,P
j
mj of Pj1 , . . . ,P

j
mj , re-

spectively, which witness property 1) and 2) of M̃ j , where j = 0, 1. Iden-
tifying the labels of G(I(M̃ j)) by {Y j1 , . . . , Y jνj}, we define

Pjl := Pjl ∪{(Y
1−j
1 , . . . , Y 1−j

ν1−j
)} and P

j

l := Pj
l ∪
{
{(Y 1−j

1 , . . . , Y 1−j
ν1−j

)}
}
,

where 1 ≤ l ≤ mj , and observe using Theorem 8 that ~P ′ ∼Pjl
~P ′′ implies

~P ′ ∼
P
j
l

~P ′′ for all 1 ≤ l ≤ mj and ~P ′, ~P ′′ ∈ Pjl . Since also the converse

holds thanks to the well-posedness of I(M̃0), property 2) yields

G(I(M̃0)) / (≈
P
j
1
∪ . . .∪ ≈

P
j

mj
)∗ ={{

Pi(M̃
0) | 1 ≤ i ≤ n′

}
∪
{
{Y 1

k } | 1 ≤ k ≤ ν1

}
, j = 0{

Pi(M̃
1) | n′ + 1 ≤ i ≤ n

}
∪
{
{Y 0

k } | 1 ≤ k ≤ ν0

}
, j = 1

and we infer

G(I(M̃0)) / (≈
P

0
1
∪ . . .∪ ≈

P
0
m0
∪ ≈

P
1
1
∪ . . .∪ ≈

P
1
m1

)∗ =

= {Pi(M̃0) | 1 ≤ i ≤ n′} ∪ {Pi(M̃1) | n′ + 1 ≤ i ≤ n}
= {Pi(M̃0) | 1 ≤ i ≤ n}.

Since 1) ensures that Pjl / ∼
P
j
l
, where j = 0, 1 and 1 ≤ l ≤ mj , is

established by copy-isomorphisms, the case is complete.
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We are now in a position to state the main result of the chapter.

Theorem 14. Fix a nested FPA model M̃ and let G̃(M̃) = {P1, . . . , Pn}. Then,
if I(M̃) is well-posed, {Pi(M̃) | 1 ≤ i ≤ n} is an exactly fluid lumpable partition
of G(I(M̃)) and one can choose copy-isomorphisms as the establishing bijections.

Proof. The claim follows by Theorem 13, Theorem 11 and the fact that all
bijections in Figure 3.1 can be chosen as copy-isomorphisms.

4.3 Related Work

An alternative route for an efficient analysis of PEPA models with replications
of composite processes is to identify classes of models that enjoy a product form
solution, whereby the steady-state joint probability distribution of a component-
based model can be expressed as the product of the marginal probability dis-
tributions of the constituting components, which are often sensibly easier to
obtain. Originally researched in the context of queueing networks (e.g., [59]),
product forms have been also studied in the context of stochastic Petri nets [60]
and more general compositions of Markov chains [61]. In PEPA, [62, 63] syntac-
tically characterise classes of models that admit a product form. Instead, [64]
studies a class of queueing-network type PEPA models that are amenable to
mean value analysis [64], which makes the analysis only linearly dependent on
job populations, as opposed to a generally polynomial growth with lumping
techniques. A general framework for product forms for PEPA is that of Harri-
son’s Reversed Compound Agent Theorem [65]. In all these works, the PEPA
model must satisfy certain syntactical conditions which restrict the applicability
of those results; for instance, in general (4.3) does not admit a product form [66].

In the context of layered queueing networks [67], Woodside et al. have devel-
oped a method for efficiently analysing replicated subsystems, which are defined
in a similar fashion as our nested models in terms replicas of non-elementary
components of the network [68]. Their approach scales very well with increasing
number of replicas because the solution method is based on approximate mean
value analysis (e.g., [69, 70]), which is insensitive to the network’s customer
populations. Despite being analogous in spirit, our approach is starkly different
for two reasons: first, it is an exact form of approximation in the sense that the
original ODE solution can be fully recovered from the aggregated one; second,
the relationship between the fluid trajectories of the original and the aggregated
model is valid for the entire time horizon for which the ODE is defined, unlike
in layered queues or in exact product-form solutions where only steady-state
estimates are available.

In the remainder of this section, we compare the theory of this chapter to its
predecessor [58]. There, we study families of models that, though being struc-
turally different, are all related to the same underlying ODE system. This is
done by systematically simplifying, under certain assumptions, a given model
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into one with fewer fluid atoms. Although the original and simplified models
share a common ODE system, it can be shown that they are, in general, not
semi-isomorphic, not strongly bisimilar and not strongly equivalent. A numer-
ical study motivated by this observation suggests that simplified models are
approximated better by the common ODE system. Since not all ODE aggrega-
tions can be expressed in terms of a model-to-model simplification, we conclude
that the theory of this chapter improves [58].

Example We relate [58] to the approach of this chapter using our running
example. Specifically, let us consider the variation((

C1 BC
{exec}

T 1
)
BC
∅
. . . BC

∅

(
CD BC

{exec}
TD
))

BC
{io}

U1 (4.6)

of (3.1) where U1 def
= (io, z).U1 and Cd, T d are as before, that is

Cd
def
= (exec, r).Ĉd, Ĉd

def
= (reset , s).Cd, T d

def
= (exec, r).T̂ d, T̂ d

def
= (io, s′).T d.

Then, similarly to the running example (3.1), it can be shown that the
partition

{
{C1, . . . , CD}, {T 1, . . . , TD}, {U1}

}
is exactly fluid lumpable. This

implies that the fluid approximation of (4.6)

v̇Cd = −rmin
(
vCd , vTd

)
+ svĈd v̇Ĉd = −v̇Cd

v̇Td = −rmin
(
vCd , vTd

)
+

s′vT̂d

s′
∑D
d′=1 vT̂d′

min
(
s′

D∑
d′=1

vT̂d′ , zvU1

)
v̇T̂d = −v̇Td

v̇U1 = 0,

where 1 ≤ d ≤ D, can be recovered by solving

v̇C1 = −rmin (vC1 , vT 1) + svĈ1 v̇Ĉ1 = −v̇C1

v̇T 1 = −rmin (vC1 , vT 1) + (1/D) min
(
s′D · vT̂ 1 , zvU1

)
v̇T̂ 1 = −v̇T 1

v̇U1 = 0, (4.7)

if it holds that vPd(0) = vPd′ (0) for all 1 ≤ d, d′ ≤ D and P ∈ {C, Ĉ, T, T̂}.
Note that by setting

v′U1 = vU1 and v′P 1 = D · vP 1 , P ∈ {C, Ĉ, T, T̂},

and multiplying the first four ODEs of (4.7) by D, one infers that

v̇′C1 = −rmin (v′C1 , v′T 1) + sv′
Ĉ1 v̇′

Ĉ1 = −v̇′C1

v̇′T 1 = −rmin (v′C1 , v′T 1) + min
(
s′ · v′

T̂ 1 , zv
′
U1

)
v̇′
T̂ 1 = −v̇′T 1

v̇′U1 = 0 (4.8)

This is remarkable in that the above ODE system describes the fluid approxi-
mation of (

C1 BC
{exec}

T 1
)
BC
{io}

U1.
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From this, we infer that the fluid approximations of the nested FPA models

r
C BC
{exec}

T
zD

∅
BC
{io}

JUK1
∅ and

r
C BC
{exec}

T
z1

∅
BC
{io}

JUK1
∅ , (4.9)

are related by

v′U1 = vU1 and v′P 1 = D · vPd , P ∈ {C, Ĉ, T, T̂}, 1 ≤ d ≤ D. (4.10)

Stochastic Difference Next, we show that, in general, the original and sim-
plified models are stochastically different. For this, let us denote by

Sys :=
((
C[NC ] BC

{exec}
T [NT ]

)
BC
∅
. . . BC

∅

(
C[NC ] BC

{exec}
T [NT ]

))
BC
{io}

U [NU ]

and
Sys ′ :=

(
C[D ·NC ] BC

{exec}
T [D ·NT ]

)
BC
{io}

U [NU ]

the PEPA models induced by (4.9) and (4.10). We proceed by noting that,
although the total number of sequential components is equal in both models,
Sys ′ has, intuitively, a higher communication potential than Sys. To see this,
assume for the sake of simplicity that NC = NT = NU = 1 and D = 2. Then,
although the models(

C BC
{exec}

T̂
)
BC
∅

(
Ĉ BC
{exec}

T
)
BC
{io}

U and
(
C ‖ Ĉ

)
BC
{exec}

(
T ‖ T̂

)
BC
{io}

U

have the same number of sequential components, the first model, in contrast to
the second one, cannot perform an exec action. This observation is at the basis
of the proof that, in general, Sys and Sys ′ are not strongly bisimilar. Indeed,
the following can be shown.

Proposition 2. In general, Sys and Sys ′ are

i) Not semi-isomorphic.

ii) Not strongly bisimilar.

iii) Not strongly equivalent.

Proof. We start by observing that Sys and Sys ′ cannot be semi-isomorphic
because of |ds(Sys ′)| < |ds(Sys)| and proceed by providing a winning strategy
for the attacker in a bisimulation game, as illustrated in Figure 4.1. Each line
in this figure denotes a move of the game in the case of D = 2; the strategy,
however, can be easily generalised for arbitrary D. The transitions are labelled
with the role (where A: and D: stand for attacker and defender, respectively)
and the action type chosen. The rates are suppressed, as they are not relevant
for the game.

Statements i) and ii) hold for any values of the rates r, s, and s′, any D ≥ 2
and any initial populations NC , NT and NU . Instead, in order to show that in
general Sys is not strongly equivalent to Sys ′, we resort to numerical solution
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of the two CTMCs in the specific case where r = 4, s = s′ = 1, D = 2 and
NC = NT = NU = 1. Let us assume towards a contradiction that Sys and Sys ′

are strongly equivalent, that is, we can fix strong equivalence relations R on
ds(Sys) and R′ on ds(Sys ′) such that the corresponding lumped CTMCs stand
in an one-to-one correspondence, cf. Section 8.5 in [7].

Next, we fix an arbitrary E′0 ∈ [Sys ′]R′ . As pointed out in the proof of
Proposition 8.3.1 in [7], it must hold that rexec(Sys ′) = rexec(E′0). Hence, we
infer E′0 = Sys ′, because Sys ′ is the only state in ds(Sys ′) with an exec apparent
rate of min(2r, 2r) = 2r. Consequently, [Sys ′]R′ = {Sys ′}.

Since R and R′ are strong equivalence relations, there exists an S ⊆ ds(Sys)
such that π(Sys ′) =

∑
s∈S π(s), where π(s) denotes the steady-state proba-

bility of s in the corresponding CTMC. (In essence, S is the macro state in
ds(Sys)/R which corresponds to the macro state [Sys ′]R′ in ds(Sys ′)/R′.) We
found that π(Sys ′) was equal to 0.01345 and min{π(s) | s ∈ ds(Sys)} was equal
to 0.01640 up to the fifth decimal digit across a range of solution algorithms such
as Gaussian elimination and the methods of generalised minimal residual and
biconjugate gradient [71]. Since this is a contradiction to π(Sys ′) =

∑
s∈S π(s),

the proof is complete.

Remark 4. Among being of interest on its own, the above result shows that
the notion of exact fluid lumpability cannot be captured by common stochastic
equivalence relations.

Numerical Study Above, we have established that the fluid approximation
of Sys can be recovered from that of Sys ′. Moreover, Sys and Sys ′ were identified
as stochastically different. Since their common ODE system (4.8) approximates
the concentration trajectories of the sequential components, it is interesting to
assess which CTMC model between Sys and Sys ′ is best approximated by the
ODE solution.

This study is here conducted by means of a large numerical assessment over
five thousand instances of Sys which differed in the actual values for the rate
parameters r, s, and s′, and in the initial population levels NC , NT , and NU .
These parameters were all drawn from uniform distributions. The range for
NC , NT , and NU was set to 1, . . . , 20, the range for D was 1, . . . , 10, whereas
the range for all rate values was [0.01, 100.0]. For each such pair, we computed
the steady-state distributions of the CTMC of Sys and that of Sys ′, using a
stochastic simulation algorithm with the method of batch means and imposing
a stopping condition of 5% radius at 95% confidence intervals in both cases.
(Standard numerical solution of the CTMC by linear algebra was not possible
with this data set due to the extremely large state spaces involved.) The expec-

tations of the total number of components in state C, Ĉ, T , T̂ , hereby denoted
by E[C], . . . ,E[T̂ ], were compared against the solution to the ODE vC , . . . , vT̂ .
The following percentage errors were computed:

Error = 100 · max
P∈{C,Ĉ,T,T̂}

{
|E[P ]− vP | / E[P ]

}
.
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(
[NC , 0] BC

{exec}
[NT , 0]

)
‖
(

[NC , 0] BC
{exec}

[NT , 0]
)
BC
{io}

[NU ]
A:exec−−−−−→(

[NC − 1, 1] BC
{exec}

[NT − 1, 1]
)
‖
(

[NC , 0] BC
{exec}

[NT , 0]
)
BC
{io}

[NU ](
[2NC , 0] BC

{exec}
[2NT , 0]

)
BC
{io}

[NU ]
D:exec−−−−−→(

[2NC − 1, 1] BC
{exec}

[2NT − 1, 1]
)
BC
{io}

[NU ](
[NC − 1, 1] BC

{exec}
[NT − 1, 1]

)
‖
(

[NC , 0] BC
{exec}

[NT , 0]
)
BC
{io}

[NU ]
A:exec−−−−−→(

[NC − 1, 1] BC
{exec}

[NT − 1, 1]
)
‖
(

[NC − 1, 1] BC
{exec}

[NT − 1, 1]
)
BC
{io}

[NU ](
[2NC − 1, 1] BC

{exec}
[2NT − 1, 1]

)
BC
{io}

[NU ]
D:exec−−−−−→(

[2NC − 2, 2] BC
{exec}

[2NT − 2, 2]
)
BC
{io}

[NU ]

...(
[0, NC ] BC

{exec}
[0, NT ]

)
‖
(

[1, NC − 1] BC
{exec}

[1, NT − 1]
)
BC
{io}

[NU ]
A:exec−−−−−→(

[0, NC ] BC
{exec}

[0, NT ]
)
‖
(

[0, NC ] BC
{exec}

[0, NT ]
)
BC
{io}

[NU ](
[1, 2NC − 1] BC

{exec}
[1, 2NT − 1]

)
BC
{io}

[NU ]
D:exec−−−−−→(

[0, 2NC ] BC
{exec}

[0, 2NT ]
)
BC
{io}

[NU ](
[0, NC ] BC

{exec}
[0, NT ]

)
‖
(

[0, NC ] BC
{exec}

[0, NT ]
)
BC
{io}

[NU ]
A:reset−−−−−→(

[1, NC − 1] BC
{exec}

[0, NT ]
)
‖
(

[0, NC ] BC
{exec}

[0, NT ]
)
BC
{io}

[NU ](
[0, 2NC ] BC

{exec}
[0, 2NT ]

)
BC
{io}

[NU ]
D:reset−−−−−→(

[1, 2NC − 1] BC
{exec}

[0, 2NT ]
)
BC
{io}

[NU ](
[1, NC − 1] BC

{exec}
[0, NT ]

)
‖
(

[0, NC ] BC
{exec}

[0, NT ]
)
BC
{io}

[NU ]
A:io−−−→(

[1, NC − 1] BC
{exec}

[0, NT ]
)
‖
(

[0, NC ] BC
{exec}

[1, NT − 1]
)
BC
{io}

[NU ]

[1, 2NC − 1] BC
{exec}

[0, 2NT ] BC
{io}

[NU ]
D:io−−−→(

[1, 2NC − 1] BC
{exec}

[1, 2NT − 1]
)
BC
{io}

[NU ](
[1, 2NC − 1] BC

{exec}
[1, 2NT − 1]

)
BC
{io}

[NU ]
A:exec−−−−−→(

[0, 2NC ] BC
{exec}

[, 2NT ]
)
BC
{io}

[NU ](
[1, NC − 1] BC

{exec}
[0, NT ]

)
‖
(

[0, NC ] BC
{exec}

[1, NT − 1]
)
BC
{io}

[NU ]
D:exec−−−−−→  

Figure 4.1: Bisimulation game for Sys and Sys ′. For the sake of readability
we assume that D = 2, introduce the abbreviations [MC ,MC′ ] := C[MC ] ‖
C ′[MC′ ], [MT ,MT ′ ] := T [MT ] ‖ T ′[MT ′ ], [NU ] := U [NU ] and use the canoni-
cal form of PEPA [13], where C ‖ C ′ is the representative of C ‖ C ′ and C ′ ‖ C,
T ‖ T ′ is the representative (in lexicographical order) of T ‖ T ′ and T ′ ‖ T , and
so on (i.e., we disregard the order of independent components).
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Model 5% 50% Avg. 95%

Error of the CTMCs Sys 0.055 0.372 4.924 32.554
Error of the simplified CTMCs Sys ′ 0.047 0.294 3.057 16.355

Table 4.1: 5% quantile, median, average and 95% quantile for the approximation
error of over the 5000 randomly generated instances of Sys and Sys ′.

Table 4.1 shows the statistics of the as-defined errors across all 5000 ran-
domly generated models. For both groups of CTMCs, the ODE accuracy is
acceptable, although the simplified CTMCs tend to be better approximated.
The fact that the median is one order of magnitude smaller than the average
error indicates that the error distribution is more concentrated at low values.
The rather large errors reported for a small percentage of the models can be
explained by the fact that the population sizes considered in this study are
relatively low, which makes the fluid approximation less precise in general.

Expressiveness of [58] Using similar arguments as in the case of Sys and
Sys ′, nested FPA models with nesting depth greater than one can be simplified.
For instance, the nested FPA model

sr
C BC
{exec}

T
zNM
∅

BC
{io}

JUK1
∅

{NI

∅
BC
{exec,io}

JEK1
∅

may be first related to

sr
C BC
{exec}

T
zNM
∅

BC
{io}

JUK1
∅

{1

∅
BC
{exec,io}

JEK1
∅

via

v′P i,1 = NI · vP i,j , 1 ≤i ≤ NM , 1 ≤j ≤ NI , P ∈ {C, Ĉ, T, T̂},
v′U1,1 = NI · vU1,j , 1 ≤j ≤ NI ,

v′P = vP , P ∈ {E1, Ê1}.

Afterwards, the model

sr
C BC
{exec}

T
zNM
∅

BC
{io}

JUK1
∅

{1

∅
BC
{exec,io}

JEK1
∅ ,

can be related to

sr
C BC
{exec}

T
z1

∅
BC
{io}

JUK1
∅

{1

∅
BC
{exec,io}

JEK1
∅
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via

v′′P 1,1 = NM · v′P i,1 , 1 ≤i ≤ NM , P ∈ {C, Ĉ, T, T̂},
v′′U1,1 = v′U1,1 ,

v′′P = v′P , P ∈ {E1, Ê1}.

Indeed, [58] identifies, essentially, a class of nested FPA models whose mem-
bers are amenable to such an iterative simplification strategy. In contrast to
the aggregation technique of this chapter, however, not all nested FPA models
can be simplified. To see this, let us consider the FPA model

I
(
JT K2
{exec} BC

{exec,io}
JEK1

∅

)
=
(
T 1 BC

{exec}
T 2
)

BC
{exec,io}

E1

with T and E as before, meaning that

T
def
= (exec, r).T̂ , T̂

def
= (io, s′).T, E

def
= (exec, r).Ê, Ê

def
= (io, s′).E.

Then, since the partition
{
{T 1, T 2}, {E1}

}
is exactly fluid lumpable thanks to

Theorem 14, the underlying ODE system

v̇T 1 = −rmin(vT 1 , vT 2 , vE1) + s′
vT̂ 1

vT̂ 1 + vT̂ 2

min(vT̂ 1 + vT̂ 2 , vÊ1), v̇T̂ 1 = −v̇T 1 ,

v̇T 2 = −rmin(vT 1 , vT 2 , vE1) + s′
vT̂ 2

vT̂ 1 + vT̂ 2

min(vT̂ 1 + vT̂ 2 , vÊ1), v̇T̂ 2 = −v̇T 2 ,

v̇E1 = −rmin(vT 1 , vT 2 , vE1) + s′min(vT̂ 1 + vT̂ 2 , vÊ1), v̇Ê1 = −v̇E1 .

can be aggregated to

v̇T 1 = −rmin(vT 1 , vE1) + s′(1/2) min(2vT̂ 1 , vÊ1), v̇T̂ 1 = −v̇T 1 ,

v̇E1 = −rmin(vT 1 , vE1) + s′min(2vT̂ 1 , vÊ1), v̇Ê1 = −v̇E1 .

In contrast to (4.9), however, the above ODE system cannot be related to the
model JT K1

∅ BC
{exec,io}

JEK1
∅. To see this, note that minima arise in FPA only in the

case of synchronisation. Thus, the definitions of T and E imply that the flux
underlying io must be the same, but

s′(1/2) min(2vT̂ 1 , vÊ1) < s′min(2vT̂ 1 , vÊ1).
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Chapter 5

Ordinary Fluid Lumpability

As discussed, exact fluid lumpability considers a partition of labels such that
elements in the same part have the same solution. Instead, in the case of
ordinary fluid lumpability which was introduced in [44] for an extension of FPA,
the sums of the solutions of the elements within the same part are fully recovered
from the solution of a (smaller) ODE system consisting of one single ODE for
a representative element of each part. The name stems from the parallel with
the theory of ordinary lumpability for Markov chains, where the probabilities
of all micro states sum up to the probability of the underlying macro state in
the lumped CTMC, cf. Theorem 2 in Section 2.1.

The structure of this chapter is as follows. We first build on intuition by
discussing a motivating example in Section 5.1 and then continue by presenting
the general theory in Section 5.2. In Section 5.3, instead, we show that ordinary
fluid lumpability implies, under the assumption of well-posedness, the notion of
semi-isomorphism.

5.1 Motivating Example

Using the same sequential component as in (3.1), that is

Td
def
= (exec, r).T̂d, T̂d

def
= (io, s′).Td, C

def
= (exec, r).Ĉ, Ĉ

def
= (reset , s).C ,

let us consider the FPA process

Sys :=
(
T1 BC∅ . . . BC

∅
TD
)
BC
{exec}

C, (5.1)

with initial concentrations

vTd(0) = cd, vT̂d(0) = 0, vC(0) = cD+1, vĈ(0) = 0 (5.2)

for 1 ≤ d ≤ D. Note that, unlike exact fluid lumpability, the initial concentra-
tions c1, . . . , cD may be different. Informally, Sys models a single machine where
a group of CPUs serves D groups of threads. Since each Td, with 1 ≤ d ≤ D,

63
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contributes |ds(Td)| = 2 ODEs, the fluid approximation of (5.1) is given by the
following 2D + 2 ODEs:

v̇Td = − rvTd∑
1≤d′≤D

rvTd′
min

( ∑
1≤d′≤D

rvTd′ , rvC

)
+ s′vT̂d , v̇T̂d = −v̇Td ,

v̇C = −min
( ∑

1≤d′≤D

rvTd′ , rvC

)
+ svĈ , v̇Ĉ = −v̇C . (5.3)

Clearly, the ODE analysis may become numerically tedious if D is large.
Note, however, that the above ODE system yields

∑
1≤d≤D

v̇Td = −rmin

( ∑
1≤d≤D

vTd , vC

)
+ s′

∑
1≤d≤D

vT̂d ,∑
1≤d≤D

v̇T̂d = −
∑

1≤d≤D

v̇Td ,

v̇C = −rmin
( ∑

1≤d≤D

vTd , vC

)
+ svĈ ,

v̇Ĉ = −v̇C .

Consequently, the solution of the lumped ODE system

v̇T = −rmin(vT , vC) + s′vT̂ , v̇T̂ = −v̇T , (5.4)

v̇C = −rmin(vT , vC) + svĈ , v̇Ĉ = − ˙vC ,

subjected to

vT (0) =
∑

1≤d≤D

cd, vT̂ (0) = 0, vC(0) = cD+1, vĈ(0) = 0

and the solution of (5.3) and (5.2) satisfy for all t ≥ 0:

vT (t) =
∑

1≤d≤D

vTd(t), vT̂ (t) =
∑

1≤d≤D

vT̂d(t),

vC(t) = vC(t), vĈ(t) = vĈ(t).

Note that vT (t) =
∑D
d=1 vTd(t), but each individual solution vTd(t) cannot be

recovered. This is, in essence, the price which one has to pay if one wants to allow
different initial concentrations. It is worth noting that

{
{T1, . . . , TD}, {C}

}
is

also exactly fluid lumpable, meaning that c1 = . . . = cD induces

vTd(t) = vTd′ (t), vT̂d(t) = vT̂d′
(t), 1 ≤ d, d′ ≤ D.
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5.2 Ordinarily Fluid Lumpable Partitions

The ideas presented in the previous section are now generalised for any FPA
model. Each formal definition will be accompanied by a simple application to
our motivating example. We begin with the notion of ordinary fluid lumpability.

Definition 32 (Ordinary Fluid Lumpability). Let M be an FPA model and

let {P 1
, . . . , P

n} be a partition of G(M), where P
i

= {P ij | 1 ≤ j ≤ ki} as in
Definition 21. The partition is called ordinarily fluid lumpable if there exist
bijections

σP ij : ds(P i1)→ ds(P ij ), 1 ≤ i ≤ n, 1 ≤ j ≤ ki

such that σP i1 ≡ idds(P i1) and for all α ∈ A, 1 ≤ i ≤ n, v and

vσP :=


∑

1≤j≤ki

vσ
Pi
j

(P ) ,∃1 ≤ i ≤ n.
(
P ∈ ds(P i1)

)
0 , otherwise

it holds that

i)
∑

1≤j≤ki

Rα(M,v, σP ij (P )) = Rα(M, vσ, P ), ∀P ∈ ds(P i1)

ii)
∑

1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))Rα(M,v, σP ij (P ′))

=
∑

P ′∈ds(P i1)

pα(P ′, P )Rα(M, vσ, P ′), ∀P ∈ ds(P i1)

iii) rα(M, v) = rα(M,vσ)

Informally, a partition {P 1
, . . . , P

n} is ordinarily fluid lumpable, if the com-

ponent rates are linear on the blocks P
i
, 1 ≤ i ≤ n.

For instance, the partition
{
{T1, . . . , TD}, {C}

}
of the FPA model Sys given

in (5.1) is ordinarily fluid lumpable. To see this, we first define σC := idds(C)

and
σTd : ds(T1)→ ds(Td), T1 7→ Td, T̂1 7→ T̂d, 1 ≤ d ≤ D.

For an arbitrary concentration function v of Sys this induces

vσP =



∑D
d=1 vTd , P = T1∑D
d=1 vT̂d , P = T̂1

0 , P ∈ {T2, T̂2, . . . , TD, T̂D}
vC , P = C

vĈ , P = Ĉ

That is, the concentrations of all thread atoms T1, . . . , TD are accumulated in
the first thread atom T1. Intuitively, in order to apply the notion of ordinary
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fluid lumpability, the sum of all α component rates of T1, . . . , TD underlying
v must match the α component rate of the single atom T1 underlying vσ. As
in the case of exact fluid lumpability, we stress that this must hold for all
concentration functions v, meaning that an algorithm for establishing ordinary
fluid lumpability has to perform symbolic calculations in the style of a computer
algebra system. We next check that rα(Sys, v) = rα(Sys, vσ) and∑

1≤d≤D

Rα(Sys, v, σTd(T1)) = Rα(Sys, vσ, T1)

for all concentrations functions v and actions α. Since the remaining equalities
of component rates are shown similarly, this shows the ordinary fluid lumpability
of
{
{T1, . . . , TD}, {C}

}
. To see this, we first infer

rα(Sys, v) = min(

D∑
d=1

rα(Td, v), rα(C, v)) = min(rα(T1, v
σ), rα(C, vσ)) =

= min(

D∑
d=1

rα(Td, v
σ), rα(C, vσ)) = rα(Sys, vσ)

if α = exec and

rα(Sys, v) =

D∑
d=1

rα(Td, v) + rα(C, v) = rα(T1, v
σ) + rα(C, vσ) =

=

D∑
d=1

rα(Td, v
σ) + rα(C, vσ) = rα(Sys, vσ)

otherwise. Using this, one notes

D∑
d=1

Rα(Sys, v, Td) =

D∑
d=1

Rα(Td, v, Td)∑D
d′=1 rα(Td′ , v)

rα(Sys, v)

= rα(Sys, vσ)

=
Rα(T1, v

σ, T1)

rα(T1, vσ)
rα(Sys, vσ)

=
Rα(T1, v

σ, T1)∑D
d=1 rα(Td, vσ)

rα(Sys, vσ)

= Rα(Sys, vσ, T1)

We can now define and relate the lumped ODE system to the original one.

Theorem 15 (ODE Lumping). Let M be an FPA model, {P 1
, . . . , P

n} an

ordinarily fluid lumpable partition of G(M) with P
i

as in Definition 32 and v
the ODE solution of M for a given initial condition v(0). Define

vP :=
∑

1≤j≤ki

vσ
Pi
j

(P ), 1 ≤ i ≤ n, P ∈ ds(P i1)
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and

vP :=

{
vP , ∃1 ≤ i ≤ n.

(
P ∈ ds(P i1)

)
0 , otherwise

for all P ∈ B(M). Then, v is the unique solution of the ODE system

v̇P =
∑
α∈A

( ∑
P ′∈ds(P i1)

pα(P ′, P )Rα(M, v, P ′)−Rα(M, v, P )
)
,

vP (0) =
∑

1≤j≤ki

vσ
Pi
j

(P )(0), (5.5)

where 1 ≤ i ≤ n and P ∈ ds(P i1). Hence,∑
1≤j≤ki

vσ
Pi
j

(P ), 1 ≤ i ≤ n, P ∈ ds(P i1),

can be recovered by solving the lumped ODE system (5.5).

Proof. As the ODE system of a PEPA model is Lipschitz [54], the lumped ODE
system (5.5) is Lipschitz too. The theorem of Picard-Lindelöf asserts then that
(5.5) has a unique solution. Moreover, for all 1 ≤ i ≤ n and P ∈ ds(P i1),
Definition 32 yields

v̇P =
∑

1≤j≤ki

v̇σ
Pi
j

(P ) =
∑

1≤j≤ki

∑
α∈A

(
−Rα(M,v, σP ij (P ))

+
∑

P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))Rα(M,v, σP ij (P ′))

)
i),ii)
=
∑
α∈A

( ∑
P ′∈ds(P i1)

pα(P ′, P )Rα(M,vσ, P ′)−Rα(M,vσ, P )
)

=
∑
α∈A

( ∑
P ′∈ds(P i1)

pα(P ′, P )Rα(M, v, P ′)−Rα(M, v, P )
)

and vP (0) =
∑

1≤j≤ki

vσ
Pi
j

(P ))(0). This induces the claim.

For instance, the aggregated ODE system of the FPA model Sys given in
(5.1) is (5.4) and has four ODEs. It holds that vT (t) =

∑D
d=1 vTd(t), but each

individual solution vTd(t) cannot be recovered. Let us remark that the same
partition is ordinarily as well exactly fluid lumpable, leading however to two
distinct aggregated ODE systems. That is, while ordinary fluid lumping of{
{T1, . . . , TD}, {C}

}
leads to the aggregated ODE system (5.4), the exact fluid

lumping of
{
{T1, . . . , TD}, {C}

}
aggregates the original ODE system to

v̇T1
= −r 1

D
min(DvT1

, vC) + s′vT̂1
v̇T̂1

= +r
1

D
min(DvT1

, vC)− s′vT̂1

v̇C = −rmin(DvT1 , vC) + svĈ v̇Ĉ = +rmin(DvT1 , vC)− svĈ
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The next theorem can be seen as a congruence property of ordinary fluid
lumpability with respect to the parallel composition of FPA.

Theorem 16. Let us fix two FPA models M1,M2 and assume that {P 1
, . . . , P

n}
and {Pn+1

, . . . , P
n+m+1} are ordinarily fluid lumpable partitions of G(M1) and

G(M2), respectively. Then, thanks to the set of bijections

σP ij : ds(P i1)→ ds(P ij ), 1 ≤ i ≤ n+m+ 1, 1 ≤ j ≤ ki,

the partition {P 1
, . . . , P

n} ∪ {Pn+1
, . . . , P

n+m+1} of G(M1 BC
L
M2) is also or-

dinarily fluid lumpable.

Proof. Let us fix an arbitrary v of M := M1 BC
L
M2. Then, Definition 32 yields

in the case α ∈ L

rα(M1 BC
L
M2, v) = min(rα(M1, v), rα(M2, v))

iii)
= min(rα(M1, v

σ), rα(M2, v
σ)) = rα(M1 BC

L
M2, v

σ)

and in the case α /∈ L

rα(M1 BC
L
M2, v) = rα(M1, v) + rα(M2, v)

iii)
= rα(M1, v

σ) + rα(M2, v
σ) = rα(M1 BC

L
M2, v

σ) .

Let us assume without loss of generality that P i1 ∈ G(M1). Then, if α ∈ L, for
all P ∈ ds(P i1) it holds that

∑
1≤j≤ki

Rα(M,v, σP ij (P )) =
∑

1≤j≤ki

Rα(M1, v, σP ij (P ))

rα(M1, v)
rα(M1 BC

L
M2, v)

iii)
=

∑
1≤j≤ki

Rα(M1, v, σP ij (P ))

rα(M1, vσ)
rα(M1 BC

L
M2, v

σ)

ii)
=

∑
1≤j≤ki

Rα(M1, v
σ, σP ij (P ))

rα(M1, vσ)
rα(M1 BC

L
M2, v

σ)

=
∑

1≤j≤ki

Rα(M,vσ, σP ij (P ))

and ∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))Rα(M, v, σP ij (P ′))

=
∑

1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))
Rα(M1, v, σP ij (P ′))

rα(M1, v)
rα(M, v)

iii)
=

∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))
Rα(M1, v, σP ij (P ′))

rα(M1, vσ)
rα(M,vσ)
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ii)
=

∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))
Rα(M1, v

σ, σP ij (P ′))

rα(M1, vσ)
rα(M,vσ)

=
∑

1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))Rα(M,vσ, σP ij (P ′)).

As similar calculations show that for P i1 ∈ G(M1) and for all P ∈ ds(P i1)∑
1≤j≤ki

Rα(M, v, σP ij (P )) =
∑

1≤j≤ki

Rα(M,vσ, σP ij (P ))

and∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))Rα(M, v, σP ij (P ′))

=
∑

1≤j≤ki

∑
P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P ))Rα(M, vσ, σP ij (P ′))

in the case of α /∈ L, the proof is complete.

For instance, since
{
{T1, . . . , TD}

}
is clearly an ordinarily fluid lumpable par-

tition of T1 BC∅ . . . BC
∅
TD, Theorem 16 immediately implies that the partition{

{T1, . . . , TD}, {C}
}

of (T1 BC∅ . . . BC
∅
TD) BC

{exec}
C is ordinary fluid lumpable.

5.3 Ordinary Fluid Lumpability and
Semi-Isomorphism

Recall that in Section 3.3.2 we were able to show that projected label equivalence
induces semi-isomorphism if the model is well-posed. It is therefore natural to
ask whether a similar result holds for ordinary fluid lumpability. We show next
that in the case of a well-posed FPA model M and an ordinarily fluid lumpable

partition {P 1
, . . . , P

n} of G(M), the sequential components P i1 and P ij are semi-
isomorphic for all 1 ≤ i ≤ n and 1 ≤ j ≤ ki. To build on intuition, we start
with a sketch of the proof strategy used to achieve this result, which is stated
as Theorem 17. In the remainder of this section, i)− iii) refer to Definition 32.

Similarly to exact fluid lumpability, we have to prove that∑
P0

(α,r)−−−→P1

r =
∑

σ
Pi
j

(P0)
(α,r)−−−→σ

Pi
j

(P1)

r

for all α ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ ki and P0, P1 ∈ ds(P i1). The case rα(P0) = 0 is
shown by proving that the well-posedness of M implies rα(P0) = rα(σP ij (P0)),

cf. Lemma 11. For the case rα(P0) > 0, instead, we note that i) and ii) imply

Rα(M, v, σP ij (P0)) = Rα(M, vσ, P0)

pα(σP ij (P0), σP ij (P1))Rα(M, v, σP ij (P0)) = pα(P0, P1)Rα(M,vσ, P0)



70 CHAPTER 5. ORDINARY FLUID LUMPABILITY

for all v which satisfy

vP =


1 , P ∈ ds(P ij ) ∧ P = σP ij (P0)

0 , P ∈ ds(P ij ) ∧ P 6= σP ij (P0)

0 , P ∈
⋃
l 6=j ds(P

i
l )

(5.6)

We proceed by inferring from the well-posedness of M the existence of a
v which satisfies (5.6) and Rα(M, vσ, P0) > 0. Since this yields pα(P0, P1) =
pα(σP ij (P0), σP ij (P1)), the claim readily follows from rα(P0) = rα(σP ij (P0)).

The remainder of this section formalises these ideas. The next two lemmas
are used to show the existence of a v which satisfies (5.6) andRα(M,vσ, P0) > 0.

Lemma 7. Let M be an FPA model, P 0 ∈ G(M), P ′ ∈ ds(P 0) satisfying
rα(P ′) > 0 and v a concentration function of M such that rα(M, v) > 0. Then,
it holds that rα(M, v̂) > 0, where

v̂P =


1 , P ∈ ds(P 0) ∧ P = P ′

0 , P ∈ ds(P 0) ∧ P 6= P ′

vP , P /∈ ds(P 0)

Proof. We prove the claim using structural induction.

• M = P 0: the claim follows by rα(P ′) > 0.

• M = M1 BC
L
M2: We assume without loss of generality that P 0 ∈ G(M1).

Then, it holds that rα(M2, v) = rα(M2, v̂).

– α ∈ L: Note that 0 < rα(M1 BC
L
M2, v) = min(rα(M1, v), rα(M2, v))

implies rα(M1, v) > 0 and rα(M2, v) > 0. As rα(M1, v̂) > 0 by I.H.,
it holds that min(rα(M1, v̂), rα(M2, v̂)) > 0.

– α /∈ L: As the claim is trivial in the case of rα(M2, v) > 0, we may
assume that rα(M2, v) = 0. Then, rα(M1 BC

L
M2, v̂) = rα(M1, v̂) and

the claim follows by the induction hypothesis.

Lemma 8. Let M be an FPA model, P 0 ∈ G(M), P ′ ∈ ds(P 0) satisfying
rα(P ′) > 0 and v a concentration function of M such that Rα(M,v, P ′) > 0.
Then, it holds that Rα(M, v̂, P ′) > 0, where

v̂P =


1 , P ∈ ds(P 0) ∧ P = P ′

0 , P ∈ ds(P 0) ∧ P 6= P ′

vP , P /∈ ds(P 0)

Proof. We prove the claim using structural induction.

• M = P 0: the claim follows by rα(P ′) > 0.



5.3. ORDINARY FLUID LUMPABILITY AND SEMI-ISOMORPHISM 71

• M = M1 BC
L
M2: We assume without loss of generality that P 0 ∈ G(M1).

Then, it holds that rα(M2, v) = rα(M2, v̂).

– α ∈ L: The I.H., Lemma 7 and

0 < Rα(M,v, P ′) =
Rα(M1, v, P

′)

rα(M1, v)
min(rα(M1, v), rα(M2, v))

imply then

0 <
Rα(M1, v̂, P

′)

rα(M1, v̂)
min(rα(M1, v̂), rα(M2, v̂)) = Rα(M, v̂, P ′)

– α /∈ L: We observe first that 0 < Rα(M,v, P ′) = Rα(M1, v, P
′) and

Rα(M, v̂, P ′) = Rα(M1, v̂, P
′). Hence, the I.H. yields the claim.

Recall that our goal it to show that∑
P0

(α,r)−−−→P1

r =
∑

σ
Pi
j

(P0)
(α,r)−−−→σ

Pi
j

(P1)

r

for all α ∈ A, 1 ≤ i ≤ n, 1 ≤ j ≤ ki and P0, P1 ∈ ds(P i1). For this, we first have
to establish that rα(P0) = rα(σP ij (P0)), which is addressed in the next three

lemmas.

Lemma 9. Let M be an FPA model and P 0 a fluid atom of it. Assume further
that there exist α ∈ A and δ, c > 0 such that rα(M,vη) = cη for all 0 ≤ η ≤ δ,
where

vηP ′ :=


ĉ+ η , P ′ ∈ ds(P 0) ∧ P ′ = P

ĉ , P ′ ∈ ds(P 0) ∧ P ′ 6= P

vP ′ , P ′ /∈ ds(P 0)

for some ĉ ≥ 0 and P ∈ ds(P 0). Then it holds that ĉ = 0.

Proof. We prove the claim using structural induction.

• M = P 0: The claim is trivial.

• M = M1 BC
L
M2: Let us assume without loss of generality that P 0 ∈

G(M1). By writing vη = (vη1 , v
η
2 ), where vηi denotes the concentrations

of Mi, one observes that vη2 does not depend on η. Hence, there is a
concentration function v2 of M2 such that v2 ≡ vη2 .

– α ∈ L: As cη = min(rα(M1, v
η
1 ), rα(M2, v2)) and δ, c > 0, it holds

that rα(M2, v2) > 0. Hence, rα(M1, v
η
1 ) = cη for all η such that

cη < rα(M2, v2) and the I.H. yields the claim.
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– α /∈ L: As cη = rα(M1, v
η
1 ) + rα(M2, v2) for all 0 ≤ η ≤ δ, it holds

that rα(M2, v2) = 0. Hence, cη = rα(M1, v
η
1 ) and the I.H. yields the

claim.

Lemma 10. For a fixed FPA model M , assume that {P 1
, . . . , P

n} is an ordi-
nary fluid lumpable partition of G(M) which is established by the bijections

σP ij : ds(P i1)→ ds(P ij ), 1 ≤ i ≤ n, 1 ≤ j ≤ ki.

Then, for arbitrary 1 ≤ ji ≤ ki, where 1 ≤ i ≤ n, the bijections

ρP ij := σP ij ◦ σ
−1
P iji

: ds(P iji)→ ds(P ij ), ∀1 ≤ i ≤ n, 1 ≤ j ≤ ki,

establish also the ordinary fluid lumpability of {P 1
, . . . , P

n}. That is, similarly
to the notion of exact fluid lumpability, cf. Remark 2, the notion of ordinary
fluid lumpability does not depend on the choice of the representatives.

Proof. We show first that (vρ)σ = vσ for an arbitrary concentration function
v of M . Let us fix for this a P ∈ B(M). Then, (vρ)σP = 0 = vσP if there is
no 1 ≤ i ≤ n such that P ∈ ds(P i1). In the case where P ∈ ds(P i1) for some
1 ≤ i ≤ n, instead, it holds that

(vρ)σP =
∑

1≤j≤ki

vρσ
Pi
j

(P ) = vρ(
σ
Pi
ji

(P )
)

=
∑

1≤j≤ki

v(
ρ
Pi
j

(σ
Pi
ji

(P ))
) =

∑
1≤j≤ki

v(
σ
Pi
j

(P )
) = vσP .

This yields

rα(M, vρ)
iii)
= rα(M, (vρ)σ) = rα(M,vσ)

iii)
= rα(M, v)

and, for P ∈ ds(P iji),∑
1≤j≤ki

Rα(M,v, ρP ij (P )) =
∑

1≤j≤ki

Rα
(
M,v, σP ij (σ−1

P iji
(P ))

)
i)
=

∑
1≤j≤ki

Rα
(
M,vσ, σP ij (σ−1

P iji
(P ))

)
=

∑
1≤j≤ki

Rα
(
M, (vρ)σ, σP ij (σ−1

P iji
(P ))

)
i)
=

∑
1≤j≤ki

Rα
(
M,vρ, σP ij (σ−1

P iji
(P ))

)
=

∑
1≤j≤ki

Rα
(
M,vρ, ρP ij (P )

)
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and∑
1≤j≤ki

∑
P ′∈ds(P iji )

pα(ρP ij (P ′), ρP ij (P ))Rα(M,v, ρP ij (P ′))

=
∑

1≤j≤ki

∑
P ′∈ds(P iji )

pα
(
σP ij (σ−1

P iji
(P ′)), σP ij (σ−1

P iji
(P ))

)
Rα
(
M, v, σP ij (σ−1

P iji
(P ′))

)
=

∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα
(
σP ij (P ′), σP ij (σ−1

P iji
(P ))

)
Rα
(
M, v, σP ij (P ′)

)
ii)
=

∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα
(
σP ij (P ′), σP ij (σ−1

P iji
(P ))

)
Rα
(
M, vσ, σP ij (P ′)

)
=

∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα
(
σP ij (P ′), σP ij (σ−1

P iji
(P ))

)
Rα
(
M, (vρ)σ, σP ij (P ′)

)
ii)
=

∑
1≤j≤ki

∑
P ′∈ds(P i1)

pα
(
σP ij (P ′), σP ij (σ−1

P iji
(P ))

)
Rα
(
M, vρ, σP ij (P ′)

)
=

∑
1≤j≤ki

∑
P ′∈ds(P iji )

pα(ρP ij (P ′), ρP ij (P ))Rα(M,vρ, ρP ij (P ′)).

We are now in a position to prove that rα(P0) = rα(σP ij (P0)).

Lemma 11. Let M be a well-posed FPA model and assume that {P 1
, . . . , P

n} is
an ordinarily fluid lumpable partition of G(M). Then, it holds that rα(σP ij (P )) =

rα(P ) for all 1 ≤ i ≤ n, 2 ≤ j ≤ ki and P ∈ ds(P i1).

Proof. We assume first that rα(σP ij (P )) > 0. As M is well-posed, Lemma

4 ensures that there exist a δ > 0 and a set of concentrations {vE | E ∈
B(M) ∧ E /∈ ds(P ij )} such that

vηE :=


η , E ∈ ds(P ij ) ∧ E = σP ij (P )

0 , E ∈ ds(P ij ) ∧ E 6= σP ij (P )

vE , E /∈ ds(P ij )

where
vE = vE′ , ∀Q ∈ G(M), Q 6= P ij . ∀E,E′ ∈ ds(Q),

satisfies for all 0 ≤ η ≤ δ

rα(M,vη) = rα(P ij , v
η) = rα(σP ij (P ))vσ

Pi
j

(P ) = rα(σP ij (P ))η.

Then, c := rα(σP ij (P )), ĉ :=
∑ki
l 6=j vσPi

l
(E), where E ∈ ds(P i1) is arbitrary, and

vη := (vη)σ fulfill the assumptions of Lemma 9, since

vηE = (vη)σE =

{
ĉ , E ∈ ds(P i1) ∧ E 6= P

ĉ+ η , E ∈ ds(P i1) ∧ E = P
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and
rα(σP ij (P ))η = rα(M, vη)

iii)
= rα(M, (vη)σ) = rα(M, vη)

for all 0 ≤ η ≤ δ. As Lemma 9 ensures ĉ = 0, Lemma 5 yields rα(σP ij (P )) =

rα(P ). This finishes the first case where we assumed that rα(σP ij (P )) > 0. For

the case rα(σP ij (P )) = 0, instead, we have to show that

rα(σP ij (P )) = 0 ⇒ rα(σP ij (P )) = rα(P ),

which is obviously equivalent to

rα(σP ij (P )) = 0 ⇒ rα(P ) = 0.

By building the contraposition of the last statement, we infer that the claim of
the second case is equivalent to

rα(P ) > 0 ⇒ rα(σP ij (P )) > 0.

To prove the last statement, we first define

ρP ιl :=

{
σP il ◦ σ

−1
P ij

, ι = i

σP ιl , ι 6= i

for all 1 ≤ ι ≤ n and 1 ≤ l ≤ kι. Informally, the above definition changes

the representative of P
i

from P i1 to P ij , while keeping at the same time the

representatives of P
ι
, where ι 6= i, fixed. Since Lemma 10 ensures that also

the family ρ• establishes the ordinary fluid lumpability of {P 1
, . . . , P

n}, we can
apply the first case to the process σP ij (P ) instead of P , which implies

rα(ρP i1 (σP ij (P )) > 0 ⇒ rα(ρP i1 (σP ij (P )) = rα(σP ij (P )).

By exploiting the definition of ρ•, the last statement rewrites to

rα(P ) > 0 ⇒ rα(P ) = rα(σP ij (P )),

yielding the claim.

The preceding auxiliary results are used to establish the connection between
ordinary fluid lumpability and semi-isomorphism.

Theorem 17. Fix a well-posed FPA model M and assume that the partition

{P 1
, . . . , P

n} of G(M) is ordinarily fluid lumpable. Then, P i1 is semi-isomorphic
to P ij for all 2 ≤ j ≤ ki and 1 ≤ i ≤ n.

Proof. Let us fix arbitrary P0, P1 ∈ ds(P i1) and some α ∈ A and assume first
rα(σP ij (P0)) > 0. Then, Lemma 3 asserts that the concentration function

vP =


1 , P ∈ ds(P ij ) ∧ P = σP ij (P0)

0 , P ∈ ds(P ij ) ∧ P 6= σP ij (P0)

1 , P /∈ ds(P ij )
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satisfies Rα(M, v, σP ij (P0)) > 0 and i) yields

0 <
∑

1≤l≤ki

Rα(M, v, σP il (P0))
i)
= Rα(M, vσ, P0).

Observing that Lemma 11 implies rα(P0) = rα(σP ij (P0)) > 0, we conclude using

Lemma 8 that Rα(M, v̂, P0) > 0, where

v̂P :=


1 , P ∈ ds(P i1) ∧ P = P0

0 , P ∈ ds(P i1) ∧ P 6= P0

vσP , P /∈ ds(P i1)

Using

vP :=


1 , P ∈ ds(P ij ) ∧ P = σP ij (P0)

0 , P ∈ ds(P ij ) ∧ P 6= σP ij (P0)

0 , P ∈ ds(P i1)

vσP , P /∈ ds(P i1) ∧ P /∈ ds(P ij )

we infer

Rα(M, v, σP ij (P0)) =
∑

1≤l≤ki

Rα(M, v, σP il (P0))
i)
= Rα(M, vσ, P0)

and

pα(σP ij (P0), σP ij (P1))Rα(M,v, σP ij (P0))

=
∑

P ′∈ds(P i1)

pα(σP ij (P ′), σP ij (P1))Rα(M,v, σP ij (P ′))

=
∑

1≤l≤ki

∑
P ′∈ds(P i1)

pα(σP il (P ′), σP il (P1))Rα(M,v, σP il (P ′))

ii)
=

∑
P ′∈ds(P i1)

pα(P ′, P1)Rα(M,vσ, P ′)

= pα(P0, P1)Rα(M,vσ, P0).

Hence, since the equalityRα(M,vσ, P0) = Rα(M, v̂, P0) > 0 implies pα(P0, P1) =
pα(σP ij (P0), σP ij (P1)), Lemma 11 yields the desired equality∑

P0

(α,r)−−−→P1

r =
∑

σ
Pi
j

(P0)
(α,r)−−−→σ

Pi
j

(P1)

r.

As in the case rα(σP ij (P0)) = 0 the claim follows by observing that Lemma 11

implies rα(P0) = 0, the proof is complete.
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Similarly to exact fluid lumpability, the above theorem states that well-
posedness and ordinary fluid lumpability imply the notion of semi-isomorphism.
We end this section by stressing that in the case of ill-posed models no such
statement can be made.

To see this, let us consider the ill-posed model

(T0 BC∅ T1) BC
{exec,γ}

C,

where C and T1 are as in (3.1), whereas

T0
def
= (exec, r).T̂0 + (γ, x).T̂0, T̂0

def
= (io, s′).T0.

Then, the partition
{
{T0, T1}, {C}

}
is ordinarily fluid lumpable, but T0 can

perform a γ-action, while T1 cannot. Since each of the relations from Section
2.3 distinguishes between the types of action performed by a process, we con-
clude that, in general, ordinary fluid lumpability implies none of the behavioural
equivalences of Section 2.3.

On the other hand, even isomorphism between fluid atoms is, in general,
not sufficient for the atoms belong to the the same element of an ordinary
fluid lumpable partition. To see this, consider the model C1 BC

{exec}
C2, where

Cd is as in (3.1). Then, the partition
{
{C1, C2}

}
cannot be ordinarily fluid

lumpable. To see this, let us assume towards a contradiction that
{
{C1, C2}

}
is ordinarily fluid lumpable. If C1 is the representative of {C1, C2}, there exists
a bijection σC2

: ds(C1) → ds(C2) which satisfies i) − iii) from Definition 32
for all concentration functions v. However, vC1

= vC′1 = vC2
= vC′2 = 1 implies

that

rexec(C1 BC
{exec}

C2, v
σ) = 0 < rexec(C1 BC

{exec}
C2, v),

which violates iii). Since the very same argumentation can be applied in the
case where C2 is the representative of {C1, C2}, we infer the claim.

5.4 Related Work

The closest work to ours is [44] where ordinary fluid lumpability is discussed for
a generalised version of FPA which supports among the minimum semantics of
PEPA also the law of mass action known from chemistry [72], theoretical biol-
ogy [73] and epidemic routing [74]. This is achieved by replacing the minimum
min(rα(M0, v), rα(M1, v)) in Definition 14 with the product rα(M0, v)rα(M1, v).
However, in order to show that the fluid lumpability implies the notion of semi-
isomorphism and the merging theorem from Section 3.3.3, [44] assumes an addi-
tional property in the definition of exactly and ordinary fluid lumpability. That
is, by focusing on the minimum semantics, we are able to state our fluid notions
under milder requirements. Apart from that, the notion of ordinary fluid lumpa-
bility is related to the best of our knowledge only to the aggregation technique
from [36] and its enhancement [40]. Indeed, ordinary fluid lumpability can be
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seen as a special case of this technique. To see this, we briefly sketch the idea
behind [40]. Let us start with the ODE system

ẋi = fi(x1, . . . , xn), 1 ≤ i ≤ n, (5.7)

where each fi is assumed to be continuous on Rn. We then aggregate x1, . . . , xn
to y1, . . . , ym, with m ≤ n, by setting

yj := gj(x1, . . . , xn), 1 ≤ j ≤ m,

where each gj : Rn → R is differentiable. Then, the chain rule shows that

ẏj =

n∑
k=1

(
∂xkgj

)
(x1, . . . , xn) · fk(x1, . . . , xn), 1 ≤ j ≤ m.

Consequently, if for each 1 ≤ j ≤ m there exists an Fj : Rm → R such that

n∑
k=1

(
∂xkgj

)
(x1, . . . , xn) · fk(x1, . . . , xn) ≡ Fj(y1, . . . , ym),

the original ODE system (5.7) is related to the aggregated ODE system

ẏj = Fj(y1, . . . , ym), 1 ≤ j ≤ m

by means of yj = gj(x1, . . . , xn). Indeed, the ODE systems (3.18) and (5.3) are
instances of such an aggregation with gj being of the form

∑
i∈Sj xi. Although

such an approach is more general than ordinary fluid lumpability, the latter
is easier to check, allows for compositional reasoning on the level of process
terms and implies the notion of semi-isomorphism in the case of well-posedness.
Worthy of remark is that, in contrast to the notion of exact fluid lumpability,
one cannot fully recover the solution of the original ODE system by means
of the above aggregation technique when m < n. To see this, let us assume
towards a contradiction that there is such an aggregation. Then, one of the
functions gj induces a continuous bijection g : Rk → R for some k ≥ 2. Since
B := {x ∈ Rk | ‖x‖2 ≤ 1} is connected and compact, the continuity of g
implies that g(B) is connected and compact as well. Hence, g(B) ⊆ R yields
g(B) = [a; b] for some a ≤ b. Moreover, the bijectivity of g enforces a < b
and allows us to define x0 := g−1(c) for some arbitrary c ∈ (a; b). Then,
B \ {x0} is connected, since it is obviously path-connected, and the continuity
of g implies that g(B \ {x0}) is connected as well. This is, however, false, for
g(B \ {x0}) = [a; b] \ {c}.
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Chapter 6

Fluid ε-Lumpability

This chapter studies aggregations when the fluid atoms of an FPA model can be
grouped to a fluid lumpable partition after a suitable perturbation of their pa-
rameters. In the case of exact fluid lumpability, we perturbate initial populations
and rates of sequential components. In the case of ordinary fluid lumpability,
instead, we only consider the latter because there is no requirement on identical
initial populations for aggregated fluid atoms.

The structure is as follows. After building on intuition in terms of a mo-
tivating example in Section 6.1, we define exact and ordinary fluid ε-lumpable
partitions in Section 6.2. There, we also show that the error depends linearly
on the perturbation ε and that fluid ε-lumpability implies, in the case of well-
posed models, the notion of ε-semi-isomorphism. In Section 6.3 we consider a
numerical evaluation to study the impact of ε on the ODEs in the context of
the motivating example.

6.1 Motivating Example

Let us consider again a variation of the model

Sys :=
(
T1 BC∅ . . . BC

∅
TD
)
BC
{exec}

C

given in (5.1), but now with different Td. More specifically, let us assume that

Td
def
= (exec, rd).T̂d and T̂d

def
= (io, s′).Td for rd := r+ εd, with 1 ≤ d ≤ D. In such

a case, the underlying ODE system

v̇Td = − rdvTd∑
1≤d′≤D

rd′vTd′
min

( ∑
1≤d′≤D

rd′vTd′ , rvC

)
+ s′vT̂d ,

v̇T̂d = −v̇Td ,

v̇C = −min
( ∑

1≤d′≤D

rd′vTd′ , rvC

)
+ svĈ ,

79
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v̇Ĉ = −v̇C (6.1)

cannot be aggregated to (5.4), unless ε1 = . . . = εD = 0. However, it is
reasonable to ask whether one can bound the difference between the solutions
of (5.3) and (6.1) in terms of the rate perturbation ε = ‖(ε1, . . . , εD)‖.

A similar question can be stated in the context of exact fluid lumpability
which makes, in contrast to ordinary fluid lumpability, assumptions on the fluid
atoms as well as the initial conditions. For instance, recall the running example
of Chapter 3 given in (3.1)

Sys ′ :=
((
C1 BC

{exec}
C ′1 BC

{exec}
T1

)
BC
∅
. . . BC

∅

(
CD BC

{exec}
C ′D BC

{exec}
TD
))

BC
{io}

U,

where it was assumed that

Cd
def
= (exec, r).Ĉd, C ′d

def
= (exec, r/2).Ĉ ′d + (exec, r/2).Ĉ ′d, Td

def
= (exec, r).T̂d,

Ĉd
def
= (reset , s).Cd, Ĉ ′d

def
= (reset , s).C ′d, T̂d

def
= (io, s′).Td

(6.2)

and

vCd(0) = cC vC′d(0) = cC vTd(0) = cT

vĈd(0) = 0 vĈ′d
(0) = 0 vT̂d(0) = 0 (6.3)

vU (0) = cU vÛ (0) = 0

for all 1 ≤ d ≤ D. Then, one could ask whether the difference between the
solution underlying (6.2), (6.3) and those underlying

Cd
def
= (exec, r).Ĉd, C ′d

def
= (exec, r/2).Ĉ ′d + (exec, r/2).Ĉ ′d, Td

def
= (exec, r).T̂d,

Ĉd
def
= (reset , s+ εd).Cd, Ĉ ′d

def
= (reset , s).C ′d, T̂d

def
= (io, s′).Td

and

vCd(0) = cC + ηd vC′d(0) = cC vTd(0) = cT

vĈd(0) = 0 vĈ′d
(0) = 0 vT̂d(0) = 0

vU (0) = cU vÛ (0) = 0

can be bounded in terms of ‖(ε1, . . . , εD, η1, . . . , ηD)‖.

6.2 Definitions and Results

At the basis of our investigation stands a standard result from the area of ODEs
which relates two ODE systems of the same size, where the vector field is made
dependent on a pair of vectors, here denoted by ζ and ξ. Thus, for some norm
‖·‖, we interpret ε = ‖ξ − ζ‖ as the intensity of the perturbation on the rates of
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the same model. The two ODE systems may also have different initial conditions
xζ and xξ, with δ =

∥∥xξ − xζ∥∥. This will be used to define our approximate
version of exact fluid lumpability.

The theorem below states that, on a fixed time interval [0; t], the distance
between the two solutions depends linearly on both ε and δ, if the ODE system
is Lipschitz in x and ξ.

Theorem 18. Consider the ODE systems{
ẋζ = f(ζ, xζ)

xζ(0) = xζ

{
ẋξ = f(ξ, xξ)

xξ(0) = xξ

where f is assumed to be Lipschitz continuous in Rn+m, with respect to both x
and ζ, i.e.

∀ζ ∈ Rn. ∃Lζ > 0. ∀x, x′ ∈ Rm.
(
‖f(ζ, x)− f(ζ, x′)‖ ≤ Lζ ‖x− x′‖

)
∀x ∈ Rm. ∃Kx > 0. ∀ζ, ζ ′ ∈ Rn.

(
‖f(ζ, x)− f(ζ ′, x)‖ ≤ Kx ‖ζ − ζ ′‖

)
Let us assume further that both ODE systems have a solution on [0; t], where
t > 0, and that K := sup0≤s≤tKxξ(s) <∞. Then

‖xζ(t)− xξ(t)‖ ≤
(
εK

Lζ
+ δ

)
eLζt − εK

Lζ

if ε = ‖ξ − ζ‖ and δ =
∥∥xζ − xξ∥∥.

Proof. We first show an auxiliary result. Let c1, c2, c3 be positive constants and
u a continuous function on 0 ≤ t <∞ such that

u(t) ≤ c3 + c2t+ c1

∫ t

0

u(s)ds (6.4)

Then, it holds that

u(t) ≤
(
c2
c1

+ c3

)
ec1t − c2

c1
.

To see this, note that (6.4) can be rewritten into

u(t) +
c2
c1︸ ︷︷ ︸

ũ(t)=

≤
(
c2
c1

+ c3

)
︸ ︷︷ ︸

α̃=

+

∫ t

0

c1

(
u(s) +

c2
c1

)
︸ ︷︷ ︸

ṽ(s)ũ(s)=

ds.

By applying Gronwall’s inequality to

ũ(t) ≤ α̃+

∫ t

0

ũ(s)ṽ(s)ds,

we infer that ũ(t) ≤ α̃ · e
∫ t
0
ṽ(s)ds and the auxiliary claim follows.
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Let us focus now on the main claim. We observe first

‖xζ(t)− xξ(t)‖ ≤
∥∥xζ − xξ∥∥+

∥∥∥∥∫ t

0

f(ζ, xζ(s))− f(ξ, xξ(s))ds

∥∥∥∥
≤ δ +

∥∥∥∥∫ t

0

f(ζ, xζ(s))− f(ζ, xξ(s))ds

∥∥∥∥
+

∥∥∥∥∫ t

0

f(ζ, xξ(s))− f(ξ, xξ(s))ds

∥∥∥∥
≤ δ + Lζ

∫ t

0

‖xζ(s)− xξ(s)‖ ds+ εKt.

By applying the auxiliary result for u(s) := ‖xζ(s)− xξ(s)‖, c3 := δ, c1 := Lζ
and c2 := εK, this yields the claim.

Next, we formally introduce the notion of perturbation on rates.

Definition 33. For an FPA model M , let ν(M) denote the vector of distinct oc-
currences of action rates in M , written ν(M) = (x1, . . . , xi, . . . , x|ν(M)|). Then,

for a ξ ∈ R|ν(M)|
>0 , the model M(ξ) arises from M by replacing each xi with ξi.

We wish to point out that it is not important how the vector ν(M) is cal-
culated, as long as it uniquely relates the action rates within the model. To
build on intuition, we sketch one possible way to achieve this. We first con-
struct an auxiliary vector N(M): if M is a fluid atom P , we initialise N(P )
with the empty vector and enhance the while-loop of the common algorithm
which constructs the derivation graph of P by one additional operation: if X
denotes the graph that has been constructed so far by the algorithm and a new
transition (P ′, (α, r), P ′′) is added to X, we also append (P ′, (α, r), P ′′, i) to
N(P ), where i denotes the number of the (α, r) arcs between P ′ and P ′′ in X.
In the case of M = M0 BC

L
M1, instead, we append to the sequence N(M1) to

the sequence N(M0). Note that N(M0) and N(M1) have pairwise different ele-
ments, since Definition 12 ensures that any two fluid atoms of M have disjoint
derivative sets. The vector ν(M) arises then directly from N(M) by replacing
each element (P ′, (α, r), P ′′, i) with r.

For instance, given

P
def
= (α, r).P ′ + (α, r).P ′, P ′

def
= (β, s).P, Q

def
= (γ, u).Q′, Q′

def
= (δ, w).Q,

we first derive N(P ) = ((P, (α, r), P ′, 1), (P, (α, r), P ′, 2), (P ′, (β, s), P, 1)) and
N(Q) = ((Q, (γ, u), Q′, 1), (Q′, (δ, w), Q, 1)). This yields then ν(P BC

{α}
Q) =

(r, r, s, u, w).
Before Theorem 18 can be applied to FPA, we have to show that FPA models

induce globally Lipschitz ODE systems.

Proposition 3. For an FPA model M ≡M(ξ) and

FP (ξ, v) :=
∑
α∈A

(∑
P ′

pα(P ′, P )Rα(M,v, P ′)−Rα(M,v, P )

)
,
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F (ξ, ·) and F (·, v) are globally Lipschitz. Moreover, if Kv denotes the Lipschitz
constant of F (·, v) for some fixed v, it holds that sup‖v‖≤cKv <∞ for all c > 0.

Proof. The proof is similar to the one of Lemma B.1 in [54] and is given in
Appendix A.3.

Equipped with Theorem 18, we are in a position to state the aforementioned
perturbation result.

Theorem 19. Fix an FPA model M , a ζ ∈ R|ν(M)|
>0 , a concentration function

vζ(0) and c, t > 0. Then there exist C1, C2 > 0 such that ‖vξ(0) − vζ(0)‖ ≤ c
implies

max
0≤s≤t

‖vξ(s)− vζ(s)‖ ≤ C1‖ξ − ζ‖+ C2‖vξ(0)− vζ(0)‖

for all ξ ∈ R|ν(M)|
>0 , where vξ and vζ refer to the ODE solutions of M(ξ) and

M(ζ), respectively.

Proof. The claim follows by Lemma 12 in Appendix A.1, Proposition 3 and
Theorem 18.

Note that in the above theorem M(ζ) is arbitrary but fixed, whereas M(ξ)
varies. We now focus on the situation where M(ζ) has either an exactly or an
ordinarily fluid lumpable partition.

Definition 34 (Fluid ε-Lumpability). Fix an FPA model M and ξ ∈ R|ν(M)|
>0 . If

M(ζ) has an exactly/ordinarily fluid lumpable partition {P 1
, . . . , P

n} for some

ζ ∈ R|ν(M)|
>0 , M(ξ) is said to be ‖ξ − ζ‖-exactly/ordinarily fluid lumpable with

respect to some norm ‖·‖.

We build on intuition by considering the FPA model

Sys ′ :=
(

(T1 BC
{exec}

R1) BC
∅
. . . BC

∅
(TD BC

{exec}
RD)

)
BC
{exec}

C, (6.5)

where Rd
def
= (exec, r′).Rd, with 1 ≤ d ≤ D, and for which it can be shown that{

{T1, . . . , TD}, {R1, . . . , RD}, {C}
}

is exactly fluid lumpable. Then, together
with

ξ = (r+ε1, s
′+ε2, r

′+ε3, . . . , r+ε3D+1, s
′+ε3D+2, r

′+ε3D+3, r, s) ∈ R|ν(Sys′)|
>0 ,

Sys ′(ξ) is exactly fluid ε-lumpable with

ε = ‖(ε1, ε2, ε3, . . . , ε3D+1, ε3D+2, ε3D+3, 0, 0)‖ .

On the other hand, the partition {P 1
, P

2} =
{
{T1, . . . , TD}, {C}

}
of Sys(ζ)

defined in (5.1) is ordinarily fluid lumpable if ζ = (r, s′, . . . , r, s′, r, s). Conse-
quently, it holds that Sys(ξ) is ε-ordinarily fluid lumpable, where

ε = ‖(ξ1 − r, ξ2 − s′, . . . , ξ2D−1 − r, ξ2D − s′, ξ2D+1 − r, ξ2D+2 − s)‖.
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That is, an exactly/ordinarily fluid lumpable partition admits an infinity of ε-
lumpable partitions and ε gives the measure of how close a given model is to
error-free fluid lumping.

Both exact and ordinary fluid ε-lumpability enjoy congruence. In the case
of exact fluid ε-lumpability, however, the following assumption has to be made.

Remark 5. Usually, exact fluid lumpable partitions are constructed using the
notion of label equivalence, cf. Section 3.3. Throughout the chapter we will
assume that this is always the case.

Theorem 20 (Congruence). Fix two FPA models M1,M2 and assume that

{P 1

k, . . . , P
nk
k } is ‖ξk − ζk‖-exactly/ordinarily fluid lumpable in G(Mk(ξk)) for

some ξk, ζk ∈ R|ν(Mk)|
>0 , and k = 1, 2. Then, for any L ⊆ A,

⋃2
k=1{P

1

k, . . . , P
nk
k }

is ‖(ξ1, ξ2)− (ζ1, ζ2)‖-exactly/ordinarily fluid lumpable in G(M1 BC
L
M2).

Proof. Theorem 8 shows the case of exact fluid lumpability, whereas Theorem 16
yields the case of ordinary fluid lumpability.

Clearly, since an ordinarily fluid lumpable partition does not depend on the
initial values, a perturbation of initial values is interesting only in the case of
exact fluid lumpability.

We turn now to a classification of exact and ordinary fluid ε-lumpability,
where labels within blocks of a fluid ε-lumpable partition are related. For this,
we define the notion of ε-semi-isomorphism, which regards two sequential com-
ponents to be equal, if a change of the underlying rates not greater than ε makes
them semi-isomorphic.

Definition 35 (ε-Semi-Isomorphism). Two sequential components P and Q
are ε-semi-isomorphic for some ε > 0, if there is a bijection σ : ds(P )→ ds(Q)
which satisfies ∣∣∣ ∑

Pi
(α,r)−−−→Pj

r −
∑

σ(Pi)
(α,r)−−−→σ(Pj)

r
∣∣∣ ≤ ε

for all Pi, Pj ∈ ds(P ) and α ∈ A. Such σ is called ε-semi-isomorphism.

Analogously to exact and ordinary fluid lumpability, the following charac-
terises ε-lumpability with respect to ε-semi-isomorphism.

Theorem 21. For any well-posed FPA model M and norm ‖·‖, there exists

a C > 0 such that: assume that {P 1
, . . . , P

n} is an ‖ξ − ζ‖-exactly/ordinarily

fluid lumpable partition of M(ξ), where ξ, ζ ∈ R|ν(M)|
>0 . Then, it holds that:

a) Any two fluid atoms P ij , P
i
j′ of M(ξ) are C ‖ξ − ζ‖-semi-isomorphic;

b) In the special case where for all α ∈ A and P, P ′ ∈ B(M) there is at most
one α-transition from P to P ′ and ‖·‖ = ‖·‖∞, a) holds for C = 1.
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∆ 0.00 0.01 0.02 0.03 0.04 0.05

D = 2 0.41% 0.70% 1.02% 1.33% 1.64% 1.94%
D = 3 0.82% 1.24% 1.71% 2.17% 2.62% 3.07%
D = 4 1.23% 1.78% 2.39% 2.99% 3.59% 4.17%
D = 5 1.63% 2.31% 3.06% 3.81% 4.53% 5.25%

Table 6.1: Approximation errors for exact fluid lumpability, by perturbations of
initial conditions and rates: D enumerates different models, while ∆ accounts
for the discrepancy in the rates. In the case of ∆ = 0, the error is stemming
from different initial conditions.

∆ 0.01 0.02 0.03 0.04 0.05

D = 2, 3, 4, 5 0.16% 0.32% 0.47% 0.63% 0.78%

Table 6.2: Approximation errors for ordinary fluid lumpability, by perturbations
of rates: D enumerates different models, while ∆ accounts for the discrepancy
in the rates.

Proof. Thanks to the fact that {P 1
, . . . , P

n} is an ordinary/exact fluid lumpable
partition of G(M(ζ)), Theorem 10 and 17 ensure that the fluid atoms P ij , P

i
j′

in M(ζ) are semi-isomorphic. Moreover, by a standard theorem from calculus,
there exists a C ′ > 0 such that ‖·‖∞ ≤ C ′ ‖·‖. For any α ∈ A and P, P ′ ∈
B(M), let N(P,α,P ′) denote the number of α-transitions from P to P ′ and N :=
max{N(P,α,P ′) | P, P ′ ∈ B(M) ∧ α ∈ A}. The constant C := NC ′ yields then
the claim.

For instance, the above theorem ensures that Td, Td′ are ‖ξ − ζ‖∞-semi-

isomorphic in Sys(ξ) for all ξ ∈ R|ν(Sys)|
>0 , if ζ = (r, s′, . . . , r, s′, r, s).

6.3 Numerical Examples

We provide some numerical evidence of the aggregation error on the models
presented in the previous section. For exact fluid lumpability, we considered

the model (6.5) with Td
def
= (exec, rd).T̂d, T̂d

def
= (io, s′).Td, Rd

def
= (exec, rd).Rd,

C = (exec, r1).Ĉ, Ĉ = (reset , s).C, where we fixed s′ = 0.5, s = 0.2 and
set rd = 1.0 + (d − 1)∆; ∆ was varied between 0.00 and 0.05 at 0.01 steps.
The models were analysed for different values of D. For each value, we set
vTd(0) = 200 + (d− 1), vT̂d(0) = 0, vRd = 300, vC(0) = 300, and vĈ = 0. This
corresponds to a situation where the initial concentrations of Td-components are
different and separated by a few percent. This model was compared against the
solution of a perturbed model with rates and initial concentrations such that all
are set equal to the averages in the original model, i.e., 1.0+(∆/D)

∑D
d=1(d−1)
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and 200 + (1/D)
∑D
d=1(d − 1). Note that these changes allow for exact fluid

lumpability.
Both the original and the perturbed model were numerically solved over the

time interval [0; 30] (ensuring convergence to equilibria) with solutions registered
with 0.2 time unit steps. The approximation relative error is defined as:

max
P∈{Td,T̂d,Rd,C,Ĉ}

max
t∈{0,0.02,...,30}

|vP (t)− vεP (t)|∑
P ′∈ds(P ) vP ′(0)

× 100,

where vP (t) is the solution of the original model and vεP (t) is the correspond-
ing estimate in the exactly fluid ε-lumpable one. The absolute difference is
normalised with respect to the total concentration of the fluid atom to which
derivative P belongs. The results are presented in Table 6.1.

The model used for the numerical examples with ordinary fluid lumpability
is Sys, which was parametrised as in the previous case, except for vC(0) which
was set to 1500. (For vC(0) = 300 the approximation errors were found to be
of the same order of magnitude as the tolerance of the numerical solution, i.e.
1e-8.) The results are shown in Table 6.2, where the numerical approximation
error is computed with respect to an ε-ordinarily fluid lumpable partition where
all Td have the same average rate as the original model, similarly to above.

Overall, with this parametrisation exact fluid ε-lumpability shows good ac-
curacy across all tests. The case for ∆ = 0.00 measures the impact on the ap-
proximation error of the heterogeneity only due to the initial conditions of the
aggregated components. Instead, in these examples, ordinary fluid ε-lumpability
appears to be more robust in practice, with errors that were found to be inde-
pendent (up to numerical precision) from the number of aggregated components.
With the same relative perturbation on the rates by ∆, the approximation errors
are suitably lower. (The parametrisation for vC(0) = 300 does show dependence
on D for the approximation, however, as discussed, the actual errors are negli-
gible.)

6.4 Related Work

Several approximate aggregation techniques for ODE systems have been pro-
posed. For instance, [32] splits the original ODE system into a fast and a slow
part, while [33, 34] identify parts of the ODE system with a negligible impact
on the overall trajectory. The methods [35] and [75], instead, look for an aggre-
gated ODE system of certain size which minimises the distance to the original
one. However, apart from [32], none of these works considers ODE systems
which can be exactly aggregated after a small perturbation. Specifically, [32]
studies ODE systems with equations which can be set to zero by means of
small perturbations. As a reduction technique which is based on the Centre
Manifold Theorem [76], the aggregations arising from [32] usually lead to good
approximations for all t ≥ 0. At the heart of fluid ε-lumpability, instead, stands
Gronwall’s inequality with a bound which grows exponentially as t increases.
However, it is fair to say that in order to perform an aggregation in the style
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of [32], the underlying ODE system has to be differentiable. Thus, [32] does not
apply to the minimum function, which is at the heart of PEPA. The work [77],
instead, considers exact aggregation according to [40] after a perturbation of
the parameters of the original ODE system. Similarly to fluid ε-lumpability,
the bounds of [77] can be traced back to Gronwall’s inequality. In this respect,
[77] is closely related to the notion of ordinary fluid ε-lumpability and can be
seen as an extension of [40], meaning that it applies also to ODE systems which
do not underly an FPA model. On the other hand, [77] does not cover ε-semi-
isomorphism or exact fluid lumpability, and so our work here can be seen as
more general in some respects.
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Chapter 7

Spatial Aggregation

Fluid lumpability, and in particular nested FPA models, yield ODE aggregations
that exploit structural symmetries such as hierarchically composed processes.
In this chapter, instead, we want to study FPA processes endowed with an
explicit notion of mobility and location. The sequential components live in a
two-dimensional lattice in the unit square where they may perform stationary
actions with other processes in the same region in the lattice. In addition, they
perform spatial actions which allow them to move across the lattice indepen-
dently from each other. In Section 7.1, we achieve this by defining, for each FPA
model M , its spatial version S(M), which is an FPA model itself and is con-
structed as follows. First, one defines the spatial version S(P ) of any sequential
component in M , i.e. P ∈ G(M). Then, the sequential component S(P ) arises
from P by augmenting the latter with spatial actions which allow for a random
walk on the lattice. Having this, we define S(M) by replacing each P ∈ G(M)
in M by S(P ). With such a construction, it is possible to model mobile systems
such as, for instance, personal communication services [45]: the base stations
can be modelled as regions of the lattice, which can contain potentially many
mobile nodes that may migrate across the lattice. Another interesting appli-
cation would be the modelling of spread patterns of smartphone viruses [46].
Unfortunately, the incorporation of locality leads to a blow-up not only of the
CTMC, but also of the underlying ODE system. Specifically, if 1/K is the step-
size of the regular lattice, it consists of (K + 1)2 regions and leads to an ODE
system of size O(K2), making an efficient numerical analysis infeasible in the
case of fine grained lattices. This problem is addressed in Sections 7.2 and 7.3,
where conditions are identified under which the aforementioned ODE systems
converge, as K →∞, to a system of partial differential equations (PDEs) whose
size does not depend on K. Note that the restriction to interact in the same
region becomes more and more restrictive as K tends to infinity. However, if
the unit square describes from the perspective of a single agent a large enough
area, a good approximation of the stochastic model by the PDE system may be
achieved while maintaining a realistic distance between neighbouring regions.
By performing a numerical evaluation in Section 7.4, we argue that the ODE
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systems are already numerically indistinguishable for moderate sizes of K. The
chapter concludes with an overview of related work in Section 7.5.

7.1 Spatial FPA

Let us begin with the definition of the two-dimensional lattice

R ≡ RK = {(i/K, j/K) | 0 ≤ i, j ≤ K} ⊆ [0; 1]2, K ≥ 1.

We illustrate our intent by defining the spatial version of

M := C BC
{exec}

T,

where

C
def
= (exec, r).Ĉ, Ĉ

def
= (reset , s).C, T

def
= (exec, r).T̂ , T̂

def
= (io, s′).T.

For this, let N (x, y) ≡ NK(x, y) be the von Neumann neighbourhood1 of the
region (x, y),

Ω ≡ ΩK =
{

(i/K, j/K) | i ∈ {0, 1} ∨ j ∈ {0, 1}
}

be the set of boundary regions and ∆s = 1/K. For instance, for K = 2, it holds
that N (0, 0) = {(0, 1/2), (1/2, 0)} andR\Ω = {(1/2, 1/2)}. Our transformation
will yield S(M) defined as

S(M) = C(∆s,∆s) BC
L
T (∆s,∆s), L = {execl | l ∈ R \ Ω}, (7.1)

with

Cl
def
= (execl, r).Ĉl +

∑
l̃∈N (l)\Ω

(δ, µl,l̃C (K)).C l̃ +
∑

l̃∈N (l)∩Ω

(δ, µl,l̃C (K)).O

Ĉl
def
= (reset l, s).Cl +

∑
l̃∈N (l)\Ω

(δ, µl,l̃
Ĉ

(K)).Ĉ l̃ +
∑

l̃∈N (l)∩Ω

(δ, µl,l̃
Ĉ

(K)).O

T l
def
= (execl, r).T̂ l +

∑
l̃∈N (l)\Ω

(δ, µl,l̃T (K)).T l̃ +
∑

l̃∈N (l)∩Ω

(δ, µl,l̃T (K)).O

T̂ l
def
= (iol, s′).T l +

∑
l̃∈N (l)\Ω

(δ, µl,l̃
T̂

(K)).T̂ l̃ +
∑

l̃∈N (l)∩Ω

(δ, µl,l̃
T̂

(K)).O

O
def
= (τ, 1.0).O

for all l ∈ R\Ω. Intuitively, S(M) models a situation where sequential compo-

nents of type B(M) = {C, Ĉ, T, T̂} move across R \ Ω via the spatial diffusion
action δ and exit it as soon as they hit the boundary Ω. Formally, departures

1Other neighbourhoods types may be considered, e.g. the one of Moore. However, it is not
clear whether those allow for a spatial aggregation resulting in PDEs.
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are modelled by transitions to an absorbing sequential component O. (The rate
1.0 was chosen arbitrarily; indeed, any rate would be fine because the action

models a self-loop.) The rates µl,l̃P (K) ≥ 0 may depend, in general, on the se-
quential component P that is moving, on the origin and target region, i.e. l and
l̃, respectively, and on K. The actions originally available inM, i.e. exec, reset
and io, are instead performed locally, hence their superscript which signals in
which region they are taking place. In particular, enforcing synchronisation only
between processes in the same region is achieved by appending l to each action
type, modifying the synchronisation sets accordingly in the model equation.

Remark 6. It is worth noting that the usage of location (∆s,∆s) in the defi-
nition of S(M) is arbitrary, essentially because any two locations of the lattice
are interconnected.

For an FPA model M , we assume in the following without loss of generality
that δ, τ /∈ A and O /∈ B(M). The spatial version of M , S(M), is then as
follows.

Definition 36 (Spatial FPA). For a given FPA model M , the spatial version
of M over the lattice R, denoted by S(M) ≡ SK(M), is inductively given by

S(P ) := P (∆s,∆s), S(M0 BC
L
M1) := S(M0) BC

S(L)
S(M1),

where S(L) = {αl | α ∈ L ∧ l ∈ R \ Ω} and

P l
def
=

∑
l̃∈N (l)\Ω

(δ, µl,l̃P (K)).P l̃ +
∑

l̃∈N (l)∩Ω

(δ, µl,l̃P (K)).O +
∑

(α,r,i)∈X

(αl, r).P li

for all l ∈ R\Ω and µl,l̃P (K) ≥ 0, provided that P
def
=
∑

(α,r,i)∈X(α, r).Pi. (Notice

that the case µl,l̃P (K) = 0 corresponds to removing the respective summand in
the definition of P l). Moreover, the absorbing sequential component is defined

by O
def
= (τ, 1.0).O, whereas A+ := {αl | α ∈ A ∧ l ∈ R \ Ω} ∪ {δ, τ} denotes the

set of actions of S(M).

From the above definition it becomes evident that, for any FPA model M ,
S(M) is an FPA model, with actions from A+, admitting a limit ODE system.
For example, the ODEs of B(S(M)) \ {O} are

v̇Cl = −rmin(vCl , vT l) + svĈl +
∑

l̃∈N (l)\Ω

µl̃,lC (K)vC l̃ −
∑
l̃∈N (l)

µl,l̃C (K)vCl ,

v̇Ĉl = +rmin(vCl , vT l)− svĈl +
∑

l̃∈N (l)\Ω

µl̃,l
Ĉ

(K)vĈ l̃ −
∑
l̃∈N (l)

µl,l̃
Ĉ

(K)vĈl ,

v̇T l = −rmin(vCl , vT l) + s′vT̂ l +
∑

l̃∈N (l)\Ω

µl̃,lT (K)vT l̃ −
∑
l̃∈N (l)

µl,l̃T (K)vT l ,

v̇T̂ l = +rmin(vCl , vT l)− s′vT̂ l +
∑

l̃∈N (l)\Ω

µl̃,l
T̂

(K)vT̂ l̃ −
∑
l̃∈N (l)

µl,l̃
T̂

(K)vT̂ l , (7.2)
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for all l ∈ R \ Ω. Note that none of the |B(S(M)) \ {O}| = (K − 1)2|B(M)|
ODEs depends on the ODE of vO. In general, such a derivation is formally
obtained through the following.

Theorem 22. Let us fix an FPA model M , a concentration function v of S(M)
and some l ∈ R \ Ω. Then, the concentration function v|l of M , given by
(v|l)P := vP l for all P ∈ B(M), satisfies

F (S(M), v)P l = F (M, v|l)P +
∑

l̃∈N (l)\Ω

µl̃,lP (K)vP l̃ −
∑
l̃∈N (l)

µl,l̃P (K)vP l

for all P ∈ B(M).

Proof. We first show by induction on M that

rαl(S(M), v) = rα(M,v|l) and Rαl(S(M), v, P l) = Rα(M,v|l, P )

for all P ∈ B(M), α ∈ A, l ∈ R \ Ω and concentration functions v of S(M).

• M = P0: The claim follows by

rαl
(
S(P0), v

)
=

∑
Pi∈ds(P0)

rα(Pi)vP li = rα(P0, v|l), (7.3)

Rαl
(
S(P0), v, P l

)
= rα(P )vP l = Rα(P0, v|l, P ). (7.4)

• M = M0 BC
L
M1: We assume without loss of generality that P ∈ B(M0),

which yields also P l ∈ B(S(M0)). Let us first consider the case α ∈ L.
Then, together with αl ∈ S(L), we infer

rαl(S(M0 BC
L
M1), v) = min

(
rαl(S(M0), v), rαl(S(M1), v)

)
I.H.
= min

(
rα(M0, v|l), rα(M1, v|l)

)
= rα(M0 BC

L
M1, v|l)

and

Rαl
(
S(M0 BC

L
M1), v, P l

)
=
Rαl

(
S(M0), v, P l

)
rαl(S(M0), v)

rαl
(
S(M0 BC

L
M1), v

)
I.H.
=
Rα(M0, v|l, P )

rα(M0, v|l)
rα(M0 BC

L
M1, v|l)

= Rα(M0 BC
L
M1, v|l, P ).

If α /∈ L, it holds that αl /∈ S(L), yielding

rαl(S(M0 BC
L
M1), v) = rαl(S(M0), v) + rαl(S(M1), v)

I.H.
= rα(M0, v|l) + rα(M1, v|l) = rα(M0 BC

L
M1, v|l)

and

Rαl
(
S(M0 BC

L
M1), v, P l

)
= Rαl

(
S(M0), v, P l

)
I.H.
= Rα(M0, v|l, P ) = Rα(M0 BC

L
M1, v|l, P ).
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Equipped with the auxiliary result, we are in a position to prove the actual
claim. For this, let us fix the unique Q ∈ G(M) such that P ∈ ds(Q). Then it
holds that

F (S(M), v)P l =
∑
α∈A+

( ∑
P ′∈B(S(M))

pα(P ′, P l)Rα(S(M), v, P ′)

−Rα(S(M), v, P l)
)

=
∑
α∈A

( ∑
P̃∈ds(Q)

pαl(P̃
l, P l)Rαl(S(M), v, P̃ l)−Rαl(S(M), v, P l)

)
+

∑
l̃∈N (l)\Ω

pδ(P
l̃, P l)Rδ(S(M), v, P l̃)−Rδ(S(M), v, P l)

=
∑
α∈A

( ∑
P̃∈ds(Q)

pα(P̃ , P )Rα(M,v|l, P̃ )−Rα(M, v|l, P )
)

+
∑

l̃∈N (l)\Ω

µl̃,lP (K)vP l̃ −
∑
l̃∈N (l)

µl,l̃P (K)vP l

= F (M,v|l)P +
∑

l̃∈N (l)\Ω

µl̃,lP (K)vP l̃ −
∑
l̃∈N (l)

µl,l̃P (K)vP l .

Informally, Theorem 22 says that each ODE in S(M) has two contributions.
The first contribution is a reactive part F (M, v|l)P , which corresponds to the
behaviour of the model M . The diffusive part, instead, is due to the migration
across regions. As in the example (7.2), the ODE of the absorbing state O is not
coupled to the ODEs of B(S(M))\{O}. This allows one to ignore v̇O altogether.

7.2 Underlying PDE System

A direct consequence of Theorem 22 is that the ODE system of an FPA model
M over R has |B(M)|(K − 1)2 + 1 equations, meaning that the analysis be-
comes computationally more difficult with larger K. Now, similarly to the fluid
semantics where one wants to make the analysis independent from N , in this
case we wish to study the conditions under which the analysis of S(M) is also
independent from K. Intuitively, we would like to make space continuous by
sending K to infinity. Continuing with the analogy with the fluid model where
certain scaling conditions for the transition rates are to be satisfied, a suitable
scaling of the rates needs to be found also with respect to K. In addition, un-
like the ODE case, we need to make assumptions on the initial concentration
function for S(M), in particular how it scales with K.

Overall, we make three assumptions, which we discuss in detail next.
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Figure 7.1: Continuous-time random walk (Wk(t))t≥0 on the lattice 1
kZ ×

1
kZ.

The rate of each transition is rk/4 and was suppressed to enhance readability.
In particular, the average sojourn time in each state is 1/rk.

Assumption 1: Unbiased Random Walk. We assume that each sequential
component is subjected to an unbiased random walk, i.e., it may migrate with
equal likelihood to any of its neighbours. More formally, we require that

µl,l̃P (K) = µP (K), for all P ∈ B(M), l ∈ R \ Ω and l̃ ∈ N (l). (7.5)

Notice, however, that our assumption still allows distinct sequential components
to perform migrations with different rates.

Assumption 2: Scaling of µP (K). Since a migration activity covers the
distance 1/K in our lattice R in the unit square, each µP (K) should scale with
K in a reasonable way. To motivate our forthcoming scaling, let us consider
an unbiased random walk in the two-dimensional unbounded grid 1

kZ ×
1
kZ,

where each migration covers the distance 1/k and the sojourn time at each
state is exponentially distributed with mean 1/rk. The corresponding CTMC
(Wk(t))t≥0 is illustrated in Figure 7.1 and enjoys the following property.

Proposition 4. Let us assume that Wk(0) = (0, 0) and denote by dk(t) :=
‖Wk(t)‖ the Euclidian distance of Wk(t) from the origin after time t. Then, it
holds that

E(dk(t)2) =
( rk
k2

)
t, for all k ≥ 1 and t ≥ 0,

where E(·) denotes the expectation value.

Proof. We give a proof which relies on the uniformisation method for CTMCs
with countable state spaces [78, Ch. 8, Sec. 2.1]. Let (Ŵk(n))n≥0 denote the

unbiased random walk in discrete time on 1
kZ ×

1
kZ with Ŵk(0) = (0, 0) and

let (N(t))t≥0 be the homogenous Poisson process with intensity rk. Further,
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let Π denote the transition matrix of (Ŵk(n))n≥0. Then it holds that Wk(t) =

Ŵk(N(t)) and

E(d2
k(t)) =

∑
(x,y)∈Z2

P
{
Wk(t) =

(x
k
,
y

k

)}[(x
k

)2

+
(y
k

)2]

=
1

k2

∑
(x,y)∈Z2

( ∞∑
n=0

~e T( 0
k ,

0
k )Πn (rkt)

n

n!
e−rkt

)
~e( xk ,

y
k )
(
x2 + y2

)
=

1

k2
e−rkt

∞∑
n=0

(rkt)
n

n!

( ∑
(x,y)∈Z2

~e T( 0
k ,

0
k )Πn~e( xk ,

y
k )
(
x2 + y2

))

=
1

k2
e−rkt

∞∑
n=0

(rkt)
n

n!
E
(
‖Ŵk(n)‖2

)
=

1

k2
e−rkt

∞∑
n=0

(rkt)
n

n!
n

=
1

k2
e−rktrkt

∞∑
n=1

(rkt)
n−1

(n− 1)!

=
( rk
k2

)
t.

Notice that if rk = k2r1 for all k ≥ 1, Proposition 4 yields

E(dk(t)2) = E(d1(t)2), for all k ≥ 1 and t ≥ 0.

The above relation states that if each migration of the process covers a distance
of 1/k, then the migration rate should be k2r1, in order for the random walk to
always cover the same distance on average independently of k.

Thus, we define the scaling of the migration rates as

µP (K) = µPK
2, for all P ∈ B(M), (7.6)

where µP denotes some nonnegative constant.

Before continuing our discussion, we extend each concentration function v
of S(M) by zero concentrations at the boundary Ω.

Definition 37. Let M be an FPA model. In the following, any concentration
function v of S(M) is extended by the values vP l := 0, where P ∈ B(M) and
l ∈ Ω.

For instance, using the above definition and assumption (7.6), the first ODE
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of (7.2) can be re-written to

v̇Cl = −rmin(vCl , vT l) + svĈl +
∑

l̃∈N (l)\Ω

µC(K)vC l̃ −
∑
l̃∈N (l)

µC(K)vCl

= −rmin(vCl , vT l) + svĈl +
∑
l̃∈N (l)

(
µC(K)vC l̃ − µC(K)vCl

)
.

Thus, by defining 1(l) := 1R\Ω(l),2 the ODE system (7.2) can be stated as

v̇Cl = 1(l)
(
− rmin(vCl , vT l) + svĈl + µC4dvCl

)
v̇Ĉl = 1(l)

(
+ rmin(vCl , vT l)− svĈl + µĈ4

dvĈl
)

v̇T l = 1(l)
(
− rmin(vCl , vT l) + s′vT̂ l + µT4dvT l

)
v̇T̂ l = 1(l)

(
+ rmin(vCl , vT l)− s′vT̂ l + µT̂4

dvT̂ l
)

for all l ∈ R, where 4dvP l :=
∑
l̃∈N (l)

(
v
P l̃
−v

Pl

(1/K)2

)
. Crucially, given that l ∈

R \ Ω, 4dvP l denotes the discrete Laplace operator 3 thanks to Definition 37.
Our PDE approximation consists in assuming that, for sufficiently large K,

the discrete Laplace operator can be approximated by the continuous one. With
respect to our running example, this yields the PDE system

∂tωC = −rmin(ωC , ωT ) + sωĈ + µC4ωC
∂tωĈ = +rmin(ωC , ωT )− sωĈ + µĈ4ωĈ
∂tωT = −rmin(ωC , ωT ) + s′ωT̂ + µT4ωT
∂tωT̂ = +rmin(ωC , ωT )− s′ωT̂ + µT̂4ωT̂ (7.7)

subject to the (zero) Dirichlet boundary conditions (DBCs)

ωP (0, y, t) = ωP (1, y, t) = ωP (x, 0, t) = ωP (x, 1, t) = 0, x, y ∈ [0; 1], t ≥ 0,

where ωP : [0; 1]2 × [0;∞) → R≥0, and 4 = ∂xx + ∂yy denotes the continuous
Laplace operator on [0; 1]2. This is well-known in the literature as a reaction-
diffusion PDE system, to highlight the two aforementioned contributions to the
time-derivative of ωP [73].

Thanks to Theorem 22, the above discussion carries over to the general case.
To see this, we observe that

F (S(M), v)P l = F (M,v|l)P +
∑

l̃∈N (l)\Ω

µl̃,lP (K)vP l̃ −
∑
l̃∈N (l)

µl,l̃P (K)vP l

= F (M,v|l)P +
∑
l̃∈N (l)

(
µP (K)vP l̃ − µP (K)vP l

)
21A denotes the indicator function.
3The (two-dimensional) Laplace operator ∆(f) = ∂xxf + ∂yyf arises in physics.
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Figure 7.2: The shape of ω0
C and its discretisation in the case of K = 16.

= F (M, v|l)P +
µP (K)

K2

∑
l̃∈N (l)

vP l̃ − vP l
(1/K)2

= F (M, v|l)P + µP4dvP l ,

where P ∈ B(M) and l ∈ R \ Ω. This yields the ODE system

v̇P l = 1(l)
(
F (M, v|l)P + µP4dvP l

)
, P ∈ B(M), l ∈ R. (7.8)

Assumption 3: Initial Conditions. Before being able to formulate the
underlying PDE system, the corresponding initial conditions have to be studied
carefully. Indeed, whilst in the ODE interpretation (7.8) of our spatial FPA no
restriction is needed, the PDE approximation can only make sense if the initial
concentration functions v(0) converge, as a family of functions dependent on
K, to a differentiable function on [0; 1]2 as K →∞. Thus, we fix continuously
partially differentiable functions ω0

P : [0; 1]2 → R, where P ∈ B(M), and define
the initial concentrations as

v(0)P (x,y) := ω0
P (x, y), P ∈ B(M), (x, y) ∈ R,

v(0)O := 0 (7.9)

For instance, let us consider S(C) with the initial PDE conditions

ω0
C(x, y) =

{
0 , ‖(x, y)− ( 1

2 ,
1
2 )‖2 ≥ 1

4
exp(4)

exp(1/( 1
4−‖(x,y)−( 1

2 ,
1
2 )‖2))

, otherwise

ω0
Ĉ

(x, y) = 0.

Then, for a fixed K ≥ 1, the underlying initial ODE conditions (7.9) are dis-
cretisations of those functions, as can be seen in Figure 7.2, where the shapes of
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ω0
C : [0; 1]2 → R≥0 and its discretisation in the case of K = 16 are shown. Since
S(C) is an FPA model, the sequence of the underlying CTMCs is constructed
from the initial ODE conditions as in the case of any other FPA model, cf.
Theorem 5.

The combination of the three assumptions leads to the following.

Definition 38 (Reaction-Diffusion PDE). Let us fix an FPA model M and
suppose that requirements (7.5), (7.6) and (7.9) are satisfied for S(M). Then,
the underlying PDE system of S(M) is

∂tωP = µP4ωP + F (M, ~ω)P , P ∈ B(M). (7.10)

The initial conditions are given by the functions ω0
P : [0; 1]2 → R≥0, whereas the

boundary conditions are of Dirichlet type, i.e.

ωP (0, y, t) = ωP (1, y, t) = ωP (x, 0, t) = ωP (x, 1, t) = 0, (7.11)

where P ∈ B(M), x, y ∈ [0; 1] and t ≥ 0.

Similarly to Theorem 5 which establishes the convergence of 1
N (VN (t))t≥0 to

(7.8) as K is fixed and N →∞, the next crucial section states that 1
N (VN (t))t≥0

converges in probability to (7.10) as K,N →∞.

7.3 Proof of Convergence

We start by recalling that the function

R|B(M)| → R|B(M)|, ~v 7→ F
(
M,~v

)
is globally Lipschitz, cf. proof of Theorem 5. Since linear functions are globally
Lipschitz as well, this shows that the ODE system (7.8) is globally Lipschitz.
Thus, the global version of Picard-Lindelöf’s theorem asserts that (7.8) subject

to (7.9) has a unique solution v in R|B(M)|(K−1)2

with time domain (−∞; +∞).
Moreover, for an arbitrary but fixed T > 0, it can be shown [79] that the Euler
sequence given by

v0
P (x,y) := ω0

P (x, y)

vm+1
P (x,y) := vmP (x,y) + ∆t · 1(x, y) ·

(
F (M, vm|(x,y))P + µP4dvmP (x,y)

)
, (7.12)

where P ∈ B(M), (x, y) ∈ R and ∆t := T/M for an arbitrary but fixed M ≥ 1,
converges to v, as M→∞. More formally, it holds that

∀K ≥ 1. ∃C > 0. ∀M ≥ 1.
(

max
0≤m≤M

max
(x,y)∈R,
P∈B(M)

|vP (x,y)(m∆t)− vmP (x,y) | ≤ C∆t
)
.

(7.13)
The key observation is now that the Euler sequence (7.12) can be interpreted

as a finite difference scheme [80] of the PDE system (7.10). Thus, we first prove
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that (7.12) converges to the solution of the PDE system (7.10), as ∆s,∆t→ 0.
Recalling that (7.12) satisfies at the same time (7.13), this shows, in essence,
that the sequence given in (7.12) solves the ODE and PDE systems at the same
time. This and the fact that the family of CTMCs converges to the ODE system
in probability, cf. Theorem 5, yields then the main result.

The remainder of this section consists of two theorems which realise the
sketched proof strategy. We start by showing that the sequence (7.12) converges
to the solution of the PDE system (7.10).

Theorem 23. Let us assume that the functions ~ω = (ωP )P∈B(M) describe on
[0; 1]2 × [0;T ], where T > 0 is arbitrary but fixed, the unique solution of (7.10)
subjected to the DBCs (7.11) on [0; 1]2 × [0;T ]. Further, assume that

∂txxωP , ∂xxxxωP , ∂yxxωP , ∂tyyωP , ∂xyyωP , ∂yyyyωP , P ∈ B(M),

exist and are continuous. For M ≥ 1, define ∆t := T/M, qP := µP∆t/∆s2 and
assume that M is large enough such that qP ≤ 1/4 for all P ∈ B(M).

Then, the Euler sequence (7.12) interpreted as a finite difference scheme
of (7.10) subjected to the DBCs (7.11) converges uniformly on [0;T ] in the
supremum norm, meaning that

max
0≤m≤M

max
(x,y)∈R, P∈B(M)

|ωP (x, y,m∆t)− vmP (x,y) | → 0, ∆s,∆t→ 0.

Proof. The proof uses elements from the convergence proof of the Euler method
from [79] and the usual convergence proof of the heat equation [80]. Let us
define

4dωP (x, y, t) :=
∑

(x̃,ỹ)∈N (x,y)

ωP (x̃, ỹ, t)− ωP (x, y, t)

∆s2

for all P ∈ B(M), (x, y, t) ∈ R \ Ω × [0;T −∆t]. That is, 4dωP (x, y, t) is the
approximated (i.e., discretised) version of 4ωP (x, y, t). Recall that a vector
in Rν is formally defined as a function from {1, . . . , ν} to R. Thus, for any
(x, y, t) ∈ R× [0;T ], the vector

~ω(x, y, t) = (ω(x, y, t))P∈B(M)

is a function from B(M) to R and the statement F (M, ~ω(x, y, t)) is well-defined.
Using this, we define the space step error and the time step error of the scheme
at (x, y, t) ∈ R \ Ω× [0;T −∆t] by

ρP (x, y, t) := µP4ωP (x, y, t)− µP4dωP (x, y, t)

ηP (x, y, t) := ωP (x, y, t+ ∆t)− ωP (x, y, t)

−∆t
(
µP4ωP (x, y, t) + F (M, ~ω(x, y, t))P

)
,

respectively.
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We begin by bounding the space step error. A well-known fact in numerical
analysis [81, Section 6.2, Equation 5] is that a four times continuously differ-
entiable function f : [a; b] → R yields, for all x ∈ (a; b) and h > 0 such that
[x− h;x+ h] ⊆ [a; b], the existence of an x′ ∈ [x− h;x+ h] with

∂xxf(x) =
f(x− h)− 2f(x) + f(x+ h)

h2
− h2 ∂xxxxf(x′)

12
.

Thus, we can fix a region (x, y) ∈ R \ Ω and note that there exist x′ ∈ (x −
∆s;x+ ∆s) and y′ ∈ (y −∆s; y + ∆s) such that

ρP (x, y, t)

µP
= ∂xxωP (x, y, t) + ∂yyωP (x, y, t)

−
(
ωP (x+ ∆s, y, t)− 2ωP (x, y, t) + ωP (x−∆s, y, t)

∆s2

+
ωP (x, y + ∆s, t)− 2ωP (x, y, t) + ωP (x, y −∆s, t)

∆s2

)
=
∂xxxxωP (x′, y, t)

12
∆s2 +

∂yyyyωP (x, y′, t)

12
∆s2.

Consequently, there exists a C1 ∈ R≥0 which does not depend on ∆t,∆s and
satisfies |ρP (x, y, t)| ≤ C1∆s2 for all (x, y) ∈ R \ Ω, 0 ≤ t ≤ T and P ∈ B(M).

We now turn to the time step error. Applying the mean value theorem to
t 7→ ωP (x, y, t) allows us to infer the existence of a t ≤ t′ ≤ t + ∆t such that
ωP (x, y, t+ ∆t)− ωP (x, y, t) = ∂tωP (x, y, t′)∆t. Hence

ηP (x, y, t) = ωP (x, y, t+ ∆t)− ωP (x, y, t)

−∆t
(
µP4ωP (x, y, t) + F (M,~ω(x, y, t))P

)
= ∆t

(
∂tωP (x, y, t′)− µP4ωP (x, y, t)− F (M,~ω(x, y, t))P

)
= ∆t

(
µP4ωP (x, y, t′) + F (M,~ω(x, y, t′))P

− µP4ωP (x, y, t)− F (M,~ω(x, y, t))P

)
.

Let Λ′ > 0 refer to the Lipschitz constant of all µP4ωP on [0; 1]2 × [0;T ], with
P ∈ B(M), and Λ > 0 be the global Lipschitz constant of

R|B(M)| → R|B(M)|, ~v 7→ F
(
M,~v

)
.

Then the above calculation yields

|ηP (x, y, t)|
∆t

≤ Λ‖~ω(x, y, t′)− ~ω(x, y, t)‖∞ + Λ′‖(x, y, t′)− (x, y, t)‖∞

≤ Λ‖~ω(x, y, t′)− ~ω(x, y, t)‖∞ + Λ′∆t

≤ Λ∆t max
Q∈B(M)

max
(x,y,t)∈[0;1]2×[0;T ]

|∂tωQ(x, y, t)|+ Λ′∆t,
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where the last inequality follows again by means of the mean value theorem.
Hence, there exists a C2 ∈ R≥0 which does not depend on ∆t,∆s and satisfies
|ηP (x, y, t)| ≤ C2∆t2 for all (x, y) ∈ R, 0 ≤ t ≤ T −∆t and P ∈ B(M).

We proceed by noting that

ηP (x, y, t) = ωP (x, y, t+ ∆t)− ωP (x, y, t)

−∆t
(
µP4dωP (x, y, t) + ρP (x, y, t) + F (M,~ω(x, y, t))P

)
is equivalent to

ωP (x, y, t+ ∆t) = ωP (x, y, t) + ∆t
(
µP4dωP (x, y, t)

+ F (M,~ω(x, y, t))P

)
+ ∆tρP (x, y, t) + ηP (x, y, t).

Consequently, together with tm := m∆t and em
P (x,y) := ωP (x, y, tm) − vm

P (x,y) it
holds that

|em+1
P (x,y) | ≤

∣∣∣(1− |N (x, y)|qP )emP (x,y) + qP
∑

(x̃,ỹ)∈N (x,y)

emP (x̃,ỹ)

+ ∆t
(
F (M,~ω(x, y, tm))P − F (M, vm|(x,y))P

)
+ ∆tρP (x, y, tm) + ηP (x, y, tm)

∣∣∣
≤ ‖~em‖∞ + ∆tΛ‖~em‖∞ + ∆tC1∆s2 + C2∆t2

for all 0 ≤ m ≤ M − 1 and (x, y) ∈ R \ Ω, thanks to qP ≤ 1/4. Noting
that em+1

P (x,y) = 0 for all (x, y) ∈ Ω because of the DBCs, we conclude that the
estimation

|em+1
P (x,y) | ≤ (1 + ∆tΛ)‖~em‖∞ + ∆tC1∆s2 + C2∆t2

holds for all (x, y) ∈ R. Together with C3 := max{C1, C2}, this yields

‖~em‖∞ ≤ (1 + ∆tΛ)m‖~e 0‖∞ + C3(∆t∆s2 + ∆t2)

m−1∑
k=0

(1 + ∆tΛ)k

≤ (1 + ∆tΛ)m‖~e 0‖∞ + C3(∆t∆s2 + ∆t2)
(1 + ∆tΛ)m − 1

∆tΛ

≤ em∆tΛ‖~e 0‖∞ + C3(∆s2 + ∆t)
em∆tΛ − 1

Λ

≤ eTΛ‖~e 0‖∞ + C3(∆s2 + ∆t)
eTΛ − 1

Λ

= 0 +
eTΛ − 1

Λ/C3
(∆s2 + ∆t)

for all 0 ≤ m ≤M. This shows the claim.



102 CHAPTER 7. SPATIAL AGGREGATION

As mentioned before, Theorem 5 and Theorem 23 can now be used to show
that the CTMC sequence converges in probability to the solution of the PDE
system (7.10) subjected to the DBCs (7.11) on [0; 1]2 × [0;T ].

Theorem 24. Let us assume that the functions ~ω = (ωP )P∈B(M) describe on
[0; 1]2 × [0;T ], where T > 0 is arbitrary but fixed, the unique solution of (7.10)
subjected to the DBCs (7.11) on [0; 1]2 × [0;T ]. Further, assume that

∂txxωP , ∂xxxxωP , ∂yxxωP , ∂tyyωP , ∂xyyωP , ∂yyyyωP , P ∈ B(M),

exist and are continuous. Then, for each ε > 0 it holds that

lim
K→∞

lim
N→∞

P

{
sup

0≤t≤T
max

(x,y)∈R,P∈B(M)

∣∣∣∣ 1

N
(VN (t))P (x,y) − ωP (x, y, t)

∣∣∣∣ > ε

}
= 0,

where (VN (t))t≥0 is as in Theorem 5.

Proof. In the following, we use the auxiliary results from the proof of Theorem

23. Define C ′1 := eTΛ−1
Λ/C3

and fix a K such that C ′1∆s2 < ε/12. The uniform

continuity of v on [0;T ] implies the existence of a δ1 > 0 such that

∀P ∈ B(M). ∀(x, y) ∈ R. ∀t, t′ ∈ [0;T ].

|t− t′| < δ1 ⇒ |vP (x,y)(t)− vP (x,y)(t′)| <
ε

12
.

Similarly, thanks to the uniform continuity of ~ω on [0; 1]2 × [0;T ], there exists
a δ2 > 0 such that

∀P ∈ B(M). ∀(x, y) ∈ [0; 1]2. ∀t, t′ ∈ [0;T ].

|t− t′| < δ2 ⇒ |ωP (x, y, t)− ωP (x, y, t′)| < ε

12
.

Moreover, by [79] there exists a C ′2 > 0 such that

max
0≤m≤M

max
(x,y)∈R,1≤l≤L

|vP (x,y)(tm)− vmP (x,y) | ≤ C ′2∆t.

In the following, let us fix an M such that

∆t =
T

M
< min

{
δ1, δ2,

ε

4(C ′1 + C ′2)

}
.

Then, for an arbitrary t ∈ [0;T ] and an 0 ≤ m ≤M such that |t− tm| < ∆t, it
holds that

|vP (x,y)(t)− ωP (x, y, t)| ≤ |vP (x,y)(t)− vP (x,y)(tm)|+ |vP (x,y)(tm)− vmP (x,y) |
+ |vmP (x,y) − ωP (x, y, tm)|+ |ωP (x, y, tm)− ωP (x, y, t)|
≤ ε/12 + C ′2∆t+ C ′1(∆s2 + ∆t) + ε/12

≤ ε/4 + (C ′1 + C ′2)∆t

≤ ε/2
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for all (x, y) ∈ R and P ∈ B(M). Together with

φ1 := sup
0≤t≤T

max
(x,y)∈R,P∈B(M)

∣∣∣∣ 1

N
(VN (t))P (x,y) − ωP (x, y, t)

∣∣∣∣ ,
φ2 := sup

0≤t≤T
max

(x,y)∈R,P∈B(M)

∣∣∣∣ 1

N
(VN (t))P (x,y) − vP (x,y)(t)

∣∣∣∣ ,
φ3 := sup

0≤t≤T
max

(x,y)∈R,P∈B(M)
|vP (x,y)(t)− ωP (x, y, t)| ,

we infer that P{φ1 > ε} ≤ P{φ2 + φ3 > ε} ≤ P{φ2 > ε/2 ∨ φ3 > ε/2} ≤
P{φ2 > ε/2} + P{φ3 > ε/2}. Since the choice of K from above implies that
φ3 ≤ ε/2, it holds that P{φ3 > ε/2} = 0. Consequently, the equality of norms
on a finite dimensional vector space and Theorem 5 yield the claim.

7.4 Numerical Example

In this section we provide numerical confirmation of the convergence to the
reaction-diffusion PDE by analysing (7.1) for the exec rate r = 2.0, reset rate
s = 0.5 and io rate s′ = 0.1. We performed tests with diffusion coefficients
µC = µĈ = µT = µT̂ = µ = 0.01 and the initial conditions

ω0
C(x, y) = ω0

T (x, y) =

{
0 , ‖(x, y)− ( 1

2 ,
1
2 )‖2 ≥ 1

4
exp(4)

exp(1/( 1
4−‖(x,y)−( 1

2 ,
1
2 )‖2))

, otherwise

ω0
Ĉ

(x, y) = ω0
T̂

(x, y) = 0.

For this, we implemented the sequence (7.12) in Matlab, where, for each K,
the time step ∆t was set to ∆s2/(8µ) in order to satisfy the condition from
Theorem 23 (recall that ∆s = 1/K). The comparison metric was defined to be

the average ratio C/(C + Ĉ) at t = 0.50s across the whole spatial domain. The
observation time t = 0.50s was chosen arbitrarily, but in such a way that the
numerical solution was sufficiently away from the initial condition, cf. Figure 7.3.
Using this setup, K was increased until the distance between two consecutive
solutions fell below the margin of 1e-4, cf. Table 7.1. The above results suggest
that already moderate K lead to a stabilisation of numerical results.

7.5 Related Work

Spatial Stochastic Framework The spatial aggregation presented in this
chapter can be encoded in the stochastic spatial framework [82]. There, we
consider L ≥ 1 types of sequential components, A1, . . . , AL, which perform a
random walk on the lattice R with rate µ1(K), . . . , µL(K), respectively, where
µl(K) = µl · K2 for some constant µl ≥ 0. In addition to migration actions,
sequential components may perform local actions within the current region. In
contrast to the theory presented in this chapter, local actions are given there
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Figure 7.3: Numerical solutions for the concentration of C-processes for K=64
at t=0.00s, t=0.25s and t=0.50s.

K Solution Distance to K - 32 Avg. Runtime

32 0.439943 — 0.07s
64 0.443798 3.86 1e-3 0.57s
96 0.444528 7.30 1e-4 2.51s

128 0.444781 2.53 1e-4 8.10s
160 0.444899 1.18 1e-4 20.05s
192 0.444963 6.41 1e-5 42.10s

Table 7.1: The average ratio C/(C + Ĉ) at time t = 0.50s across the whole
spatial domain. The calculations were performed on a single core machine with
2.21 GHz.

in the rather general notation of chemical reactions [83]. For instance, by iden-

tifying Cl, Ĉl, T l, T̂ l with Al1, Al2, Al3, Al4, respectively, the local actions of
S(C BC

{exec}
T ) in l ∈ R \ Ω are captured by the rules

1 : Al1 +Al3
F1(Al1,A

l
3)−−−−−−−→ Al2 +Al4, F1(Al1, A

l
3) = r ·min(Al1, A

l
3),

2 : Al2
F2(Al2)−−−−−→ Al1, F2(Al2) = s ·Al2,

3 : Al4
F3(Al4)−−−−−→ Al3, F3(Al4) = s′ ·Al4,

whereas the migration is covered by setting µ1 := µC , µ2 := µĈ , µ3 := µT and
µ4 := µT̂ .

Crucially, Theorem 23 and 24 can be shown to hold true [82] in the following,
more general setting. First, we require that for each local reaction function Fj
there are continuous functions fj : RL+P → R and gj : RL+P → R≥0 such that

Fj
(
Na1, . . . , NaL, b1, . . . , bP

)
/N =

= fj
(
a1, . . . , aL, b1, . . . , bP

)
+O (gj(a1, . . . , aL, b1, . . . , bP )/N) ,
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meaning that the underlying CTMC is, in essence, density dependent. The
numbers bl1, . . . , b

l
P , where P ≥ 0, are fixed region parameters. This implies

that local actions may depend on local concentrations and local parameters.
Second, we require that for all ~z0 ∈ RL+P there exist an open neighbourhood
O of ~z0 and a C ∈ R≥0 such that∣∣fj(~z2)− fj

(
~z1)
∣∣ ≤ C‖~z2 − ~z1‖, ∀~z1, ~z2 ∈ O.

Since the above condition states that the function has to be locally Lipschitz,
it is possible to describe synchronisation in terms of minima and polynomials.
For instance, in the above example one could use F1(Al1, A

l
3) = r · 1

N · A
l
1 · Al3,

which would yield an ODE system which obeys the law of mass action [73, 74].
Although being technically a special case of [82], the benefit of the theory

presented in this chapter is that it allows one to define local actions from a
macroscopic view. Specifically, it is possible to describe complex systems in a
compositional way.

Reaction-diffusion PDEs PDEs of reaction-diffusion type are very well un-
derstood in many disciplines, such as biology [73], ecology [84], and chem-
istry [85]. It is beyond the scope of this thesis to provide a general overview of
the literature. Instead, we focus on related work that, similarly to ours, consid-
ers PDEs as the macroscopic deterministic behaviour of a stochastic process.

In physical chemistry, one such approach is to consider the so-called reaction-
diffusion master equation, which corresponds to the forward equations of a
CTMC that models a network of biochemical reactions occurring at discrete
sites, and molecular transitions across sites [86, 87]. Although the stochastic
model corresponds to ours, the relationship with the PDE model is established
by means of a procedure that closes the equations for the average populations
obtained by summing across the forward equations and approximating the ex-
pected value of a function of random variables with the function of their expecta-
tions. Instead, we use a more rigourous limiting procedure in the sense of Kurtz,
which also has the practical advantage of hinting at the population scaling to use
for increasing the accuracy of the deterministic estimates, as confirmed by the
numerical results presented in Section 7.4. The closest approach to ours is found
in [88], which was subsequently worked upon in a series of papers [89, 90, 91, 92].
Their stochastic models are, however, different, in that the local reaction rates
model only birth and death, i.e. interactions between multiple types of agents
are not possible. Further, the convergence of the stochastic models to a system
of PDEs is shown directly, i.e. without considering the correspondence between
the fluid limit at each region and the finite difference scheme for the PDE. This
suggests that our approach, which, in essence, translates a problem from the
area of stochastic processes to a problem from the area of numerical analysis,
reduces the underlying mathematical complexity.

Mobility models There is a substantial amount of work on mobility models,
both at the analytical level and experimentally through traces. In this paragraph
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we overview the literature that is most closely related to our approach based on
the random walk model; for an extensive discussion, we refer to the survey [93].

Owing to its analytical tractability, the random walk model has been ex-
tensively studied in networking research. A discrete-time Markovian model was
developed in [94] for the comparative evaluation of update strategies in cellular
networks. The paper considers a mobility model where a node is characterised
by states that determine the direction of movement. In this respect our approach
is analogous, since agent types may have different movement rates. However,
the results of their analysis are presented for a one-dimensional topology (over
a ring) and cannot be lifted to more general local interactions; on the other
hand, their mobility model is anisotropic. Unbiased random walks are instead
proposed in [95] and [45] to study movements across cellular networks, and to
study routing protocols [96, 97] and performance characteristics in ad hoc net-
works [98]. In all cases, mobility is not coupled with a model of interaction
between nodes. Random walk is also used in [99] as the basic mobility model by
which the authors arrive at a reaction-diffusion type equation for information
propagation in ad hoc networks; their analysis is carried out at the determin-
istic/macroscopic level without considering a limiting regime of a counterpart
microscopic/stochastic process. Instead, the PDEs used in [100] are interpreted
as the deterministic limit of the empirical measure of node concentrations, by
appealing to the strong law of large numbers.
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Conclusion

The fluid techniques developed over the past few years for high-level performance
modelling techniques such as process algebra have mostly considered the case
of large numbers of replicas of independent components characterised by small
local state spaces. The resulting approximating mathematical object, usually
a system of ordinary differential equations, has been taken as the culminating
point of a line of reasoning which provides a shift from a discrete-state stochastic
description to a continuous-state deterministic view whilst maintaining a well-
founded relationship between the two. In this thesis we have taken the fluid
approximation of a PEPA model as the starting point of an argumentation
that has led to observing a rapid growth of the size of such an ODE system
whenever of replication was lifted from sequential components to composite
processes or spatial heterogeneity was present. We have argued that there are
indeed situations of interest which call for such a form of modelling, for instance
distributed computer systems or mobility models. We devised two techniques
which allow for an efficient analysis in both cases.

We first introduced the technique of fluid lumpability which allows one to
aggregate the ODE system belonging to a model with replication patterns into
another ODE system whose size is independent from all the multiplicities of the
process replicas in the model, but only depends on the local state-space sizes of
the constituent sequential components. Interestingly enough, we have noted in
passing that there are models which are not equivalent in terms of the common
stochastic notions of behavioural equivalence but whose fluid approximations
can be exactly related thanks to the notion of fluid lumpability. Similarly to
near and quasi lumpability, which account for small perturbations in the tran-
sition matrix of a CTMC, we have defined the notion of fluid ε-lumpability
which allows for small perturbations ε in the parameters of an ODE system.
By exploiting the semantics of PEPA, we were able to derive a bound for the
difference between the solutions of perturbed and original ODE systems which
is linear in ε, allowing therefore for an analysis of almost fluid lumpable ODE
systems.

To cope with the growth of ODE system size in the presence of spatial

107
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heterogeneity, we devised a technique which applies whenever the sequential
processes of a given PEPA model may perform, among local actions, a random
walk on a two-dimensional lattice. We proved that the ODE system, whose size
is directly proportional to the size of the lattice, converges, as the size of the
lattice tends to infinity, to a spatial reaction-diffusion PDE limit of constant
size. By doing so, we were able to provide an efficient analysis of large-scale
mobile systems in continuous space.

Those ideas can be extended in several directions. For instance, the currently
used a-priori error estimation in fluid ε-lumpability is rooted in Gronwall’s
inequality which accounts, in essence, for the worst case scenario. However, if
the fluid model can be expressed by means of a kernel expansion, the a-posteriori
error estimation can be applied, yielding much tighter bounds [101, 102].

Also, one may investigate whether models whose fluid approximations are
exactly related but which fail to be equivalent with respect to common be-
havioural equivalences, can be related in terms of stochastic orders [103]. For
instance, while the fluid approximations of the PEPA models from Section 4.3

M1 :=
(
C BC
{exec}

T
)
BC
∅

(
C BC
{exec}

T
)
BC
{io}

U M2 :=
(
C ‖ C

)
BC
{exec}

(
T ‖ T

)
BC
{io}

U

are exactly related, they cannot be associated to each other by means of stochas-
tic equivalences. Informally, this is because M2 is capable of answering any
action performed by M1, while the converse is not true. Since this means that
M2 has, intuitively, a higher cooperation potential than M1, a stochastic notion
of inequality rather than stochastic equivalence may relate both models.

The spatial aggregation technique, on the other hand, can be extended by
adding deterministic drifts. With drift rates being dependent on the current
state of the agent, this would allow one to describe spatial patterns of higher
complexity. For instance, one could incorporate a scenario where agents first
undergo some “exploratory phase” by means of random walk. Upon locating
some target, however, they wish to return to a known base station, for instance
to rest/recharge. Crucially, since the location of the base station is known, the
agents use a deterministic drift for their way back. One could also think of
studying spatial behaviour on unbounded domains, e.g. the whole plane, or to
consider reflective, instead of absorbing, boundary conditions.
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[40] J. Tóth, G. Li, H. Rabitz, and A. S. Tomlin, “The effect of lumping and
expanding on kinetic differential equations,” SIAM Journal of Applied
Mathematics, vol. 57, no. 6, pp. 1531–1556, 1997.

[41] P. J. Schweitzer, “Aggregation methods for large markov chains,” in Com-
puter Performance and Reliability, pp. 275–286, 1983.

[42] M. Tschaikowski and M. Tribastone, “Exact fluid lumpability for Marko-
vian process algebra,” in International Conference on Concurrency The-
ory, CONCUR 2012, LNCS, pp. 380–394, 2012.

[43] M. Tribastone, S. Gilmore, and J. Hillston, “Scalable differential analysis
of process algebra models,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 205–219, 2012.

[44] M. Tschaikowski and M. Tribastone, “Extended Differential Aggregations
in Process Algebra for Performance and Biology,” in 12th Quantitative
Aspects of Programming Languages and Systems (QAPL), 2014.

[45] I. Akyildiz, Y.-B. Lin, W.-R. Lai, and R.-J. Chen, “A new random walk
model for PCS networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 18, no. 7, pp. 1254–1260, 2000.

[46] P. Wang, M. Gonzlez, C. Hidalgo, and A. Barabási, “Understanding the
spreading patterns of mobile phone viruses,” Science, vol. 324, pp. 1071–
1076, 2009.

[47] J. Kemeny and J. Snell, Finite Markov Chains. Berlin: Springer New
York, Heidelberg, 1976.

[48] U. Sumita and M. Rieders, “Lumpability and time reversibility in the
aggregation-disaggregation method for large markov chains,” Communi-
cations in Statistics. Stochastic Models, vol. 5, 1989.

[49] M. Tschaikowski and M. Tribastone, “Exact Fluid Lumpability in Marko-
vian Process Algebra,” DOI: http://dx.doi.org/10.1016/j.tcs.2013.07.029.



BIBLIOGRAPHY 113

[50] R. A. Hayden and J. T. Bradley, “Evaluating fluid semantics for passive
stochastic process algebra cooperation,” Performance Evaluation, vol. 67,
no. 4, pp. 260–284, 2010.

[51] J. Hillston, “The nature of synchronisation,” in Proceedings of the Second
International Workshop on Process Algebras and Performance Modelling,
pp. 51–70, 1994.

[52] R. Milner, A Calculus of Communicating Systems. Springer-Verlag, 1980.

[53] T. G. Kurtz, “Solutions of ordinary differential equations as limits of pure
jump markov processes,” Journal of Applied Probability, vol. 7, no. 1,
pp. 49–58, 1970.

[54] R. A. Hayden, A. Stefanek, and J. T. Bradley, “Fluid computation of
passage-time distributions in large Markov models,” Theoretical Computer
Science, vol. 413, no. 1, pp. 106–141, 2012.

[55] W. O. Kermack and A. G. McKendrick, “A contribution to the mathe-
matical theory of epidemics,” Proceedings of the Royal Society of London.
Series A, vol. 115, no. 772, 1927.

[56] R. K. Watson, “On an epidemic in a stratified population,” Journal of
Applied Probability, vol. 9, no. 3, pp. pp. 659–666, 1972.

[57] F. Ciocchetta and J. Hillston, “Bio-PEPA for Epidemiological Models,”
Electronic Notes in Theoretical Compututer Science, vol. 261, pp. 43–69,
2010.

[58] M. Tschaikowski and M. Tribastone, “Tackling Continuous
State-Space Explosion in a Markovian Process Algebra,” DOI:
http://dx.doi.org/10.1016/j.tcs.2013.08.016.

[59] E. Gelenbe, “G-networks with triggered customer movement,” Journal of
Applied Probability, vol. 30, no. 3, pp. pp. 742–748, 1993.

[60] A. A. Lazar and T. G. Robertazzi, “Markovian Petri Net protocols with
product form solution,” Performance Evaluation, vol. 12, no. 1, pp. 67 –
77, 1991.

[61] R. Boucherie, “A characterization of independence for competing Markov
chains with applications to stochastic Petri nets,” IEEE Transactions on
Software Engineering, vol. 20, no. 7, pp. 536–544, 1994.

[62] M. Sereno, “Towards a Product Form Solution for Stochastic Process Al-
gebras,” Computer Journal, vol. 38, no. 7, pp. 622–632, 1995.

[63] J. Hillston and N. Thomas, “Product form solution for a class of PEPA
models,” Performance Evaluation, vol. 35, no. 3–4, pp. 171 – 192, 1999.



114 BIBLIOGRAPHY

[64] M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed multichain
queuing networks,” Journal of the ACM, vol. 27, no. 2, pp. 313–322, 1980.

[65] P. G. Harrison, “Turning back time in Markovian process algebra,” The-
oretical Computer Science, vol. 290, no. 3, pp. 1947–1986, 2003.

[66] M. Tribastone, “Approximate mean value analysis of process algebra mod-
els,” 2012 IEEE 20th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 369–378,
2011.

[67] G. Franks, T. Omari, C. M. Woodside, O. Das, and S. Derisavi, “Enhanced
modeling and solution of layered queueing networks,” IEEE Transactions
on Software Engineering, vol. 35, no. 2, pp. 148–161, 2009.

[68] T. Omari, G. Franks, C. M. Woodside, and A. Pan, “Efficient performance
models for layered server systems with replicated servers and parallel be-
haviour,” Journal of Systems and Software, vol. 80, no. 4, pp. 510–527,
2007.

[69] K. M. Chandy and D. Neuse, “Linearizer: A heuristic algorithm for queue-
ing network models of computing systems,” Communications of the ACM,
vol. 25, no. 2, pp. 126–134, 1982.

[70] P. Schweitzer, “Approximate analysis of multiclass closed networks of
queues,” in International Conference on Stochastic Control and Optimiza-
tion, pp. 25–29, 1979.

[71] M. Tribastone, A. Duguid, and S. Gilmore, “The PEPA Eclipse Plug-in,”
Performance Evaluation Review, vol. 36, pp. 28–33, March 2009.

[72] D. T. Gillespie, “Exact stochastic simulation of coupled chemical reac-
tions,” Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–2361,
1977.

[73] J. D. Murray, Mathematical Biology I: An Introduction. Springer, 3rd ed.,
2002.
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Appendix A

Proofs

A.1 Proof of Theorem 5

We start with a formal definition of the CTMC (V(t))t≥0.

Definition 39. In the sequel, the following notions will be used.

• For all α ∈ A and PEPA models G,G′, let us denote by qα(G,G′) the
sum of the rates of all α-transitions from G to G′ which are induced by
the PEPA semantics.

• Fix an FPA model M and a population function V of M . Two models
G′, G′′ ∈ ds(MV ) are groupwise equivalent, G′ 'M,V G′′, if C(G′, P ) =
C(G′′, P ) for all P ∈ B(M).

Arguing as in [17], one shows that'M,V is an equivalence relation on ds(MV )
and that

qα(G′, E) :=
∑
G∈E

qα(G′, G) =
∑
G∈E

qα(G′′, G) =: qα(G′′, E)

for all α ∈ A, E ∈ ds(MV )/ 'M,V and G′, G′′ ∈ ds(MV ) with G′ 'M,V G′′.
Also, it can be shown that qα(G, [G]) = qα(G,G) for all G ∈ ds(MV ). This
yields the following.

Proposition 5. Fix a FPA model M and a population function V of M . To-
gether with dsl(MV ) := ds(MV )/ 'M,V , the set

Tl(MV ) :=
{(

[G], (α, qα(G, [G′])), [G′]
)
| [G], [G′] ∈ dsl(MV ) ∧ α ∈ A

}
is well-defined. Let (X(t))t≥0 and (E(t))t≥0 denote the CTMCs induced by the
derivation graphs dg(MV ) and (dsl(MV ), Tl(MV )), respectively. Then, dsl(MV )
is an ordinarily lumpable partition of (X(t))t≥0 and the corresponding lumped
CTMC is (E(t))t≥0.
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This allows us to define the following.

Definition 40. Using the same variables as in Proposition 5, (E(t))t≥0 induces
(V(t))t≥0 by setting (V(t))P := C(G(t), P ), where P ∈ B(M) and G(t) is an
arbitrary representative of E(t).

The auxiliary result stated below is needed for the proof of Theorem 5.

Lemma 12. The underlying ODE system v̇ = F (M,v) of a FPA model M is
globally Lipschitz on R|B(M)|. Moreover, for any nonnegative initial condition
v(0), it has a unique solution v in R|B(M)| such that its time domain contains
[0;∞) and ‖v(0)‖1 = ‖v(s)‖1 for all 0 ≤ s <∞.

Proof. We cope with negative numbers by considering the ODE field F (M, | · |).
Then, Lemma B.1 from [54] shows that F (M, | · |) is globally Lipschitz. Further,
the global version of Picard-Lindelöf asserts that there exists a unique solution
v in R|B(M)| with time domain (−∞; +∞). To see the last claim, we first show
using structural induction

i) For all P ∈ B(M) there exists a nonnegative function ρ such that v̇P ≥
−vP · ρ(v).

ii) For all P ∈ G(M) it holds that
∑
P ′∈ds(P ) v̇P ′ = 0.

Since i) ensures that vP ≥ 0 for all P ∈ B(M) and ii) yields the conservation
of mass, the proof is complete.

We can state now the proof of Theorem 5.

Theorem 5. We first exploit Lemma 12. Let v denote the unique solution of
v̇ = F (M,v) in R|B(M)| subjected to v(0). Since the time domain of v contains
[0;T ], it holds that c := max0≤t≤T ‖v(t)‖+ 1 <∞.

Let us denote by EN ⊆ R|B(M)| the state space of
(

1
NVN (t)

)
t≥0

subjected

to the initial state bNv(0)c/N . For a v ∈ EN , let λN (v) denote the exit time
distribution in state v, meaning that

P
{
τ(v) > t

∣∣∣ 1

N
VN (0) = v

}
= e−λN (v)t

with

τ(v) := inf
{
t ≥ 0

∣∣∣ 1

N
VN (t) 6= v

}
.

For every set Γ in the Borel σ-algebra of EN , B(EN ), we define further the jump
distribution in v as

µN (v,Γ) := P
{ 1

N
VN (τ(v)) ∈ Γ

∣∣∣ 1

N
VN (0) = v

}
.
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Theorem 2.15 in [17] shows that the sum of all transitions of VN (t) which
change the number of P ’s, Φ(VN (t))P , is∑
α∈A

( ∑
P ′∈B(M)\{P}

pα(P ′, P )Rα(M,VN (t), P ′)−
∑

P ′∈B(M)\{P}

pα(P, P ′)Rα(M,VN (t), P )
)

=
∑
α∈A

( ∑
P ′∈B(M)

pα(P ′, P )Rα(M,VN (t), P ′)−
∑

P ′∈B(M)

pα(P, P ′)Rα(M,VN (t), P )
)

=
∑
α∈A

( ∑
P ′∈B(M)

pα(P ′, P )Rα(M,VN (t), P ′)−Rα(M,VN (t), P )
)
,

where the last equality sign is due to
∑
P ′∈B(M) pα(P, P ′) = 1. This yields

F (M,v) =
1

N
Φ(Nv) = λN (v)

∫
w∈EN

(w − v)µN (v, dw).

Moreover, it holds that

EN ∩
{
v ∈ R|B(M)| ∣∣ inf

0≤t≤T
‖v − v(t)‖ ≤ 1

2

}
⊆ E.

Together with ΓN := EN ∩ E, it holds that

sup
N≥1

sup
v∈ΓN

λN (v)

∫
w∈EN

‖w − v‖µN (v, dw) <∞.

To see this, we first notice that

λN (v)

∫
w∈EN

‖w − v‖µN (v, dw) ≤
√
|B(M)|

∫
w∈EN

‖w − v‖∞λN (v)µN (v, dw)

≤
√
|B(M)| 1

N

∫
w∈EN

λN (v)µN (v, dw)

=
√
|B(M)|λN (v)

N
.

Since the sum of the rates of all outgoing transitions of VN (t) is bounded by∑
P∈B(M)

∑
α∈A
Rα(M,VN (t), P )

and∑
P∈B(M)

∑
α∈A

Rα(M,VN (t), P )

N
=
∑

P∈B(M)

∑
α∈A
Rα
(
M,

VN (t)

N
,P
)

=: Θ
(
M,

VN (t)

N

)
,

we conclude that

λN (v)

∫
w∈EN

‖w − v‖µN (v, dw) ≤
√
|B(M)|Θ(M,v).
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Moreover, for all N ≥ 1, it holds that

sup
v∈ΓN

λN (v)

∫
‖w−v‖>εN

‖w − v‖µN (v, dw) = 0, εN :=

√
|B(M)

N
,

because εN < ‖w − v‖ ≤
√
|B(M)|‖w − v‖∞ implies 1

N < ‖w − v‖∞. The
claim follows then from Theorem 2.11 in [53].

A.2 Proof of Theorem 8

Proof. Let us assume that ~P i ∼P
~P j is established by the bijections σk, 1 ≤

k ≤ K, where K := Ki = Kj . We will show that the same bijections establish
~P i ∼P+ ~P j . For this, we assume that α ∈ L, since the case α /∈ L is easy.
Property ii) follows then with

rα(M BC
L
M0, v) = min

(
rα(M, v), rα(M0, v)

)
= min

(
rα(M,vσ), rα(M0, v

σ)
)

= rα(M BC
L
M0, v

σ)

Then, for any P ∈ B(M BC
L
M0) \

⋃
{ds(P lk) | l ∈ {i, j} ∧ 1 ≤ k ≤ K} and

M :=

{
M , P ∈ G(M)

M0 , P ∈ G(M0)

it holds that

Rα(M BC
L
M0, v, P ) = Rα(M, v, P )

min(rα(M, v), rα(M0, v))

rα(M, v)

= Rα(M, v, P )
min(rα(M, vσ), rα(M0, v

σ))

rα(M, vσ)

= Rα(M, vσ, P )
min(rα(M, vσ), rα(M0, v

σ))

rα(M, vσ)

= Rα(M BC
L
M0, v

σ, P ).

For P ∈ ds(P ik), where 1 ≤ k ≤ K, instead, we infer that

Rα(M BC
L
M0, v, P ) = Rα(M,v, P )

min(rα(M,v), rα(M0, v))

rα(M, v)

= Rα(M,v, P )
min(rα(M,vσ), rα(M0, v

σ))

rα(M,vσ)

= Rα(M,vσ, σk(P ))
min(rα(M,vσ), rα(M0, v

σ))

rα(M,vσ)

= Rα(M BC
L
M0, v

σ, σk(P ))
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and ∑
P ′

pα(P ′, P )Rα(M BC
L
M0, v, P

′) =

=
∑
P ′

pα(P ′, P )Rα(M,v, P ′)
min(rα(M, v), rα(M0, v))

rα(M,v)

=
∑
P ′

pα(P ′, P )Rα(M,v, P ′)
min(rα(M, vσ), rα(M0, v

σ))

rα(M, vσ)

=
∑
P ′

pα(P ′, σk(P ))Rα(M, vσ, P ′)
min(rα(M,vσ), rα(M0, v

σ))

rα(M,vσ)

=
∑
P ′

pα(P ′, σk(P ))Rα(M BC
L
M0, v

σ, P ′).

Next, we show that ∼P is an equivalence relation on P. The reflexivity
~P i ∼P

~P i is established by the identity functions on ds(P ik), 1 ≤ k ≤ K, and

the symmetry by σ−1
k , 1 ≤ k ≤ K, where σk : ds(P ik) → ds(P jk ), 1 ≤ k ≤ K,

establish ~P i ∼P
~P j . For the proof of transitivity, let us fix ~P i, ~P j , ~P ν ∈ P with

~P i ∼P
~P j and ~P j ∼P

~P ν . Clearly, it holds that ~P i, ~P j , ~P ν ∈ p for some p ∈ P.

We assume that ~P i, ~P j , ~P ν are pairwise different, for the other cases are
trivial, and that

σik : ds(P ik)→ ds(P jk ), σjk : ds(P jk )→ ds(P νk ), 1 ≤ k ≤ K

establish ~P i ∼P
~P j , ~P j ∼P

~P ν , respectively. Using σµ1 ◦ σµ2 := (σµ1

1 ◦ σ
µ2

1 , . . .
. . . , σµ1

K ◦ σ
µ2

K ), we first observe that

rα(M, v) = rα(M,vσ
i

) = rα
(
M, (vσ

i

)σ
j)

= rα
(
M, ((vσ

i

)σ
j

)σ
i)

= rα
(
M,vσ

j◦σi).
Then, for all P ∈ B(M) \

⋃
{ds(P lk) | l ∈ {i, j, ν} ∧ 1 ≤ k ≤ K}, it holds that

Rα(M, v, P ) = Rα(M,vσ
i

, P ) = Rα(M, (vσ
i

)σ
j

, P )

= Rα(M, ((vσ
i

)σ
j

)σ
i

, P ) = Rα(M, vσ
j◦σi , P ).

Similarly, for all P ∈ ds(P jk ), it holds that

Rα(M,v, P ) = Rα(M,vσ
i

, (σik)−1(P )) = Rα(M, (vσ
i

)σ
j

, (σik)−1(P ))

= Rα(M, ((vσ
i

)σ
j

)σ
i

, σik((σik)−1(P ))) = Rα(M,vσ
j◦σi , P ).

On the other hand, we infer for all P ∈ ds(P ik)

Rα(M,v, P ) = Rα(M,vσ
i

, σik(P )) = Rα(M, (vσ
i

)σ
j

, σjk(σik(P ))) =

= Rα(M, ((vσ
i

)σ
j

)σ
i

, σjk(σik(P ))) = Rα(M,vσ
j◦σi , (σjk ◦ σ

i
k)(P ))
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and∑
P ′

pα(P ′, P )Rα(M,v, P ′) =
∑
P ′

pα(P ′, σik(P ))Rα(M, vσ
i

, P ′)

=
∑
P ′

pα(P ′, σjk(σik(P )))Rα(M, (vσ
i

)σ
j

, P ′)

=
∑
P ′

pα(P ′, σjk(σik(P )))Rα(M, ((vσ
i

)σ
j

)σ
i

, P ′)

=
∑
P ′

pα(P ′, (σjk ◦ σ
i
k)(P ))Rα(M,vσ

j◦σi , P ′).

Thus, (σj ◦ σi)k : ds(P ik)→ ds(P νk ), 1 ≤ k ≤ K, establishes ~P i ∼P
~P ν .

A.3 Proof of Proposition 3

Proposition 3. The first claim follows from Lemma B.1 in [54]. We show the
second claim by exchanging the roles of parameters and variables in the proof
of Lemma B.1. Specifically, one shows first that for each Q ∈ B(M) and α ∈ A
the set R|ν(M)|

>0 can be covered by closed convex subsets A1, . . . , AI such that
for a given 1 ≤ ι ≤ I, it holds that

Rα(M,v,Q) = vQrα(Q)(ξ)

D∏
n=1

bn(ξ, v)

an(ξ, v)

for all ξ ∈ Aι, where D ≥ 1 and a1, b1, . . . , an, bn are apparent rates which
satisfy

an(ξ, v) ≥ bn(ξ, v) ∧ an(ξ, v) ≥ vQrα(Q)(ξ)

n−1∏
m=1

bm(ξ, v)

am(ξ, v)

for all 1 ≤ n ≤ D. As rα(Q)(ξ) =
∑
k∈S ξk for some set S ⊆ {1, . . . , |ν(M)|},

the first equation rewrites to

Rα(M,v,Q) = vQ
∑
k∈S

ξk

D∏
n=1

bn(ξ, v)

an(ξ, v)
.

From the definition of FP (·, v) it becomes evident that we have to consider also
pα(Q,P )(ξ)Rα(M, v,Q), where Q ∈ B(M). Noting that

rα(Q)(ξ) ≥ pα(Q,P )(ξ)rα(Q)(ξ) =
∑

Q
α,ξi−−−→P

ξi =
∑
k∈S′

ξk

for some S′ ⊆ {1, . . . , |ν(M)|}, we infer

pα(Q,P )(ξ)Rα(M, v,Q) = vQ
∑
k∈S′

ξk

D∏
n=1

bn(ξ, v)

an(ξ, v)
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and

an(ξ, v) ≥ vQrα(Q)(ξ)

n−1∏
m=1

bm(ξ, v)

am(ξ, v)
≥ vQ

∑
k∈S′

ξk

n−1∏
m=1

bm(ξ, v)

am(ξ, v)

for all 1 ≤ n ≤ D, meaning that both pα(Q,P )(ξ)Rα(M, v,Q) andRα(M,v,Q),
belong to the same class of functions.

Clearly, the function f(ξ, v) := vQ
∑
k∈S ξk

∏D
n=1

bn(ξ,v)
an(ξ,v) is continuous in all

ξ ∈ Aι. Moreover, each int(Aι) may be assumed to be nonempty: if ξ ∈ Ai
and int(Ai) = ∅, there exists a sequence (ξn)n in R|ν(M)|

>0 \ Ai ⊆ ∪ι 6=iAι which
converges to ξ. As ∪ι 6=iAι is closed, it follows that ξ ∈ ∪ι 6=iAι, meaning that

∪ι 6=iAι covers already R|ν(M)|
>0 . Thus, Aι can be disregarded.

Now, for each partial derivative ∂ξjf(·, v) we give a bound on int(Aι) which
depends only on M and v. For this, let us fix some ξ ∈ int(Aι). Then it holds
that

∂ξjf(ξ, v) =


vQcj

D∏
n=1

bn(ξ, v)

an(ξ, v)
+
(
vQ
∑
k∈S

ξk

)
∂ξj

D∏
n=1

bn(ξ, v)

an(ξ, v)
, j ∈ S

(
vQ
∑
k∈S

ξk

)
∂ξj

D∏
n=1

bn(ξ, v)

an(ξ, v)
, j /∈ S

Using F [n](ξ, v) :=
∏n
m=1

bm(ξ,v)
am(ξ,v) for 0 ≤ n ≤ D we infer

∂ξjF [n] =
F [n− 1]

an
∂ξj bn −

F [n]

an
∂ξjan +

bn
an
∂ξjF [n− 1].

Thus, the above inequalities yield∣∣∣∂ξjF [n](ξ, v)
(
vQ
∑
k∈S

ξk

)∣∣∣ ≤ |∂ξj bn(ξ, v)|+ |∂ξjan(ξ, v)|

+
∣∣∣∂ξjF [n− 1](ξ, v)

(
vQ
∑
k∈S

ξk

)∣∣∣
and we conclude

|∂ξjf(ξ, v)| ≤
D∑
n=1

|∂ξj bn(ξ, v)|+
D∑
n=1

|∂ξjan(ξ, v)| ≤ C‖v‖∞

for some C > 0 which depends on j and Q ∈ B(M). One proceeds then similarly
to the proof of Lemma B.1 from [54].


