116,312 research outputs found

    Tropical Limits of Probability Spaces, Part I: The Intrinsic Kolmogorov-Sinai Distance and the Asymptotic Equipartition Property for Configurations

    Get PDF
    The entropy of a finite probability space XX measures the observable cardinality of large independent products X⊗nX^{\otimes n} of the probability space. If two probability spaces XX and YY have the same entropy, there is an almost measure-preserving bijection between large parts of X⊗nX^{\otimes n} and Y⊗nY^{\otimes n}. In this way, XX and YY are asymptotically equivalent. It turns out to be challenging to generalize this notion of asymptotic equivalence to configurations of probability spaces, which are collections of probability spaces with measure-preserving maps between some of them. In this article we introduce the intrinsic Kolmogorov-Sinai distance on the space of configurations of probability spaces. Concentrating on the large-scale geometry we pass to the asymptotic Kolmogorov-Sinai distance. It induces an asymptotic equivalence relation on sequences of configurations of probability spaces. We will call the equivalence classes \emph{tropical probability spaces}. In this context we prove an Asymptotic Equipartition Property for configurations. It states that tropical configurations can always be approximated by homogeneous configurations. In addition, we show that the solutions to certain Information-Optimization problems are Lipschitz-con\-tinuous with respect to the asymptotic Kolmogorov-Sinai distance. It follows from these two statements that in order to solve an Information-Optimization problem, it suffices to consider homogeneous configurations. Finally, we show that spaces of trajectories of length nn of certain stochastic processes, in particular stationary Markov chains, have a tropical limit.Comment: Comment to version 2: Fixed typos, a calculation mistake in Lemma 5.1 and its consequences in Proposition 5.2 and Theorem 6.

    The Evolution of a Spatial Stochastic Network

    Full text link
    The asymptotic behavior of a stochastic network represented by a birth and death processes of particles on a compact state space is analyzed. Births: Particles are created at rate λ+\lambda_+ and their location is independent of the current configuration. Deaths are due to negative particles arriving at rate λ−\lambda_-. The death of a particle occurs when a negative particle arrives in its neighborhood and kills it. Several killing schemes are considered. The arriving locations of positive and negative particles are assumed to have the same distribution. By using a combination of monotonicity properties and invariance relations it is shown that the configurations of particles converge in distribution for several models. The problems of uniqueness of invariant measures and of the existence of accumulation points for the limiting configurations are also investigated. It is shown for several natural models that if λ+<λ−\lambda_+<\lambda_- then the asymptotic configuration has a finite number of points with probability 1. Examples with λ+<λ−\lambda_+<\lambda_- and an infinite number of particles in the limit are also presented
    • …
    corecore