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TROPICAL LIMITS OF PROBABILITY SPACES, PART I

THE INTRINSIC KOLMOGOROV-SINAI DISTANCE AND THE

ASYMPTOTIC EQUIPARTITION PROPERTY FOR CONFIGURATIONS

R. MATVEEV AND J. W. PORTEGIES

Abstract. The entropy of a finite probability space X measures the ob-
servable cardinality of large independent products X⊗n of the probability
space. If two probability spaces X and Y have the same entropy, there is an
almost measure-preserving bijection between large parts of X⊗n and Y ⊗n.
In this way, X and Y are asymptotically equivalent.

It turns out to be challenging to generalize this notion of asymptotic
equivalence to configurations of probability spaces, which are collections of
probability spaces with measure-preserving maps between some of them.

In this article we introduce the intrinsic Kolmogorov-Sinai distance on
the space of configurations of probability spaces. Concentrating on the
large-scale geometry we pass to the asymptotic Kolmogorov-Sinai distance.
It induces an asymptotic equivalence relation on sequences of configurations
of probability spaces. We will call the equivalence classes tropical probability
spaces.

In this context we prove an Asymptotic Equipartition Property for con-
figurations. It states that tropical configurations can always be approx-
imated by homogeneous configurations. In addition, we show that the
solutions to certain Information-Optimization problems are Lipschitz-con-
tinuous with respect to the asymptotic Kolmogorov-Sinai distance. It fol-
lows from these two statements that in order to solve an Information-
Optimization problem, it suffices to consider homogeneous configurations.

Finally, we show that spaces of trajectories of length n of certain sto-
chastic processes, in particular stationary Markov chains, have a tropical
limit.

0. Introduction

The aim of the present article is to develop a theory of tropical probabil-
ity spaces, which are asymptotic classes of finite probability spaces. Together
with the accompanying techniques, we expect them to be relevant to prob-
lems arising in information theory, causal inference, artificial intelligence and
neuroscience.

As a matter of introduction and motivation of the research presented in the
article, we start by considering a few simple examples.

0.1. Single probability spaces. We consider a finite probability space X =
(S, p), where S is a finite set, and p is a probability measure on S. For
simplicity, assume for now that the measure p has full support. Next, we
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2 0. Introduction

consider the, so-called, Bernoulli sequence of probability spaces

X⊗n = (Sn, p⊗n)
where Sn denotes the n-fold Cartesian product of S, and p⊗n is the n-fold
product measure.

This situation arises in several contexts. For example, in physics, X⊗n would
encode the state of the system comprised of many identical non-interacting
(weakly interacting) subsystems with state space X. In information theory,
X⊗n would describe the output of an i.i.d. random source. In dynamical sys-
tems or stochastic processes the setting corresponds to Bernoulli shifts and
Bernoulli processes.

The entropy of X is the exponential growth rate of the observable cardinality
of tensor powers of X. The observable cardinality, loosely speaking, is the
cardinality of the set X⊗n after (the biggest possible) set of small measure
of elements, each with negligible measure, has been removed. It turns out
that the observable cardinality of X⊗n might be much smaller than ∣S∣n, the
cardinality of the whole of X⊗n, in the following sense.

The Asymptotic Equipartition Property states that for every ε > 0 and suf-

ficiently large n one can find a, so-called, typical subset A
(n)
ε ⊂ Sn, such that

it takes up almost all of the mass of X⊗n and the probability distribution on

A
(n)
ε is almost uniform on the normalized logarithmic scale,

(i) p⊗n(A(n)
ε ) ≥ 1 − ε

(ii) For any a, a′ ∈ A(n)
ε holds ∣ 1

n lnp(a) − 1
n lnp(a′)∣ ≤ ε

The cardinality ∣A(n)
ε ∣ may be much smaller than ∣S∣n, but it will still grow

exponentially with n. Even though there are many choices for such a set A
(n)
ε ,

the exponential growth rate with respect to n is well-defined upto 2ε. In fact,

there exists a number hX such that for any choice of the typical subset A
(n)
ε

holds
en⋅hX−ε ≤ ∣A(n)

ε ∣ ≤ en⋅hX+ε

The limit of the growth rate as ε→ 0+ is called the entropy ofX, as explained
in more detail in Section 1.3

Ent(X) ∶= lim
ε↓0

lim
n→∞

1

n
ln ∣A(n)

ε ∣

By the law of large numbers

Ent(X) = hX = −∑
x∈S

p(x) lnp(x)

which is the formula by which the Shannon entropy is usually introduced.
Entropy is especially easy to evaluate if the space is uniform, since for any

finite probability space with the uniform distribution holds

(0.1) Ent(X) = ln ∣X ∣
This point of view on entropy goes back to the original idea of Boltzmann,

according to which entropy is the logarithm of the number of equiprobable
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states, that a system, comprised of many identical weakly interacting subsys-
tems, may take on.

0.1.1. Asymptotic equivalence. The Asymptotic Equipartion Property implies
that the sequence X⊗n is asymptotically equivalent to a sequence of uniform
spaces in the following sense. Let us denote by pU the probability distribution

that is supported on A
(n)
ε , and is uniform on its support. Then a sequence

from independent samples according to pU is very hard to discriminate from a
sequence of independent samples from p⊗nX .

Similarly, when X and Y are probability spaces with the same entropy,
the sets X and Y are asymptotically equivalent in the sense that there is a
bijection between the typical sets, which can be seen as a change of code. This
is essentially the content of Shannon’s source coding theorem.

In [Gro12], Gromov proposed this existence of an “almost-bijection” as a
basis of an asymptotic equivalence relation on sequences of probability spaces.
Even though we were greatly influenced by ideas in [Gro12], we found that
Gromov’s definition does not extend easily to configurations of probability
spaces.

By a configuration of probability spaces we mean a collection of probability
spaces with measure-preserving maps between some of them. We will give
a precise definition in Section 1.2, but will consider some particular exam-
ples below. Formalizing and studying a notion of asymptotic equivalence for
configurations of probability spaces is the main topic of the present article.

0.2. Configurations of probability spaces. Suppose that now instead of a
single probability space, we consider a pair of probability spaces X = (X,pX)
and Y = (Y , pY ) with a joint distribution, that is a probability measure on
X × Y that pushes forward to pX and pY under coordinate projections. In
other words, we consider a triple of probability spaces X, Y and U with a pair
of measure-preserving maps U → X and U → Y . This is what we later call a
minimal two-fan of probability spaces

U

X Y

and is a particular instance of a configuration of probability spaces.

0.2.1. Three examples. Three examples of such an object are shown on Figure
1, which is to be interpreted in the following way. Each of the spaces Xi

and Yi, i = 1,2,3, have cardinality six and a uniform distribution, where the
weight of each atom is 1

6 . The spaces Ui, i = 1,2,3, have cardinality 12 and
the distribution is also uniform with all weights being 1

12 . The support of the
measure on Ui’s is colored grey on the pictures. The maps from Ui to Xi and
Yi are coordinate projections.
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Y1

X1

U1

Y2

X2

U2

Y3

X3

U3

Figure 1. Examples of pairs of probability spaces together with
a joint distribution.

In view of equation (0.1) we have for each i = 1,2,3,

Ent(Xi) = ln 6

Ent(Yi) = ln 6

Ent(Ui) = ln 12

Now we would like to ask the following.
Question.

Is it possible to find an almost-bijection between sufficiently
high powers of (X⊗n

i ← Z⊗n
i → Y ⊗n

i ) by (X⊗n
j ← Z⊗n

j → Y ⊗n
j )

for i ≠ j with an arbitrary given precision as in Shannon’s
coding theorem as described at the end of the previous subsec-
tion 0.1? More generally, what is the proper generalization of
an asymptotic equivalence relation as discussed in the previous
subsection to sequences of tensor powers of two-fans?

We would like to argue that even though the entropies of the constituent
spaces are all (pairwise) the same, all three examples above should be pairwise
asymptotically different.

To establish that the examples in Figure 1 are different, that is, not isomor-
phic (see also Section 1.2) is relatively easy, since they have non-isomorphic
symmetry groups. However, we present a different argument, that lends itself
for generalization to prove that the examples at hand are not asymptotically
equivalent and that also gives a quantitative difference between them.

To distinguish Example 1 from both 2 and 3, one could argue along the
following lines. We could try to add a third space Z = (Z, pZ) to the pair X
and Y and provide a joint distribution pQ on

Q = (X × Y ×Z, pQ)
such that the projection of pQ on the first two factors is pU and on the third
factor is pZ .

Once we do that, we could evaluate entropies of various push-forwards of
pQ. Denote by V = (X × Z, pV ) and W = (Y × Z, pW ), where pV and pW
are push-forwards of pQ under corresponding coordinate projections. All the
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probability spaces now fit into a commutative diagram

Q

U V W

X Y Z

where each arrow is a reduction, which is simply a measure-preserving map
between probability spaces.

We consider the set of all possible extensions of the above form and denote
it by Ext(X,Y,U). For any extension E = (X,Y,Z,U,V,W,Q) in Ext(X,Y,U)
we have four “new” entropies

(0.2) Ent(Q), Ent(V ), Ent(W ), Ent(Z)
in addition to the “known” entropies of X, Y and U . The vector

Ent∗(E) ∶= (Ent(X),Ent(Y ),Ent(Z),Ent(U),Ent(V ),Ent(W ),Ent(Q))
is the entropy vector of the extension E.

The set of all possible values of the entropy vector for all extensions of
(X,Y,U)

Γ○(X,Y,U) ∶=
{Ent∗(E) ∈ R7 ∣∣E is an extension of (X,Y,U)} ⊂ R7

is what we call the unstabilized relative entropic set of the two-fan (X ← U →
Y ).

0.2.2. The unstabilized relative entropic sets for the examples. It turns out that
these unstabilized relative entropic sets of (X1 ← U1 → Y1) and (X2 ← U2 → Y2)
are different

Γ○(X1, Y1, U1) ≠ Γ○(X2, Y2, U2)
To see this, let us calculate some particular points in the unstabilized relative

entropic sets of the Examples 1–3. We consider the constrained Information-
Optimization problem, of finding an extension E = (X,Y,Z,U,V,W,Q) of
(X,Y,U) such that

(i) the space Z is a reduction of U , that is

Ent(Q) = Ent(U)
(ii) the spaces X and Y are independent conditioned on Z,

Ent(Q) + Ent(Z) = Ent(V ) + Ent(W )
(iii) the sum

Ent(X ∣Z) + Ent(Y ∣Z)
is maximal, subject to conditions (i) and (ii).
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It is very easy to read the solutions Ê1, Ê2 and Ê3 of this optimization
problem for Examples 1, 2 and 3 right from the pictures in Figure 1. Indeed,
condition (i) says that Zi must be a partition of Ui. Condition (ii) says that
each set in the partition must be “rectangular”, that is it must be a Cartesian
product of a subset of X i and a subset of Y i. The quantity to be maximized
is the average log-area of the sets in the partition.

Optima are very easy to find “by hand”. For Example 1 it is a partition of
U1 into three 2 × 2 squares. In Examples 2 and 3, one of the solutions is the
partition of U2, (resp. U3) into 1 × 2 rectangles. Thus, the optimal values are
(2 ln 2) for Example 1, and (ln 2) for Examples 2 and 3.

0.2.3. The stabilized relative entropic set. We have just seen that Examples
1 and 2 can be told apart by determining the unstabilized relative entropic
set. However, this is not really what we are interested in. Rather, we wonder
whether high tensor powers can be distinguished this way.

This relates to why we used the adjective “unstabilized”: because the rel-
ative entropic set usually grows (is not stable) under taking tensor powers.
That is, for every n, k ∈ N it holds that

(0.3) k ⋅Γ○(X⊗n, Y ⊗n, U⊗n) ⊂ Γ○(X⊗(k⋅n), Y ⊗(k⋅n), U⊗(k⋅n))
but in general the set on the right-hand side can be strictly larger than the set
on the left.

In view of the inclusion (0.3) we may define the stabilized relative entropic
set

Γ(X,Y,U) = Closure( lim
n→∞

1

n
Γ○(X⊗n, Y ⊗n, U⊗n))

This set turns out to be convex.

0.2.4. The stabilized relative entropic set for the examples. In fact, the stabi-
lized relative entropic set also differentiates between Examples 1 and 2

Γ(X1, Y1, U1) ≠ Γ(X2, Y2, U2)
The proof of this fact follows the same lines as in Section 0.2.2, but the stabi-
lization makes the argument much more technical.

We expect that the stabilized relative entropic set cannot differentiate be-
tween Examples 2 and 3. However, there are other types of relative entropic
sets, and other Information-Optimization problems that can differentiate be-
tween Examples 2 and 3.

The relative entropic sets are discussed in Section 7.

0.3. Information-Optimization problems and relative entropic sets.
In Section 0.2.2 we used an Information-Optimization problem to find partic-
ular points in the (unstabilized) relative entropic set. This is no coincidence,
and the link between stabilized Information-Optimization problems and the
stable relative entropic set can be made very explicit. Because the stable rela-
tive entropic set is convex, it can be completely characterized by Information-
Optimization problems and vice versa.
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Such Information-Optimization problems play a very important role in infor-
mation theory [Yeu12], causal inference [SA15], artificial intelligence [VDP13],
information decomposition [BRO+14], robotics [ABD+08], and neuroscience
[Fri09]. The techniques developed in the article allow one to address this type
of problems easily and efficiently.

0.4. The intrinsic Kolmogorov-Sinai distance. As we mentioned at the
end of Section 0.1, one is tempted to define asymptotically equivalent configu-
rations along the lines of Shannon’s source coding theorem following [Gro12].
Two configurations would be asymptotically equivalent if there is an almost
measure-preserving bijection between subspaces of almost full measure in their
high tensor powers.

However, we found this approach inconvenient. Instead of finding an almost
measure-preserving bijection between large parts of the two spaces, we consider
a stochastic coupling (transportation plan, joint distribution) between a pair
of spaces and measure its deviation from being an isomorphism of probability
spaces, that is a measure-preserving bijection. Such a measure of deviation
from being an isomorphism then leads to the notion of intrinsic Kolmogorov-
Sinai distance, and its stable version – the asymptotic Kolmogorov-Sinai dis-
tance, as explained in Section 4.

In the case of single probability spaces we define the intrinsic Kolmogorov-
Sinai distance between two probability spaces X = (X,pX) and Y = (Y , pY )
by

k(X,Y ) ∶= inf {[Ent(Z) − Ent(X)] + [Ent(Z) − Ent(Y )]}
where the infimum is taken over all choices of the joint distribution Z = (X ×
Y , pZ). Note that each of the summands is nonnegative and vanishes if and
only if the corresponding marginalization Z →X or Z → Y is an isomorphism
of probability spaces. In this sense the distance measures the deviation from
the existence of a measure-preserving bijection between X and Y .

Furthermore, we define the asymptotic Kolmogorov-Sinai distance between
two probability spaces X and Y by

κ(X,Y ) = lim
n→∞

1

n
k(X⊗n, Y ⊗n).

This definition could be generalized to configurations of probability spaces
and we will say that two configurations are asymptotically equivalent if the
asymptotic Kolmogorov-Sinai distance between them vanishes.

0.5. Asymptotic Equipartition Property. Examples 1, 2, and 3 above
have the property that the symmetry group acts transitively on the support
of the measure on Ui and they are particular instances of what we call homo-
geneous configurations.

In Section 6, we show an Asymptotic Equipartion Property for configura-
tions : Theorem 6.1 states that every sequence of tensor powers of a configu-
ration can be approximated in the asymptotic Kolmogorov-Sinai distance by
a sequence of homogeneous configurations.
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This Asymptotic Equipartition Property allows one to substitute configura-
tions of probability spaces by homogeneous approximations. Homogeneous
probability spaces are just uniform probability spaces, and as a first sim-
ple consequence of the Asymptotic Equipartition Property, the asymptotic
Kolmogorov-Sinai distance between probability spaces X and Y can be com-
puted and equals

κ(X,Y ) = ∣Ent(X) − Ent(Y )∣.
Homogeneous configurations are, unlike homogeneous probability spaces,

rather complex objects. Nonetheless, they seem to be simpler than arbitrary
configurations of probability spaces for the types of problems that we would
like to address.

More specifically, we show in Section 7 that the optimal values in (stabilized)
Information-Optimization problems only depend on the asymptotic class of a
configuration and that they are continuous with respect to the asymptotic
Kolmogorov-Sinai distance; in many cases, the optimizers are continuous as
well. The Asymptotic Equipartition Property implies that for the purposes of
calculating optimal values and approximate optimizers, one only needs to con-
sider homogeneous configurations and this can greatly simplify computations.

Summarizing, the Asymptotic Equipartition Property and the continuity of
Information-Optimization problems are important justifications for the choice
of asymptotic equivalence relation and the introduction of the intrinsic and
asymptotic Kolmogorov-Sinai distances.

0.6. The article. The article has the following structure. Section 1 is devoted
to the basic setup used throughout the text. In Section 2 we explain what we
mean by configurations of probability spaces, give examples, describe simple
properties and operations. Further, in Section 3 we generalize the notion of
probability distribution to that on configurations and discuss the theory of
types for configurations. In Section 4 the intrinsic Kolmogorov-Sinai distance
and the asymptotic Kolmogorov-Sinai distance are introduced and some tech-
nical tools for the estimation of Kolmogorov distance are developed. Section 5
contains estimates on the distances between types. We use these estimates in
the proof of the Asymptotic Equipartition Property for configurations in Sec-
tion 6. Section 7 deals with extensions of configurations. We prove there the
Extension Lemma, which is used to show continuity of extensions and implies,
in particular, that solutions of the constrained optimization problem for the
entropies of extensions are Lipschitz-continuous with respect to the asymptotic
Kolmogorov-Sinai distance, thus they only depend on the asymptotic classes of
configurations. In Section 8 we briefly discuss a special type of configurations
called mixtures, which will play an important role in the construction of tropi-
cal probability spaces. Finally, in Section 9 we introduce the notion of tropical
probability spaces and configurations thereof, and list some of their properties.
We will continue our study of tropical probability spaces and configurations in
subsequent articles.
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Some technical and not very illuminating proofs are deferred to Section T
Technical Proofs. In the electronic version one can move between the proof in
the technical section and the statement in the main text by following the link
(arrow up or down).
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1. Category of probability spaces and configurations

This section is devoted to the basic setup used throughout the present ar-
ticle. We introduce a category of probability spaces and reductions, similar
to categories introduced in [BFL11] and [Gro12], and define configurations of
probability spaces and the corresponding category. The last subsection recalls
the notion of entropy and its elementary properties.

1.1. Probability spaces and reductions. Below we will consider probabil-
ity spaces such that the support of the probability measure is finite. Any such
space contains a full-measure subspace isomorphic to a finite space, thus we
call such objects finite probability spaces. For a probability space X = (S, pX)
denote by X = supppX the support of the measure and by ∣X ∣ its cardinality.
Slightly abusing the language, we call this quantity the cardinality of X.

For a pair of probability spaces a reduction X → Y is a class of measure-
preserving maps, with two maps being equivalent if they coincide on a set of
full measure. The composition of two reductions is itself a reduction. Two
probability spaces are isomorphic if there is a measure-preserving bijection
between the supports of the probability measures. Such a bijection defines an
invertible reduction from one space into another. Clearly the cardinality ∣X ∣
is an isomorphism invariant. The automorphism group Aut(X) is the group
of all self-isomorphisms of X.

A probability space X is called homogeneous if the automorphism group
Aut(X) acts transitively on the support X of the measure. The property of
being homogeneous is an isomorphism invariant. In the isomorphism class of
a homogeneous space there is a representative with uniform measure.

The finite probability spaces and reductions form a category, that we denote
by Prob. The subcategory of homogeneous spaces will be denoted by Probh.
The isomorphism in the category coincides with the notion of isomorphism
above.

The category Prob is not a small category. However it has a small full
subcategory, that contains an object for every isomorphism class in Prob and
for every pair of objects in it, it contains all the available morphisms between
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them. From now on we imagine that such a subcategory was chosen and fixed
and replaces Prob in all considerations below.

There is a product in Prob given by the Cartesian product of probability
spaces, that we will denote by X ⊗Y ∶= (X ×Y , pX ⊗ pY ). There are canonical
reductions X ⊗ Y → X and X ⊗ Y → Y given by projections to factors. For
a pair of reductions fi ∶ Xi → Yi, i = 1,2 their tensor product is the reduction
f1⊗f2 ∶X1⊗X2 → Y1⊗Y2, which is equal to the class of the Cartesian product
of maps representing fi’s. The tensor product is not however a categorical
product. The product leaves the subcategory of homogeneous spaces invariant.

The probability measure on X will be usually denoted by pX or simply p,
when the risk of confusion is low.

1.2. Configurations of probability spaces. Essentially, a configuration
X = {Xi; fij} is a commutative diagram consisting of a finite number of proba-
bility spaces and reductions between some of them, that is transitively closed,
while a morphism ρ ∶ X → Y between two configurations X = {Xi; fij} and
Y = {Yi; gij} of the same combinatorial type is a collection of reductions be-
tween corresponding individual objects ρi ∶ Xi → Yi, that commute with the
reductions within each configuration, ρj ○ fij = gij ○ ρi.

We need to keep track of the combinatorial structure of the collection of
reductions within a configuration. There are several possibilities for doing so:

● the reductions form a directed transitively closed graph without loops;
● the spaces in the configuration form a poset;
● the underlying combinatorial structure could be recorded as a finite

category.

The last option seems to be most convenient since it has many operations
necessary for our analysis already built-in.

A diagram category G is a finite category such that for each pair of objects
O1, O2 in G the morphism space between them

HomG(O1,O2) ∪HomG(O2,O1)

contains at most one element.
For a diagram category G a configuration of probability spaces modeled on G

is a functor X ∶ G → Prob. The collection of all configurations of probability
spaces modeled on a fixed diagram category G forms the category of functors
Prob ⟨G⟩ ∶= [G,Prob]. The objects of Prob ⟨G⟩ are configurations, that is
functors from G to Prob, while morphisms in Prob ⟨G⟩ are natural trans-
formations between them. For a configuration X ∈ Prob ⟨G⟩, the diagram
category G will be called the combinatorial type of X .

For a diagram category G or a configuration X ∈ Prob ⟨G⟩ we denote by
[[G]] = [[X ]] the number of objects in the category G.

An object O in a diagram category G will be called initial, if it is not a
target of any morphism except for the identity. Likewise a terminal object is
not a source of any morphism, except for the identity morphism. Note that this
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terminology is somewhat unconventional from the point of view of category
theory.

A diagram category is called complete if it has a unique initial object. Thus
a configuration modeled on a complete category includes a space that reduces
to all other spaces in the configuration.

The above terminology transfers to configurations modeled on G: An initial
space in X ∈ Prob ⟨G⟩ is one that is not a target space of any reduction within
the configuration, a terminal space is not a source of any non-trivial reduction
and X is complete if G is, that is there is a unique initial space.

The tensor product of probability spaces extends to a tensor product of
configurations. For X ,Y ∈ Prob ⟨G⟩, such that X = {Xi; fij} and Y = {Yi; gij}
define

X ⊗ Y ∶= {Xi ⊗ Yi; fij ⊗ gij}
Occasionally we will also talk about configuration of sets. Denote by Set the

category of finite sets and surjective maps. Then all of the above constructions
could be repeated for sets instead of probability spaces. Thus we could talk
about the category of configurations of sets Set ⟨G⟩.

Given a reduction f ∶X → Y between two probability spaces, the restriction
f ∶X → Y is a well-defined surjective map. Given a configuration X = {Xi; fij}
of probability spaces, there is an underlying configuration of sets, obtained by
taking the supports of measures on each level and restricting reductions on
these supports. We will denote it by X = {X i; fij}, where X i ∶= supppXi .
Thus we have a forgetful functor

⋅ ∶ Prob ⟨G⟩→ Set ⟨G⟩

For now we will consider two important examples of diagram categories and
configurations modeled on them. We give further examples in Section 2.1.

1.2.1. Two-fans: A two-fan is a configuration modeled on the category Λ with
three objects, one initial and two terminal.

Λ = (O1 ← O12 → O2)

There is a special significance to two-fans, since these are the simplest non-
trivial configurations, as we will see later.

Essentially, a two-fan X ← Z → Y is a triple of probability spaces and a pair
of reductions between them.

A reduction of a two-fan X ← Z → Y to another two-fan X ′ ← Z ′ → Y ′ is
a triple of reductions Z → Z ′, Y → Y ′ and X → X ′ that commute with the
reductions within each fan, that is, the following diagram is commutative

X Z Y

X ′ Z ′ Y ′



12 1. Category

Isomorphisms and the automorphism group Aut(⋅) are defined accordingly.
Note that terminal spaces in a two-fan are labeled and reductions preserve the
labeling.

A two-fan X ← Z → Y is called minimal if for a.e. x ∈ X and y ∈ Y there
is a unique z ∈ Z, that reduces to y and to x. Given a two-fan X ← Z → Y ,
there is always a reduction to a minimal two-fan X ← Z ′ → Y . Such minimal
reduction is unique up to isomorphism. Explicitly, take Z ′ ∶= X × Y as a set
and consider a probability distribution on Z ′ induced by a map Z → Z ′ which
is the Cartesian product of the reductions X ← Z → Y in the original two-fan.

The notion of being minimal is in fact a categorical notion. It could be
equivalently defined by saying that a two-fan X = (X1 ←X12 →X2) is minimal
if for any reduction λ ∶ X → X ′ holds: if both λ1 and λ2 are isomorphisms, then
λ12 is also an isomorphism. Consequently, if one specifies reductions from the
terminal spaces of a minimal two-fan to another two-fan, then there exists at
most one extension to the reduction of the whole fan.

The inclusion of a pair of probability spaces X and Y as terminal vertices
in a minimal two-fan is equivalent to specifying a joint distribution on X × Y .

An arbitrary configuration X will be called minimal if with every two-fan,
it also contains a minimal two-fan with the same terminal spaces. We will
denote the space of minimal configurations modelled on a diagram category G
by Prob ⟨G⟩m.

Given a two-fan
F = (X ← Z → Y )

with terminal spaces X and Y , and a point x ∈ X with pX(x) > 0, one may
construct a conditional probability distribution pY ( ⋅ ∣ x) on Y . We denote the
corresponding space Y ∣ x ∶= (Y , pY ( ⋅ ∣ x)). The usual bar “∣”, that is normally
used for conditioning, interferes with our notations for cardinality of spaces.
We will give more details in Section 2.7.

1.2.2. A diamond configuration. A “diamond” configuration is modeled on a
diamond category ◇, that consists of a two-fan and a “co-fan”:

◇ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

O12

O1 O2

O●

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

Of course, there is also a morphism O12 → O●, which lies in the transitive
closure of the given four morphisms. As a rule, we will skip writing morphisms,
that are implied by the transitive closure.

A diamond configuration is minimal if the top two-fan in it is minimal.

1.3. Entropy. Our working definition of entropy will be based on the follow-
ing version of the asymptotic equipartition theorem for Bernoulli process, see
[CT91].
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Theorem 1.1. Suppose X is a finite probability space, then for any ε > 0 and

any n >> 0 there exists a subset A
(n)
ε ⊂X⊗n such that

(i) p(A(n)
ε ) ≥ 1 − ε

(ii) For any a, a′ ∈ A(n)
ε holds

∣ lnp(a)
n

− lnp(a′)
n

∣ ≤ ε

Moreover, if A
(n)
ε and B

(n)
ε are two subsets of X⊗n satisfying two conditions

above, then their cardinalities satisfy

(1.1)
RRRRRRRRRRR

ln ∣A(n)
ε ∣

n
− ln ∣B(n)

ε ∣
n

RRRRRRRRRRR
≤ 2ε

⊠
Then we define

Ent(X) ∶= lim
ε→0

lim
n→∞

1

n
ln ∣A(n)

ε ∣
Clearly, in view of the property (1.1) in the Theorem 1.1 the limit above is

well-defined and is independent of the choice of the typical subsets A
(n)
ε .

Entropy satisfies the so-called Shannon inequality, see for example [CT91],
namely for any minimal diamond configuration

X12

X1 X2

X●

the following inequality holds,

(1.2) Ent(X1) + Ent(X2) ≥ Ent(X12) + Ent(X●)
Furthermore, entropy is additive with respect to the tensor product, that is,

for a pair of probability spaces X,Y ∈ Prob holds

(1.3) Ent(X ⊗ Y ) = Ent(X) + Ent(Y )
Further, for a pair X, Y of probability spaces included in a minimal two-fan

(X ← Z → Y ) we define the conditional entropy

Ent(X ∣ Y ) ∶= Ent(Z) − Ent(X)
The above quantity is always non-negative in view of Shannon inequal-

ity (1.2). Moreover, the following identity holds, see [CT91]

(1.4) Ent(X ∣ Y ) = ∫
Y
Ent(X ∣ y)dpY (y)

2. Configurations

In this section we will look at configurations in more detail. We start by
considering some important examples.
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2.1. Examples of configurations.

2.1.1. Singleton. We denote by ● a diagram category with a single object.
Clearly configurations modeled on ● are just probability spaces and we have
Prob ≡ Prob ⟨●⟩.

2.1.2. Chains. The chain Cn of length n ∈ N is a category with n objects
{Oi}ni=1 and morphisms from Oi to Oj whenever i ≤ j. A configuration X ∈
Prob ⟨Cn⟩ is a chain of reductions

X = (X1 →X2 → ⋯→Xn)

2.1.3. Two-fan. The two-fan Λ is a category with three objects {O1,O12,O2}
and two non-identity morphisms O12 → O1 and O12 → O2. See also Sec-
tion 1.2.1. Two-fans are the simplest configurations for which asymptotic
equivalence classes contain more information than just entropies of the en-
tries.

Recall that a fan (X ← Z → Y ) is called minimal, if for any pair of points
x ∈ X and y ∈ Y with positive weights there exists at most one z ∈ Z, that
reduces to x and to y. Equivalently, for any super-configuration

Z

Z ′

X Y

the reduction Z → Z ′ must be an isomorphism.

2.1.4. Full configuration. The full category Λn on n objects is a category with
objects {OI}I∈2{1,...,n}∖{∅} indexed by all non-empty subsets I ∈ 2{1,...,n} and a
morphism from OI to OJ , whenever J ⊆ I.

For a collection of random variables X1, . . . ,Xn one may construct a minimal
full configuration X ∈ Prob ⟨Λn⟩ by considering all joint distributions and
“marginalization” reductions. We denote such a configuration by ⟨X1, . . . ,Xn⟩.
On the other hand, the terminal vertices of a full configuration can be viewed
as random variables on the domain of definition given by the (unique) initial
space.

Suppose X ∈ Prob ⟨Λn⟩ is a minimal full configuration with terminal vertices
X1, . . . ,Xn. It is convenient to view X as a distribution on the Cartesian
product of the underlying sets of the terminal vertices:

pX ∈ ∆(X1 ×⋯ ×Xn)

Once the underlying sets of the terminal spaces are fixed, there is a one-to-one
correspondence between the full minimal configurations and distributions as
above.
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2.1.5. “Two-tents” configuration. The “two-tents” category M2 consists of five
objects, of which two are initial and three are terminal, and morphisms are as
follows

M2 =
⎛
⎜⎜⎜⎜
⎝

O12 O23

O1 O2 O3

⎞
⎟⎟⎟⎟
⎠

Thus, a typical two-tents configuration consists of five probability spaces
and reduction as in

X = (X ← U → Y ← V → Z)
The probability spaces U and V are initial and X, Y and Z are terminal.

2.1.6. “Many-tents” configuration. The previous example could be generalized
to a “many-tents” category

Mn = (O1 ← O12 → O2 ← ⋯→ On−1 ← On−1,n → On)

2.1.7. “Fence” configuration. The “fence” category W3 consists of six objects
and the morphisms are

W3 =
⎛
⎜⎜⎜
⎝

O12 O13 O23

O1 O2 O3

⎞
⎟⎟⎟
⎠

2.1.8. Co-fan. A co-fan V is a category with three objects and morphisms as
in the diagram

V =
⎛
⎜⎜⎜
⎝

O1 O2

O●

⎞
⎟⎟⎟
⎠

2.1.9. “Diamond” configurations. A “diamond” configuration ◇ is modeled on
a diamond category that consists of a fan and a co-fan

◇ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

O12

O1 O2

O●

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

See also Section 1.2.2.

Examples 2.1.1, 2.1.2, 2.1.3, 2.1.4 and 2.1.9 are complete. Examples 2.1.1,
2.1.2 and 2.1.8 do not contain a two-fan. Tropical limits of such configurations
are very simple. Essentially, such tropical limits correspond to the tuple of
numbers corresponding to the entropies of the constituent spaces. Therefore,
we call configurations not containing a two-fan simple.
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2.2. Constant configurations. Suppose X is a probability space and G is
a diagram category. One may form a constant G-configuration by considering
a functor that maps all objects in G to X and all the morphisms to the
identity morphism X → X. We denote such a constant configuration by XG

or simply by X, when G is clear from the context. Any constant configuration
is automatically minimal.

If Y = {Yi; fij} is another G-configuration, then a reduction ρ ∶ Y → XG

(which we write sometimes simply as ρ ∶ Y → X) is a collection of reductions
ρi ∶ Yi →X, such that

fij ○ ρi = ρj

2.3. Configurations of configurations. Of course, the operation of “con-
figuration” could be iterated, so given a pair G1, G2 of diagram categories
we could form a G2-configuration of G1-configurations, so we could speak, for
example, about a two-fan of configurations of the same type.

Prob ⟨G1,G2⟩ ∶= Prob ⟨G1⟩ ⟨G2⟩ = Prob ⟨G1 ◻G2⟩

where G1 ◻ G2 is the “Cartesian product of graphs” (as every diagram cat-
egory could be considered as a transitively closed directed graph). This op-
eration is commutative, thus, for example, a two-fan of G-configurations is a
G-configuration of two-fans.

We will rarely need anything beyond a two-fan of configurations.
A two-fan F = (X ← Z → Y) of G-configurations is called minimal if in any

extension of F of the form

Z

Z ′

X Y

f

the reduction f ∶ Z → Z ′ must be an isomorphism of G-configurations.
Recall that a two-fan of G-configurations could also be viewed as a G-

configuration of two-fans of probability spaces. In the following lemma we
show that in order to verify the minimality of a two-fan of configurations it is
sufficient to check the minimality of all the constituent two-fans.

Lemma 2.1. ↓ Let G be a diagram category. Then

(i) A two-fan F = (X ← Z → Y) of G-configurations is minimal, if and
only if the constituent two-fans of probability spaces Fi = (Xi ← Zi →
Yi) are all minimal.

(ii) For any two-fan F = (X ← Z → Y) of G-configurations its minimal
reduction exists, that is, there exists a minimal two-fan F ′ = (X ←
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Z ′ → Y) included in the following diagram

Z

Z ′

X Y
⊠

Even though this lemma is rather elementary, there are many similar state-
ments that are not true. Thus we are compelled to provide a proof, which can
be found in Section T on page 59.

Similarly, a full configuration F of G-configurations is called minimal if for
every two-fan of G-configurations in F there is a minimal two-fan in F of
G-configurations with the same terminal configurations.

Lemma 2.1 has the following corollary and counterpart for full configurations
of G-configurations.

Corollary 2.2. Let G be a diagram category. Then

(i) A full configuration F of G-configurations is minimal, if and only if the
constituent full configurations of probability spaces Fi are all minimal.

(ii) For any full configuration F of G-configurations its minimal reduction
exists.

⊠

2.4. Restrictions and extensions. Suppose R ∶ G1 → G2 is a functor be-
tween two diagram categories. For a configuration X ∶ G2 → Prob, the pull-
back configuration Y = R∗X ∈ Prob ⟨G1⟩ defined as the composition

Y ∶= X ○R
is called an R-restriction of X to G1 and X is the extension of Y. If the functor
R is injective then we call Y = R∗X a sub-configuration of X and write Y ⊂ X ,
likewise X will be called a super-configuration of Y .

The restriction operation is functorial in the sense that given two configu-
rations X ,X ′ ∈ Prob ⟨G1⟩ and a reduction f ∶ X → X ′, there is a canonical
reduction R∗f ∶ R∗X → R∗X ′. Thus R∗ can be considered as a functor

R∗ ∶ Prob ⟨G2⟩→ Prob ⟨G1⟩
Some important examples of restrictions and extensions are below.

2.4.1. Restriction of a full configuration to a smaller full configuration. Recall
that, as explained in Section 2.1.4, the terminal vertices of a full configuration
could be considered as random variables and any collection of random variables
“generates” a full configuration.

For a full configuration X = ⟨Xi⟩ni=1 and a subset I ⊂ {1, . . . , n} we denote
by R∗

IX = ⟨Xi⟩i∈I the restriction of X to a full configuration generated by Xi,
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i ∈ I. We will also make use of the notation R∗
k,l for the restriction operator

R∗
{1,...,k} ∶ Prob ⟨Λl⟩→ Prob ⟨Λk⟩.

2.4.2. Restriction of a Λ3-configuration to an M2-configuration. Given a full
configuration X ∈ Prob ⟨Λ3⟩ we may “forget” part of the data. If we, for
example, forget the top space and the relation between a pair out of three
terminal spaces we end up with the two-tents configuration. This operation
corresponds to the inclusion functor

M ∶
⎛
⎜⎜⎜⎜
⎝

O12 O23

O1 O2 O3

⎞
⎟⎟⎟⎟
⎠
Ð→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q123

Q12 Q31 Q23

Q1 Q2 Q3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

that preserves the sub-indices.
We show in Section 2.5 below that the corresponding restriction operator

M∗ ∶ Prob ⟨Λ3⟩→ Prob ⟨M3⟩

is surjective, both on objects and all morphisms. Thus, as a map of collections
of objects it has a right inverse. However, no natural right inverse exists.

2.4.3. Restriction of a Λ3-configuration to a W3-configuration. Starting with
a full configuration we might choose to forget the initial space (and reductions,
for which it was the domain). The remaining configuration has the combina-
torial type of a fence. This operation corresponds to the functor

W ∶
⎛
⎜⎜⎜⎜
⎝

O12 O31 O23

O1 O2 O3

⎞
⎟⎟⎟⎟
⎠
Ð→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q123

Q12 Q31 Q23

Q1 Q2 Q3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The corresponding operator

W ∗ ∶ Prob ⟨Λ3⟩→ Prob ⟨W3⟩

is not surjective. To find out when a W3-configuration is extendable to a
Λ3-configuration is an interesting problem, see for example, [ABK+15] and
references therein. It is our hope that the methods developed in this article
might be useful to address these questions.
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2.4.4. Doubling. This will be the first example of an interesting functor be-
tween diagram categories, which is not injective. In this situation the term
“restriction” does not really reflect the operation of pull-back well, however
we did not come up with a better terminology.

The doubling operation is the restriction of a two-fan to a two-tents config-
uration. Consider the two-fan category Λ = (O1 ← O12 → O2) and a two-tents
category M2 = (Q1 ← Q12 → Q2 ← Q23 → Q3). Define the functor D ∶ M2 → Λ
by setting

D ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 ↦ O1

Q2 ↦ O2

Q3 ↦ O1

Q12 ↦ O12

Q23 ↦ O12

Note that D extends uniquely to the spaces of morphisms, since each mor-
phism space is either empty or a one-point set.

Thus D∗(X ← Z → Y ) = (X ← Z → Y ← Z → X), where the “left” and
“right” two-fans are isomorphic.

This operation along with a particular Information-Optimization problem
is related to the so-called copy operation, that was used to find many non-
Shannon information inequalities, as described, for example, in [DFZ11].

2.5. Adhesion. Given a minimal two-tents configuration X = (X ← U → Y ←
V → Z) ∈ Prob ⟨M2⟩m one could always construct an extension of X to a
full configuration ad(X ) ∈ Prob ⟨Λ3⟩m in the following way: As explained in
Section 2.1.4, to construct a minimal full configuration with terminal vertices
X, Y and Z it is sufficient to provide a distribution on X × Y × Z with the
correct marginals. We do this by setting

p(x, y, z) ∶= pU(x, y) ⋅ pV (y, z)
pY (y)

It is straightforward to check that the appropriate restriction of the full con-
figuration defined in the above manner is indeed the original two-tents con-
figuration. Essentially, to extend we need to provide a relationship (coupling)
between spaces X and Z and we do it by declaring X and Z independent
relative to Y . This is an instance of operation called adhesion, see [Mat07].

If we call the top vertex in the full configuration W , the entropies achieve
equality in the Shannon inequality, that is

Ent(U) + Ent(V ) − Ent(W ) − Ent(Y ) = 0.

Adhesion provides a right inverse ad to the restriction functor M∗ described
in Section 2.4.2

Prob ⟨Λ3⟩m Prob ⟨M2⟩m
M∗

ad



20 2. Configurations

Figure 2. Examples of homogeneous configurations

It is important to note though, that the map ad is not functorial and, in
fact, no functorial inverse of M∗ exists.

2.6. Homogeneous configurations. A configuration X ∈ Prob ⟨G⟩ mod-
eled on some diagram category G is called homogeneous if its automorphism
group Aut(X ) acts transitively on every probability space in X . Three exam-
ples of homogeneous configurations were given in the introduction. Other ex-
amples of a homogeneous configurations (of combinatorial type Λ3) are shown
in Figure 2. The subcategory of all homogeneous configurations modeled on
G will be denoted Prob ⟨G⟩h.

In fact, for X to be homogeneous it is sufficient that the Aut(X ) acts tran-
sitively on every initial space in X . Thus, if X is complete with initial space
X0, to check homogeneity it is sufficient to check the transitivity of the action
of the symmetries of X on X0.

By functoriality of the restriction operator, any restriction of a homogeneous
configuration is also homogeneous. In other words, if R ∶ G →G′ is a functor
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and

R∗ ∶ Prob ⟨G′⟩→ Prob ⟨G⟩
is the associated restriction operator, then

R∗(Prob ⟨G′⟩h ) ⊂ Prob ⟨G⟩h
In particular, all the individual spaces of a homogeneous configuration are

homogeneous

Prob ⟨G⟩h ⊂ Probh ⟨G⟩
However homogeneity of the whole of the configuration is a stronger property
than homogeneity of the individual spaces in the configuration, thus in general

Prob ⟨G⟩h ⊊ Probh ⟨G⟩
A single probability space is homogeneous if and only if there is a represen-

tative in its isomorphism class with uniform measure and the same holds true
for chain configurations, for the co-fan or any other configuration that does
not contain a two-fan. However, for more complex configurations, for example
for two-fans, no such simple description is available.

2.6.1. Universal construction of homogeneous configurations. Examples of ho-
mogeneous configurations could be constructed in the following manner. Sup-
pose Γ is a finite group and {Hi} is a collection of subgroups. Consider a
collection of sets X i ∶= Γ/Hi and consider a natural surjection fij ∶ X i → Xj

whenever Hi is a subgroup of Hj. Equipping each X i with the uniform dis-
tribution one can turn the configuration of sets {X i; fij} into a homogeneous
configuration. It will be complete if there is a smallest subgroup (under inclu-
sion) among Hi’s.

Such a configuration will be complete and minimal, if together with any pair
of groups Hi and Hj in the collection, their intersection Hi ∩Hj also belongs
to the collection {Hi}.

In fact, any homogeneous configuration arises this way. Suppose configura-
tion X = {Xi; fij} is homogeneous, then we set Γ = Aut(X ) and choose a collec-
tion of points xi ∈ Xi such that fij(xi) = xj and denote by Hi ∶= Stab(xi) ⊂ Γ.
Then, if one applies the construction of the previous paragraph to Γ, with the
collection of subgroups {Hi}, one recovers the original configuration X .

2.7. Conditioning. Suppose a configuration X contains a fan

F = (X f←Ð Z
gÐ→ Y )

Given a point x ∈ X with a non-zero weight one may consider conditional
probability distributions pZ( ⋅ ∣ x) on Z, and pY ( ⋅ ∣ x) on Y . The distribution
pZ( ⋅ ∣ x) is supported on f−1(x) and is given by

pZ(z∣ x) =
pZ(z)
pX(x)
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The distribution pY ( ⋅ ∣ x) is the pushforward of pZ( ⋅ ∣ x) under g

pY ( ⋅ ∣ x) = g∗pZ( ⋅ ∣ x)
Recall that if F is minimal, the underlying set of Z can be assumed to be the
product X × Y . In that case

pY (y∣ x) =
pZ(x, y)
pX(x)

We denote the corresponding space Y ∣ x ∶= (Y , pY ( ⋅ ∣ x)), as discussed at
the end of Section 1.2.1.

Under some assumptions it is possible to condition a whole sub-configuration
of X . More specifically, if a configuration X contains a sub-configuration Y
and a probability space X satisfying the condition that

for every Y in Y there is a fan in X with terminal vertices X
and Y ,

then we may condition the whole of Y on x ∈X given that pX(x) > 0.
For x ∈X with positive weight we denote by Y ∣ x the configuration of spaces

in Y conditioned on x ∈X. The configuration Y ∣ x has the same combinatorial
type as Y and will be called the slice of Y over x ∈ X. Note that the space X
itself may or may not belong to Y. The conditioning Y ∣ x may depend on the
choice of a fan between Y and X, however when X is complete the conditioning
Y ∣ x is well-defined and is independent of the choice of fans.

Suppose now that there are two subconfiguration Y and Z in X and in
addition Z is a constant configuration, Z = ZG′

for some diagram category
G′. Let z ∈ Z, then Y ∣ z is well defined and is independent of the choice of the
space in Z, the element of which z is to be considered.

If X is homogeneous, then Y ∣ x is also homogeneous and its isomorphism
class does not depend on the choice of x ∈X.

2.8. Entropy. For a G-configuration X = {Xi, fij} define the entropy function

Ent∗ ∶ Prob ⟨G⟩→ R[[G]], Ent∗ ∶ X = {Xi, fij}↦ (Ent(Xi)) ∈ R[[G]]

It will be convenient for us to equip the target R[[G]] with the `1-norm. Thus

∣Ent∗(X )∣1 =
[[G]]

∑
i=1

Ent(Xi)

If X is a complete G-configuration with initial space X0, then by Shannon
inequality (1.2) there is an obvious estimate

Ent(X0) ≤ ∣Ent∗(X )∣1 ≤ [[X ]] ⋅ Ent(X0)

3. Distributions and types

In this section we recall some elementary inequalities for (relative) entropies
and the total variation distance for distributions on finite sets. Furthermore,
we generalize the notion of a probability distribution on a set to a distribution
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on a configuration of sets. Finally, we give a perspective on the theory of types,
and also introduce types in the context of complete configurations.

3.1. Distributions.

3.1.1. Single probability spaces. For a finite set S we denote by ∆S the col-
lection of all probability distributions on S. It is a unit simplex in the real
vector space RS. We often use the fact that it is a compact, convex set, whose
interior points correspond to fully supported probability measures on S.

For π1, π2 ∈ ∆S denote by ∣π1−π2∣1 the total variation of the signed measure
(π1 − π2) and define the entropy of the distribution π1 by

(3.1) h(π1) ∶= −∑
x∈X

π1(x) lnπ1(x)

If, in addition, π2 lies in the interior of ∆S define the relative entropy by

(3.2) D(π1 ∣∣π2) ∶= ∑
x∈X

π1(x) ln
π1(x)
π2(x)

The entropy of a probability space is often defined through formula (3.1). It
is a standard fact, and can be verified with the help of Lemma 3.2 below, that
for π ∈ ∆S holds

(3.3) h(π) = Ent(S,π)
which justifies the name “entropy” for the function h ∶ ∆S → R.

Define a divergence ball of radius ε > 0 centered at π ∈ Interior ∆S as

(3.4) Bε(π) ∶= {π′ ∈ ∆S ∣∣D(π′ ∣∣π) ≤ ε}
For a fixed π and ε << 1 the ball Bε(π) also lies in the interior of ∆S.

Lemma 3.1. Let S be a finite set, then

(i) For any π1, π2 ∈ ∆S, Pinsker’s inequality holds

∣π1 − π2∣1 ≤
√

2D(π1 ∣∣π2)
(ii) For any π2 ∈ Interior ∆S there exists a positive constant C = Cπ2 such

that for any π1 ∈ ∆S, holds

∣π1 − π2∣1 ≥ C
√
D(π1 ∣∣π2)

(iii) Suppose π is a point in the interior of ∆S and r > 0 is such that Br(π)
also lies in the interior of ∆S. There exist a constant C = Cπ,r such
that for any ε ≤ r holds

max{∣h(π1) − h(π2)∣ ∣∣π1, π2 ∈ Bε(π)} ≤ C
√
ε

⊠
The first claim of the Lemma, Pinsker’s inequality, is a well-known inequality

in for instance information theory, and a proof can be found in [CT91].
The second claim follows from the fact that for the fixed π2 ∈ Interior ∆S

the relative entropy as the function of the first argument is bounded, smooth
on the interior of the simplex and has a minimum at π2.
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To prove the last claim, note that the entropy function h is smooth in the
interior of the simplex. Then this last claim follows from the first claim.

3.1.2. Distributions on configurations. A map f ∶ S → S′ between two finite
sets induces an affine map f∗ ∶ ∆S →∆S′.

For a configuration of sets S = {Si; fij} we define the space of distributions
on the configuration S by

∆S ∶= {(πi) ∈∏
i

∆Si ∣∣ (fij)∗πi = πj}

Essentially, an element of ∆S is a collection of distributions on the sets Si in
S that is consistent with respect to the maps fij. The consistency conditions
(fij)∗πi = πj form a collection of linear equations with integer coefficients with
respect to the standard convex coordinates in ∏∆Si. Thus, ∆S is a rational
affine subspace in the product of simplices. In particular, ∆S has a convex
structure.

If S is complete with initial set S0, then specifying a distribution π0 ∈ ∆S0

uniquely determines distributions on all of the Si’s by setting πi ∶= (f0i)∗π0. In
such a situation we have

(3.5) ∆S ≅ ∆S0

If S is not complete and S0, . . . , Sk is a collection of its initial sets, then ∆S
is isomorphic to an affine subspace of the product ∆S0 × ⋅ ⋅ ⋅ ×∆Sk cut out by
linear equations with integer coefficients corresponding to co-fans in S with
initial sets among S0, . . . , Sk.

To simplify notation, for a probability space X or a configuration X we will
write

∆X ∶= ∆X

∆X ∶= ∆X

We now discuss briefly the theory of types. Types are special subspaces of
tensor powers that consist of seqences with the same “empirical distribution”
as explained in details below. For a more detailed discussion the reader is
referred to [CT91] and [Csi98]. We generalize the theory of types to complete
configurations of sets and complete configurations of probability spaces.

The theory of types for configurations, that are not complete, is more com-
plex and will be addressed in a subsequent article.

3.2. Types for single probability spaces. Let S be a finite set. For n ∈ N
denote also

∆
(n)
S ∶= ∆S ∩ 1

n
ZS

a collection of rational points in ∆S with denominator n. (We say that a
rational number r ∈ Q has denominator n ∈ N if r ⋅ n ∈ Z)
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Define the empirical distribution map q ∶ Sn → ∆S, that sends (si)ni=1 = s ∈
Sn to the empirical distribution q(s) ∈ ∆S given by

q(s)(a) = 1

n
⋅ ∣ {i ∣∣ si = a} ∣ for any a ∈ S

Clearly the image of q lies in ∆
(n)
S.

For π ∈ ∆
(n)
S, the space T

(n)
π S ∶= q−1(π) equipped with the uniform measure

is called a type over π. The symmetric group Sn acts on S⊗n by permuting
the coordinates. This action leaves the empirical distribution invariant and
therefore could be restricted to each type, where it acts transitively. Thus, for

π ∈ ∆
(n)
S the probability space (T (n)

π S,u) with u being a uniform (Sn-invariant)
distribution, is a homogeneous space.

Suppose X = (X,p) is a probability space. Let τn be the pushforward of p⊗n

under the empirical distribution map q ∶ Xn → ∆X . Clearly supp τn ⊂ ∆
(n)
X,

thus (∆X,τn) is a finite probability space. Therefore we have a reduction

q ∶X⊗n → (∆X,τn)
which we call the empirical reduction. If π ∈ ∆

(n)
X is such that τn(π) > 0, then

(3.6) T
(n)
π X =X⊗n∣ π

In particular, it follows that the right-hand side does not depend on the prob-
ability p on X as long as π is “compatible” to it.

The following lemma records some standard facts about types, which can
be checked by elementary combinatorics and found in [CT91].
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Lemma 3.2. Let X be a probability space and x ∈X⊗n, then

(i)

∣∆(n)X ∣ = (n + ∣X ∣
∣X ∣ ) ≤ e∣X ∣⋅ln(n+1)

(ii)

p⊗n(x) = e−n
[h(q(x))+D(q(x) ∣∣p)]

(iii)

en⋅h(π)−∣X ∣⋅ln(n+1) ≤ ∣T (n)
π X ∣ ≤ en⋅h(π)

(iv)

e−n⋅D(π ∣∣p)−∣X ∣⋅ln(n+1) ≤ τn(π) = p⊗n(T (n)
π X) ≤ e−n⋅D(π ∣∣p)

⊠

If X = (X,pX) is a probability space with rational probability distribution
with denominator n, then the type over pX will be called the true type of X

T (n)X ∶= T (n)
pXX

As a corollary to Lemma 3.2 and equation (3.3) we obtain the following.

Corollary 3.3. For a finite set S and π ∈ ∆
(n)
S holds

n ⋅ h(π) − ∣S∣ ⋅ ln(n + 1) ≤ Ent(T (n)
π S) ≤ n ⋅ h(π)

In particular, for a finite probability space X = (S, p) with a rational distri-
bution p with denominator n holds

n ⋅ Ent(X) − ∣S∣ ⋅ ln(n + 1) ≤ Ent(T (n)X) ≤ n ⋅ Ent(X)
⊠

The following important theorem is known as Sanov’s theorem. It can be
derived from Lemma 3.2 and found in [CT91].

Theorem 3.4. (Sanov’s Theorem) Let X be a finite probability space and let
q ∶X⊗n → (∆X,τn) be the empirical reduction. Then for every r > 0,

τn(∆X/Br(p)) ≤ e−n⋅r+∣X ∣⋅ln(n+1)

where Br(p) is the divergence ball (relative entropy ball) defined in (3.4). ⊠

3.3. Types for complete configurations. In this subsection we generalize
the theory of types for configurations modeled on a complete category. The
theory for a non-complete configurations is more complex and will be addressed
in our future work. We will give three equivalent definitions of a type for a
complete configuration, each of which will be useful in its own way. Before we
describe the three approaches we need some preparatory material.
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Lemma 3.5. Given a diamond configuration of probability spaces

D =
⎛
⎜⎜
⎝

X Y

A B

ρ1

f

ρ2
g

⎞
⎟⎟
⎠

the following two conditions are equivalent

(i) The minimal reduction of the diamond D is isomorphic to the adhesion
of its co-fan or equivalently the following independence condition holds

A��Y ∣B
(ii) For any a, a′ ∈ A such that f(a) = f(a′) = b ∈ B holds

Y ∣ a = Y ∣ a′ = Y ∣ b
⊠

Suppose D is the diamond as in the Lemma 3.5. The top row X → Y is
a two-chain subconfiguration of D and we can consider a conditioning by an
element a ∈ A

X ∣ a→ Y ∣ a
If D satisfies any of two conditions in Lemma 3.5, then Y ∣ a = Y ∣ b for b = g(a).
Thus, we constructed a reduction

X ∣ a→ Y ∣ b
Suppose we have a reduction f ∶ X → Y between a pair of probability spaces.
Then for any n ∈ N there is an induced reduction f∗ ∶ (∆X,τn) → (∆Y, τn)
that can be included in the following diamond configuration

X⊗n Y ⊗n

(∆X,τn) (∆Y, τn)

f⊗n

q q

f∗

that satisfies conditions in Lemma 3.5. It means that there is a reduction

Tf ∶ T (n)
π X → T

(n)
π′ Y

for π ∈ ∆
(n)
X and π′ = f∗π ∈ ∆

(n)
Y .

Now we are ready to give the definitions of types. Let X ∈ Prob ⟨G⟩ be a

complete configuration, X = {Xi; fij} with initial space X0 and let π ∈ ∆
(n)X .

3.3.1. Type of a configuration as the configuration of types. Define the type

T
(n)
π X as the G-configuration, whose individual spaces are types of the indi-

vidual spaces of X over the corresponding push-forwards of π

T
(n)
π X ∶= {T (n)

πi X i;Tfij}
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3.3.2. Types as Sn-orbits in the tensor power. By a section in X we mean a
consistent collection of points

x = (x0, . . . , x[[X ]]−1) ∈
[[X ]]−1

∏
i=0

X i

such that fijxi = xj, whenever fij is defined. For any j define the projection
ρj ∶∏X i →Xj, so that ρj(x) = xj.

The symmetric group Sn acts on the collection of sections in the tensor
power X⊗n, by permuting the coordinates. Let T ⊂ ∏X i be an orbit of the

action such that ρ0(T ) = T (n)
π X0. Suppose that the pair (i, j) is such, that fij

is defined. Since f⊗nij ∶X⊗n
i →X⊗n

j is Sn-equivariant, we have a map

Tf ∶ ρi(T )→ ρj(T )
We can turn T into a G-configuration, which we will call a type of X

T̂
(n)
π X ∶= {ρi(T ), T fij}

where π is the value of the impirical distribution on ρ0(T ).
Since the initial space in T̂

(n)
π X coincides with the initial space in T

(n)
π X and

all the reductions coincide, we conclude that

T̂
(n)
π X = T (n)

π X

3.3.3. Type as conditionining of the tensor power. We can extend X⊗n to a con-
figuration X̂ by adding (∆X , τn) and the empirical reduction X⊗n

0 → (∆X , τn).
Let π ∈ ∆X with τn(π) > 0 and recall ∆X0 ≅ ∆X . We may now define

X⊗n∣ π as in Section 2.7. Define a type of X over π ∈ ∆
(n)X by

Ť
(n)
π X ∶= X⊗n∣ π

By definition, it holds that

X⊗n
0 ∣ π = T (n)

π X0

Let πi = (f0i)∗π. Using Lemma 3.5 and discussion thereafter we conclude that

X⊗n
i ∣ π =X⊗n

i ∣ πi
and therefore

Ť
(n)
π X = T (n)

π X

3.3.4. The empirical two-fan. We construct a two-fan of G-configurations with
terminal vertices X⊗n and (∆X , τn)G (the constant G-configuration in which
every probability space is (∆X , τn), and every reduction is an identity)

(3.7) Rn(X ) =

⎛
⎜⎜⎜⎜⎜
⎝

X̃ (n)

X⊗n (∆(n)X , τn)G

⎞
⎟⎟⎟⎟⎟
⎠
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With the help of Lemma 2.1, we construct Rn(X ) as the minimal reduction
of the two-fan of G-configurations

(X⊗n
0 )G

X⊗n (∆X , τn)G

fn0∗ qG

Let π ∈ (∆X , τn) with τn(π) > 0. Then within Rn(X ) holds

X⊗n∣ π = T (n)
π X

For every n ∈ N and π ∈ ∆
(n)
X0 the type T

(n)
π X is a homogeneous configu-

ration. Suppose that a complete configuration X is such that the probability
distribution p0 on the initial set is rational with the denominator n, then we

call T
(n)
p X the true type of X and denote

T (n)X ∶= T np0X

4. The Kolmogorov-Sinai distance

We turn the space of configurations into a pseudo-metric space by introduc-
ing the intrinsic Kolmogorov-Sinai distance and asymptotic Kolmogorov-Sinai
distance. For brevity, we will usually call it the Kolmogorov distance and
asymptotic Kolmogorov distance. The intrinsic Kolmogorov-Sinai distance is
obtained by taking an infimum of the shared information distance over all pos-
sible joint distributions on two probability spaces. The name is justified by
the fact that the shared information distance (not under this name) appears
in the proof of the theorem about generating partitions for ergodic systems
by Kolmogorov and Sinai, see for example [Sin76]. Note that the Kolmogorov
distance in statistics refers to a different notion.

4.1. Kolmogorov distance and asymptotic Kolmogorov distance.

4.1.1. Kolmogorov distance in the case of single probability spaces. For a two-
fan F = (X ← Z → Y ) define a “distance” kd(F) between probability spaces
X and Y with respect to F by

kd(F) ∶= Ent(Z ∣ Y ) + Ent(Z ∣X)
= 2Ent(Z) − Ent(X) − Ent(Y )

Essentially kd(F) measures the deviation of the statistical map defined by
F from being a deterministic bijection between X and Y .

The minimal reduction F ′ of F satisfies

(4.1) kd(F ′) ≤ kd(F)
If the two-fan F is minimal the “distance” kd(F) can also be calculated by

kd(F) = h(pX) + h(pY ) − 2D(pZ ∣∣pX ⊗ pY ),
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where h and D are respectively the entropy and relative entropy functions
defined in (3.1) and (3.2).

For a pair of probability spaces X, Y define the intrinsic Kolmogorov-Sinai
distance as

k(X,Y ) ∶= inf {kd(F) ∣∣F = (X ← Z → Y ) is a two-fan}
The optimization takes place over all two-fans with terminal spaces X and

Y . In view of inequality (4.1) one could as well optimize over the space of
minimal two-fans, which we will also refer to as couplings between X and Y .
The tensor product of X and Y trivially provides a coupling and the set of
couplings is compact, therefore an optimum is always achieved and it is finite.

The bivariate function k ∶ Prob×Prob → R≥0 defines a notion of pseudo-
distance and it vanishes exactly on pairs of isomorphic probability spaces.
This follows directly from the Shannon inequality (1.2), and a more general
statement will be proven in Proposition 4.1 below.

4.1.2. Kolmogorov distance for complete configurations. The definition of Kol-
mogorov distance for complete configurations repeats almost literally the def-
inition for single spaces. We fix a complete diagram category G and will be
considering configurations from Prob ⟨G⟩.

Consider three configurations X = {Xi, fij}, Y = {Yi, gij} and Z = {Zi, hij}
from Prob ⟨G⟩. Recall that a two-fan F = (X ← Z → Y) is a G-configuration
of two-fans

Fi = (Xi ← Zi → Yi)
Define

kd(F) ∶=∑
i

kd(Fi)

=∑
i

(2Ent(Zi) − Ent(Xi) − Ent(Yi))

The quantity kd(F) vanishes if and only if the fan F provides isomorphisms
between all individual spaces in X and Y that commute with the inner struc-
ture of the configurations, that is, it provides an isomorphism between X and
Y in Prob ⟨G⟩.

The intrinsic Kolmogorov-Sinai distance between configurations is defined in
analogy with the case of single probability spaces

k(X ,Y) ∶= inf {kd(F) ∣∣F = (X ← Z → Y)}
where the infimum is over all two-fans of G-configurations with terminal ver-
tices X and Y.

The following proposition records that the intrinsic Kolmogorov distance
is in fact a pseudo-distance on Prob ⟨G⟩, provided G is a complete diagram
category (that is when G has a unique initial space).

Proposition 4.1. ↓ Let G be a complete diagram category. Then the bivariate
function

k ∶ Prob ⟨G⟩ ×Prob ⟨G⟩→ R
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is a pseudo-distance on Prob ⟨G⟩.
Moreover, two configurations X ,Y ∈ Prob ⟨G⟩ satisfy k(X ,Y) = 0 if and only
if X is isomorphic to Y in Prob ⟨G⟩. ⊠

The idea of the proof is very simple. In the case of single probability spaces
X,Y,Z a coupling between X and Z can be constructed from a coupling be-
tween X and Y and a coupling between Y and Z by adhesion on Y , see Section
2.5. The triangle inequality then follows from a Shannon inequality. However,
since we are dealing with configurations the combinatorial structure requires
careful treatment. Therefore, we provide a detailed proof on page 61.

It is important to note, that the proof uses the fact that G is complete. In
fact, even though the definition of k could be easily extended to some bivariate
function on the space of configurations of any fixed combinatorial type, it
fails to satisfy the triangle inequality in general, because the composition of
couplings requires completeness of G.

4.1.3. The asymptotic Kolmogorov-Sinai distance. Let G be a complete dia-
gram category. We define the asymptotic Kolmogorov-Sinai distance between
two configurations X ,Y ∈ Prob ⟨G⟩ by

(4.2) κ(X ,Y) = lim
n→∞

1

n
k(X⊗n,Y⊗n).

We will show in Corollary 4.5, that the sequence

n↦ k(X⊗n,Y⊗n)
is subadditive, and therefore the limit in the definition (4.2) of κ(X ,Y) always
exists and for all n ∈ N holds

(4.3) κ(X ,Y) ≤ 1

n
⋅ k(X⊗n,Y⊗n).

As a corollary of Proposition 4.1 and definition (4.2) we immediately obtain
that also the asymptotic Kolmogorov-Sinai distance is a pseudo-distance on
Prob ⟨G⟩.
Corollary 4.2. Let G be a complete diagram category. Then the bivariate
function

κ ∶ Prob ⟨G⟩ ×Prob ⟨G⟩→ R
is a pseudo-distance on Prob ⟨G⟩ satisfying the following homogeneity prop-
erty. For any pair of configurations X ,Y ∈ Prob ⟨G⟩ and any n ∈ N0 holds

κ(X⊗n,Y⊗n) = n ⋅κ(X ,Y)
⊠

We will show in a later section, however, that there are probability spaces
X and Y for which κ(X,Y ) = 0 that are not isomorphic.

In the rest of this section we derive some elementary properties of the in-
trinsic Kolmogorov distance and the asymptotic Kolmogorov distance.
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4.2. Lipschitz property for operations. In this section we show that cer-
tain natural operations on configurations, namely the tensor product, entropy
function and restriction operator, are Lipschitz continuous. In Section 7 we
will show Lipschitz continuity of certain extension operations.

4.2.1. Tensor product. We show that the tensor product on the space of con-
figurations is 1-Lipschitz. Later this will allow us to give a simple description
of tropical configurations, that is of points in the asymptotic cone of Prob ⟨G⟩,
as limits of certain sequences of “classical” configurations.

Proposition 4.3. ↓ Let G be a complete diagram category. Then with respect
to the Kolmogorov distance on Prob ⟨G⟩ the tensor product

⊗ ∶ (Prob ⟨G⟩ ,k)2 → (Prob ⟨G⟩ ,k)
is 1-Lipschitz in each variable, that is, for every triple X ,Y,Y ′ ∈ Prob ⟨G⟩ the
following bound holds

k(X ⊗ Y,X ⊗ Y ′) ≤ k(Y,Y ′)
⊠

This statement is a direct consequence of additivity of entropy with respect
to the tensor product. Details can be found on page 63.

It follows directly from definition (4.2) and Proposition 4.3, that the asymp-
totic Kolmogorov distance enjoys a similar property.

Corollary 4.4. Let G be a complete diagram category. Then with respect to
the Kolmogorov distance on Prob ⟨G⟩ the tensor product

⊗ ∶ (Prob ⟨G⟩ ,κ)2 → (Prob ⟨G⟩ ,κ)
is 1-Lipschitz in each variable. ⊠

As another corollary we obtain the subadditivity properties of the intrinsic
Kolmogorov distance and asymptotic Kolmogorov distance.

Corollary 4.5. Let G be a complete diagram category and let X ,Y,U ,V ∈
Prob ⟨G⟩, then

k(X ⊗ U ,Y ⊗ V) ≤ k(X ,Y) + k(U ,V).
and

κ(X ⊗ U ,Y ⊗ V) ≤ κ(X ,Y) +κ(U ,V).
⊠

It implies in particular that shifts are non-expanding maps in (Prob ⟨G⟩ ,k)
or (Prob ⟨G⟩ ,κ).
Corollary 4.6. Let G be a complete diagram category and δ = k,κ be either
Kolmogorov distance or asymptotic Kolmogorov distance on Prob ⟨G⟩. Let
U ∈ Prob ⟨G⟩. Then the shift map

U ⊗ ⋅ ∶ (Prob ⟨G⟩ ,δ)→ (Prob ⟨G⟩ ,δ), X ↦ U ⊗X
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is a non-expanding map with respect to either Kolmogorov distance or asymp-
totic Kolmogorov distance. ⊠

4.2.2. Entropy. Recall that we defined the entropy function

Ent∗ ∶ Prob ⟨G⟩→ R[[G]]

by evaluating the entropy of all individual spaces in a G-configuration. The
target space R[[G]] will be endowed with the `1-norm with respect to the natural
coordinate system. With such a choice, the entropy function is 1-Lipschitz with
respect to the Kolmogorov distance on Prob ⟨G⟩.

Proposition 4.7. ↓ Suppose G is a complete diagram category and δ = k,κ is
either Kolmogorov distance or asymptotic Kolmogorov distance on Prob ⟨G⟩.
Then the entropy function

Ent∗ ∶ (Prob ⟨G⟩ ,δ)→ (R[[G]], ∣ ⋅ ∣1), X = {Xi, fij}↦ (EntXi)i ∈ R[[G]]

is 1-Lipschitz. ⊠

Again, the proof of the proposition above is an application of Shannon’s
inequality, see page 64 for details.

4.2.3. Restrictions. The restriction operators are also Lipschitz, as shown in
the next proposition.

Proposition 4.8. ↓ Suppose R ∶ G′ →G is a functor between two complete dia-
gram categories and δ stands for either Kolmogorov or asymptotic Kolmogorov
distance. Then the restriction operator

R∗ ∶ (Prob ⟨G⟩ ,δ)→ (Prob ⟨G′⟩ ,δ), X ↦ X ○R
is Lipschitz. ⊠

As can be seen from the proof on page 64, the Lipschitz constant in the
proposition above can be bounded by [[G′]]. In fact, a more careful analysis
provides a better bound by the maximal number of objects in G′ that are
mapped by R to a single object in G.

4.3. The Slicing Lemma. The Slicing Lemma, Proposition 4.9 below, al-
lows to estimate the Kolmogorov distance between two configurations with
the integrated Kolmogorov distance between “slices”, which are configurations
obtained by conditioning on another probability space.

The Slicing Lemma, along with the local estimate in Section 4.4, turned out
to be a very powerful tool for estimation of the Kolmogorov distance and will
be used below on many occasions.

As described in Section 2.2, by a reduction of a configuration X = {Xi, fij}
to a single space U we mean a collection of reductions {ρi ∶Xi → U} from the
individual spaces in X to U , that commute with the reductions within X

ρj ○ fij = ρi
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Alternatively, whenever a single probability space appears together with a G-
configuration in a commutative diagram, it should be replaced by a constant
G-configuration.

Proposition 4.9. ↓ (Slicing Lemma) Suppose G is a complete diagram cat-

egory and we are given X , X̂ ,Y, Ŷ ∈ Prob ⟨G⟩ – four G-configurations and
U,V,W ∈ Prob – probability spaces, that are included into the following three-
tents configuration

X̂ W Ŷ

X U V Y

such that the two-fan (U ←W → V ) is minimal. Then the following estimate
holds

k(X ,Y) ≤ ∫
W

k(X ∣ u,Y ∣ v)dpW (u, v)

+ [[G]] ⋅ kd(U ←W → V )
+∑

i

[Ent(U ∣Xi) + Ent(V ∣ Yi)]

⊠

The idea of the proof of the Slicing Lemma (page 65) is as follows. For every
pair (u, v) ∈ W we consider an optimal two-fan Guv coupling X ∣ u and Y ∣ v.
These fans have the same underlying configuration of sets. Then we construct
a coupling between X and Y as a convex combination of distributions of Guv’s
weighted by pW (u, v). The estimates on the resulting two-fan then imply the
proposition.

Various implications of the Slicing Lemma are summarized in the next corol-
lary.

Corollary 4.10. Let G be a complete diagram category, X ,Y ∈ Prob ⟨G⟩ and
U ∈ Prob.

(i) Given a “two-tents” configuration

X ← X̂ → U ← Ŷ → Y

the following inequality holds

k(X ,Y) ≤ ∫
U

k(X ∣ u,Y ∣ u)dpU(u) + 2 ⋅ [[G]] ⋅ Ent(U)

(ii) Given a fan

X ← X̂ → U

the following inequality holds

k(X ,Y) ≤ ∫
UV

k(X ∣ u,Y)dpU(u) + 2 ⋅ [[G]] ⋅ Ent(U)
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(iii) Let X → U be a reduction, then

k(X ,Y) ≤ ∫
U

k(X ∣ u,Y)dpU(u) + [[G]] ⋅ Ent(U)

(iv) For a co-fan X → U ← Y holds

k(X ,Y) ≤ ∫
U

k(X ∣ u,Y ∣ u)dpU(u)

⊠
4.4. Local estimate. Fix a complete diagram category G and consider a G-
configuration of sets S ∈ Set ⟨G⟩ with S0 being an initial set in S. As discussed
in Section 3.1.2, the space of distributions on S could be identified with the
space of distributions on the initial set

∆S ≅ ∆S0

Therefore, all G-configurations of probability spaces with the underlying con-
figuration of sets equal to S are in one-to-one correspondence with the interior
points of ∆S0. The set Interior ∆S0 consists of fully supported measures on
the set S0 and carries a total variation distance, which is just an `1-distance
with respect to the convex coordinates on the simplex ∆S0. Our task presently
is to compare the total variation distance with the Kolmogorov distance on
the space of configurations with the fixed underlying configuration of sets.

The upper bound on Kolmogorov distance, that we derive below, has two
summands. One is linear in the total variation distance with the slope propor-
tional to the log-cardinality of S0. The second one is super-linear in the total
variation distance, but it does not depend on S. So we have the following in-
teresting observation: of course, the super-linear summand always dominates
the linear one locally. However as the cardinality of S becomes large it is the
linear summand that starts playing the main role.

4.4.1. The estimate. Suppose we are given a configuration of sets S = {Si, fij} ∈
Set ⟨G⟩ modeled on a complete diagram category G with the initial set S0.
We use once again the isomorphism

∆S
≅
→∆S0

that sends p ∈ ∆S to its component in the initial space p0 ∈ ∆S0, while its
inverse is given by p = {(f0i)∗p0}. For a pair of distributions p0, q0 ∈ ∆S0

denote by ∣p0 − q0∣ the total variation of the difference.
For α ∈ [0,1] consider a binary probability space with the weight of one of

the atoms equal to α

Λα ∶= ( {◻,∎} ; pΛα(◻) = 1 − α, pΛα(∎) = α)
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Proposition 4.11. ↓ Let S = {Si, fij} ∈ Set ⟨G⟩ be a configuration of sets
modeled on a complete diagram category G with the initial set S0. Let p, q ∈
∆S be two probability distributions. Denote X ∶= (S, p), Y ∶= (S, q) and α =
1
2 ∣p0 − q0∣1. Then

k(X ,Y) ≤ 2 ⋅ [[G]] ⋅ (α ⋅ ln ∣S0∣ + Ent(Λα))
⊠

To prove the local estimate we decompose both p and q into a convex com-
bination of a common part p̂ and rests p+ and q+. The coupling between the
common parts gives no contribution to the distance, and the worst possible
estimate on the other parts is still enough to get the bound in the lemma, by
using Corollary 4.10 part (i). Details of the proof can be found on page 67.

In fact, the lower bound also holds, more specifically given a complete G-
configuration of sets S and p ∈ ∆S there is a constant C > 0 such that for any
q ∈ ∆S with ∣p − q∣1 << 1 holds

C ⋅ Ent(Λα) ≤ k(X ,Y)
where X = (S, p), Y = (S, q) and α = 1

2 ∣p − q∣1. We will not use this fact and
therefore do not include a proof.

Once the G-configuration of sets S is fixed, there is a map from ∆S to
Prob ⟨G⟩. As can be seen from the discussion above, even though the map is
continuous it is not Lipschitz.

5. Distance between types

As explained in Section 3.3, given a complete G-configuration S of sets and a

rational distribution π ∈ ∆S we construct a homogeneous configuration T
(n)
π S,

which is called the type of S over π. Our goal in this section is to estimate
the Kolmogorov distance between two types over two different distributions
π1, π2 ∈ ∆

(n)S in terms of the total variation distance ∣π1 − π2∣1.
For this purpose we use a “lagging” technique which is explained below.

5.1. The lagging trick. Let Λα be a binary probability space,

Λα = ( {◻,∎} ;pΛα(∎) = α)

and let X = {(X i, pi); fij}, Z = {(Zi, qi); gij} be two configurations modeled on
a complete diagram category G and included in a minimal two-fan

Λα
λ←Ð Z ρÐ→ X

Recall that the left terminal vertex in this two-fan should be interpreted as a
constant G-configuration ΛG

α .
Assume further that the distribution q on Z is rational with denominator

n ∈ N, that is q ∈ ∆
(n)Z. It follows that p and pΛα are also rational with the

same denominator n.
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We construct a lagging two-fan

(5.1) L ∶= (T ((1−α)n)(X ∣◻) l←Ð T (n)Z TρÐ→ T (n)X )
as follows. The right leg Tρ of L is induced by the right leg ρ of the original
two-fan. The left leg

l ∶ T (n)Z → T ((1−α)n)(X ∣◻)
is obtained by erasing symbols that reduce to ∎ and applying ρ to the remaining
symbols. The target space for the reduction l is the true type of X ∣◻ which is
“lagging” behind T (n)Z by a factor of (1−α). More specifically, the reduction l
is constructed as follows. Let λj ∶ Zj → Λα be the components of the reduction
λ ∶ Z → Λα.

Given z = (zi)ni=1 ∈ T (n)Zj define the subset of indexes

Iz ∶= {i ∣∣λj(zi) = ◻}
and define the jth component of l by

lj((zi)ni=1) ∶= (ρ(zi))i∈Iz
By equivariance each lj is a reduction of homogeneous spaces, since the

inverse image of any point has the same cardinality. Moreover the reductions lj
commute with the reductions in T (n)Z as explained in Section 3.3 and therefore
l is a reduction of configurations.

The next lemma uses the lagging two-fan to estimate the Kolmogorov dis-
tance between its terminal configurations.

Lemma 5.1. Let X ,Z ∈ Prob ⟨G⟩ be two configurations modeled on a com-
plete diagram category G and included in a minimal two-fan

Λα
λ←Ð Z ρÐ→ X

where distribution on Z is rational with denominator n ∈ N. Then

k (T ((1−α)n)(X ∣◻) , T (n)X )
≤ n ⋅ [[G]] ⋅ [2Ent(Λα) + α ⋅ ln ∣X0∣] + 2 ⋅ [[G]] ⋅ ∣X0∣ ⋅ ln(n + 1)
= n ⋅ [[G]] ⋅ [2Ent(Λα) + α ⋅ ln ∣X0∣] +O (∣X0∣ ⋅ lnn)

⊠

The Lemma (and Proposition 5.2 below) are closely related to the local
estimate, Proposition 4.11. It is an immediate consequence of the Slicing
Lemma, in particular Corollary 4.10 part (ii) that

k (X ∣◻ , X ) ≤ [[G]] ⋅ [2Ent(Λα) + α ⋅ ln ∣X0∣]

This is a tacit ingredient in the proof of the local estimate. By the subadditivity
of the Kolmogorov distance,

k ((X ∣◻)⊗n , X⊗n) ≤ n ⋅ [[G]] ⋅ [2Ent(Λα) + α ⋅ ln ∣X0∣]
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This bound is almost the estimate in Lemma 5.1, except Lemma 5.1 esti-
mates the distance between types rather than tensor powers. We will soon
see that tensor powers and types are very close in the Kolmogorov distance.
However, for the purpose of the proof of Lemma 5.1, it suffices to know that
their entropies are close, an estimate that is provided by Corollary 3.3.

Proof (of Lemma 5.1): We will use the lagging two-fan constructed in Equa-
tion (5.1), namely

L ∶= (T ((1−α)n)(X ∣◻) l←Ð T (n)Z TρÐ→ T (n)X )

as a coupling to estimate the Kolmogorov distance

k (T ((1−α)n)(X ∣◻) , T (n)X ) ≤ kd(L)

Recall that by Corollary 3.3 for a probability space X with a rational dis-
tribution we have

n ⋅ Ent(X) − ∣X ∣ ⋅ ln(n + 1) ≤ Ent(T (n)X) ≤ n ⋅ Ent(X)

Thus we can estimate kd(L) as follows

kd(L) =∑
i

[(Ent(T (n)Zi) − Ent(T (n)Xi))

+ (Ent(T (n)Zi) − Ent(T ((1−α)n)(Xi∣◻)))]

≤ n ⋅∑
i

[(Ent(Zi) − Ent(Xi)) + (Ent(Zi) − (1 − α)Ent(Xi∣◻))]

+ 2 ⋅ [[G]] ⋅ ∣X0∣ ⋅ ln(n + 1)

By minimality of the original two-fan and Shannon inequality (1.2) we have
a bound

Ent(Zi) − Ent(Xi) ≤ Ent(Λα)
The second part in the sum can be estimated using relation (1.4) as follows

Ent(Zi) − (1 − α)Ent(Xi∣◻) = Ent(Λα) + Ent(Xi∣ Λα) − (1 − α)Ent(Xi∣◻)
= Ent(Λα) + (1 − α)Ent(Xi∣◻) + αEnt(Xi∣∎)−
− (1 − α)Ent(Xi∣◻)

≤ Ent(Λα) + α ⋅ ln ∣Xi∣

Combining all of the above we obtain the estimate in the conclusion of the
lemma. ⊠

5.2. Distance between types. In this section we use the lagging trick as
described above to estimate the distance between types over two different
distributions in ∆S where S is a complete configuration of sets.
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Proposition 5.2. Suppose S is a complete G-configuration of sets with initial
set S0. Suppose p, q ∈ ∆

(n)S and let α = 1
2 ∣p0 − q0∣1. Then

k(T (n)
p S, T (n)

q S) ≤ 2n ⋅ [[G]] ⋅ [α ⋅ ln ∣S0∣ + 2Ent(Λα)] + 4[[G]] ⋅ ∣X0∣ ⋅ ln(n + 1)
= 2n ⋅ [[G]] ⋅ [α ⋅ ln ∣S0∣ + 2Ent(Λα)] +O(∣X0∣ ⋅ lnn)

⊠

As in the local estimate, the idea of the proof is to write p and q as a convex
combination of a common distribution p̂ and “small amounts” of p+ and q+,
respectively. Then we use the lagging trick to estimate distances between types
over p and p̂, as well as between types over q and p̂. We now present details
of the proof.

Proof (of Proposition 5.2): Recall that for a complete configuration S with
initial set S0 we have

(5.2) ∆S ≅ ∆S0

Our goal now is to write p and q as the convex combination of three other
distributions p̂, p+ and q+ as in

p = (1 − α) ⋅ p̂ + α ⋅ p+

q = (1 − α) ⋅ p̂ + α ⋅ q+

We could do it the following way. Let α ∶= 1
2 ∣p0 − q0∣1. If α = 1 then the

proposition follows trivially by constructing a tensor-product fan, so from now
on we assume that α < 1. Define three probability distributions p̂0, p+0 and q+0
on S0 by setting for every x ∈ S0

p̂0(x) ∶=
1

1 − α min{p0(x), q0(x)}

p+0 ∶=
1

α
(p0 − (1 − α)p̂0)

q+0 ∶=
1

α
(q0 − (1 − α)p̂0)

Denote by p̂, p+, q+ ∈ ∆S the distributions corresponding to p̂0, p+0 , q
+
0 ∈ ∆S0

under the affine isomorphism (5.2). Thus we have

p = (1 − α)p̂ + α ⋅ p+

q = (1 − α)p̂ + α ⋅ q+

Now we construct a pair of two-fans of G-configurations

Λα ← X̃ → X(5.3)

Λα ← Ỹ → Y
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by setting

X ∶= (S, p)
Y ∶= (S, q)

X̃i ∶= (Si ×Λα; p̃i(s,◻) = (1 − α)p̂i(s), p̃i(s,∎) = α ⋅ p+i (s))

Ỹi ∶= (Si ×Λα; q̃i(s,◻) = (1 − α)p̂i(s), q̃i(s,∎) = α ⋅ q+i (s))

and

X̃ ∶= {X̃i; fij × Id}
Ỹ ∶= {Ỹi; fij × Id}

The reductions in (5.3) are given by coordinate projections. We have the
following isomorphisms

X ∣◻ ≅ Y ∣◻ ≅ (S, p̂)

To estimate the distance between types we now apply Lemma 5.1 to the
fans in (5.3)

k(T (n)
p S, T (n)

q S) = k(T (n)X , T (n)Y)
≤ k (T (n)X , T ((1−α)n)(X ∣◻)) + k (T ((1−α)n)(Y ∣◻), T (n)Y)
≤ 2n ⋅ [[G]] ⋅ [α ⋅ ln ∣S0∣ + 2Ent(Λα)] + 4[[G]] ⋅ ∣X0∣ ⋅ ln(n + 1)

⊠
The reason for the similarity between the local estimate and the distance

estimate between types will become clear in the next section, when we estab-
lish the asymptotic equivalence between the Bernoulli sequence of probability
spaces and sequence of types over rational distributions approximating the
true distribution.

6. Asymptotic equipartition property for configurations

Below we prove that any Bernoulli sequence can be approximated by a
sequence of homogeneous configurations. This is essentially the Asymptotic
Equipartition Theorem for configurations.

Theorem 6.1. Suppose X ∈ Prob ⟨G⟩ is a complete configuration of probab
ility spaces. Then there exists a sequence H = (Hn)∞n=0 of homogeneous config-
urations of the same c ombinatorial type as X such that

1

n
k(X⊗n,Hn) = O

⎛
⎝

√
ln3 n

n

⎞
⎠
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More precisely, the sequence H may be chosen such that for all n ≥ ∣X0∣

(6.1)
1

n
k(X⊗n,Hn) ≤ C(∣X0∣, [[G]]) ⋅

√
ln3 n

n

where C(∣X0∣, [[G]]) is a constant only depending on ∣X0∣ and [[G]]. ⊠
Proof: Denote by S = X the underlying configuration of sets and by pX the
true distribution on S, such that

X = (S, pX)
We will construct the approximating homogeneous sequence by taking types

over rational approximations of pX in ∆S, that converge sufficiently fast to the
true distribution pX .

More specifically, we select rational distributions pn ∈ ∆
(n)S such that

∣pn − pX ∣1 ≤
∣S0∣
n

As homogeneous spaces Hn we set Hn = T
(n)
pn S. We will show that the

Kolmogorov distance betweenHn and X⊗n satisfies the required estimate (6.1).
First we apply slicing along the empirical two-fan

Rn(X ) = (X⊗n ← X̃ (n) → (∆S, τn)G)
defined in Section 3.3, Equation (3.7) on page 28.

For the estimate below we use the fact that

Ent(∆S, τn) ≤ ln ∣∆(n)S ∣ ≤ ∣S0∣ ⋅ ln(n + 1)
By slicing (see Corollary 4.10(ii)) along the empirical two-fan we have

k(T (n)
pn S,X⊗n) ≤ 2 ⋅ [[G]] ⋅ Ent(∆S, τn) + ∫

∆S
k(T (n)

pn S, T (n)
π S)d τn(π)

≤ 2 ⋅ [[G]] ⋅ ∣S0∣ ⋅ ln(n + 1) + ∫
∆S

k(T (n)
pn S, T (n)

π S)d τn(π)

To estimate the integral we split the domain into a small divergence ball Bεn =
Bεn(pX ) around the “true” distribution and its complement

∫
∆S

k(T (n)
pn S, T (n)

π S)d τn(π) = ∫
∆S∖Bεn

k(T (n)
pn S, T (n)

π S)d τn(π)

+ ∫
Bεn

k(T (n)
pn S, T (n)

π S)d τn(π)(6.2)

and we set the radius εn equal to

εn ∶= (∣S0∣ + 1) ln(n + 1)
n

To estimate the first integral on the right-hand side of equality (6.2) note
that the distance between two types over the same configuration of sets can
always be crudely estimated by

2 ⋅ ln ∣S0∣ ⋅ [[G]] ⋅ n
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Moreover, by Sanov’s theorem, Theorem 3.1, we can estimate the empirical
measure of the complement of the divergence ball

τn(∆S ∖Bεn) ≤ e−n⋅εn+∣S0∣⋅ln(n+1) ≤ 1

n

where we used the definition of εn to conclude the last inequality. Therefore
we obtain

∫
∆S∖Bεn

k(T (n)
pn S, T (n)

π S)d τn(π) ≤ 2 ⋅ ln ∣S0∣ ⋅ [[G]] ⋅ n ⋅ τn(∆S ∖Bεn)

≤ 2 ⋅ ln ∣S0∣ ⋅ [[G]]

Define

αn =
∣S0∣
n

+
√

2εn

if the right-hand side is smaller than 1 and set αn = 1 otherwise. Then every
π ∈ Bεn(pX ) satisfies ∣pn − π∣ ≤ 2αn by Pinsker’s inequality (Lemma 3.1, (i)),
and the triangle inequality. Consequently, by the estimate on the distance
between types in Proposition 5.2

∫
Bεn

k(T (n)
pn S, T (n)

π S)d τn(π)

≤ 2n ⋅ [[G]] ⋅ (αn ln ∣S0∣ + 2Ent(Λαn)) + 4 ⋅ [[G]] ⋅ ∣S0∣ ⋅ ln(n + 1)

Using the definition of αn and εn we find that

∫
Bεn

k(T (n)
pn S, T (n)

π S)d τn(π) = O (
√
n ⋅ ln3 n)

and hence combining the above estimates

1

n
k(T (n)

pn S,X⊗n) = O
⎛
⎝

√
ln3 n

n

⎞
⎠
.

A more precise check shows that for n ≥ ∣S0∣, the constants appearing in O
only depend on ∣S0∣ and [[G]]. ⊠

It is worth noting that each type considered as a subspace of the tensor
power takes up only small probability. In fact its probability converges to
zero with growing n. But as the calculation above shows, most (in terms of
probability) of the configuration X⊗n consists of polynomially many types that
are k-similar to each other. Relative to the exponential growth of sizes of all
the parts, “polynomially many” is as good as one. This is the difference with
the setup used in Gromov’s [Gro12]



7. Extensions 43

7. Extensions

In the introduction we have already emphasized the close relationship be-
tween relative entropic sets and Information-Optimization problems. There,
our definitions were restricted to extensions of two-fans to full configurations
corresponding to three random variables. We will now generalize these defini-
tions, and make the relationship between relative entropic sets and Information-
Optimization problems explicit.

Further we will prove the Extension Lemma and use it to show that the
relative entropic set associated to a full configuration depends continuously on
the configuration.

7.1. Information-Optimization and the relative entropic set. In Sec-
tion 2.4.1 we introduced (for k ≤ l) the restriction operator

R∗
k,l ∶ Prob ⟨Λl⟩→ Prob ⟨Λk⟩

as follows. For a minimal full configuration Y = ⟨Yi⟩li=1 we denote by

R∗
k,lY = ⟨Yi⟩i∈{1,...,k}

the restriction of Y to a minimal full configuration generated by Yi, i ∈ {1, . . . , k}.
We call a minimal configuration Y ∈ Prob ⟨Λk⟩ an l-extension of a configu-

ration X if
R∗
k,lY = X

and we denote the class of all l-extensions by Extl(X ).
Recall that for a full configuration Y ∈ Prob ⟨Λl⟩, we record the entropies of

all its probability spaces in a vector in R2{1,...,l}∖{∅} that we denote by

Ent∗(Y) ∶= (Ent(YI))I∈2{1,...,l}∖{∅}

The entries in this vector are all nonnegative. To simplify notations we set

El ∶= (R2{1,...,l}∖{∅}, ∣ ⋅ ∣1)
and denote by E∗

l its dual vector-space.
As in the introduction, we introduce the unstabilized relative entropic set

Γ○
l (X ) ∶= {Ent∗(Y) ∣∣Y ∈ Extl(X )}

By the additivity property of the entropy with respect to tensor powers, there
is the inclusion

(7.1) Γ○
l (X⊗m) +Γ○

l (X⊗n) ⊂ Γ○
l (X⊗(m+n))

where the sum on the left hand side is the Minkowski sum. This allows us to
define the limit

lim
n→∞

1

n
Γ○
l (X⊗n) ∶= ⋃

n∈N

1

n
Γ○
l (X⊗n)

and we define the stabilized relative entropic set by

Γl(X ) ∶= Closure( lim
n→∞

1

n
Γ○
l (X⊗n))
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which is a closed convex subset of El by property (7.1).
For a vector c ∈ E∗

l , we define the Information-Optimization problem

IOc(X ) ∶= inf
Y∈Extl(X )

⟨ c , Ent∗(Y) ⟩ = inf
Y∈Extl(X )

∑
I⊂{1,...,l}

cI ⋅ Ent(YI)

where cI ’s are the coordinates of the vector c with respect to the basis in E∗
l

dual to the standard basis in El. Note that, equation (7.1) implies that the
sequence

n↦ IOc (X⊗n)
is subadditive. Hence, the limit

lim
n→∞

1

n
IOc(X⊗n)

always exists (but may be equal to −∞). If for all n ∈ N,

1

n
IOc(X⊗n) = IOc(X )

we call the optimization problem associated to c stable. In general, we define
the stabilized optimization problem

IOs
c(X ) ∶= lim

n→∞

1

n
IOc(X⊗n

n ).

As the stabilized relative entropic set is convex, it is the intersection of
half-spaces that are defined by linear inequalities on entropies

Γk(X ) = ⋂
c∈E∗

l

{x ∈ El ∣∣ ⟨c, x⟩ ≥ IOs
c(X )}

In other words, the stabilized information optimization problems, that occur
so often in practice, identify supporting hyper-planes of the convex set. The
solution of all such linear problems determine the shape of the relative entropic
set and vice versa.

7.2. The entropic set and the entropic cone. The definitions of relative
entropic sets are motivated by the more classical notion of the entropic cone,
which we will briefly discuss now. For l ∈ N, the entropic set is defined as

Γ○
l ∶= {Ent∗(Y) ∣∣Y ∈ Prob ⟨Λl⟩ , Y is minimal}

Its closure is usually referred to as the entropic cone

Γl ∶= Closure(Γ○
l )

Indeed, the entropic cone Γl is a closed, convex cone in R2l−1 [Yeu12]. For
l ≤ 3, the entropic cone Γl is polyhedral and completely described by Shannon
inequalities. However, for l ≥ 4, the situation is much more complicated. It is
known that Γl is not polyhedral for l ≥ 4 [Mat07]. The shape of the entropic
cone is not known as of the time of writing this article. It is an important
open problem in information theory to find tight bounds on the entropic cone
for l ≥ 4. We hope that the techniques developed in this article will eventually
lend itself to finding a useful characterization.
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In fact, the entropic cone can be considered as the relative entropic set of
an empty configuration /O ∈ Prob ⟨∅⟩, that corresponds to the empty diagram
category ∅ = Λ0

Γl = Γl( /O)
For a diagram category G let us denote by {●} = {●}G

the constant G-

configuration of one-point spaces. Given an l-extension Y ∈ Prob ⟨Λl⟩ of {●}Λk

the restriction to the last l − k terminal spaces induces a linear isomorphism

(7.2) Γl({●}Λk) ≅ Γl−k

7.3. Extension lemma. The Lipschitz continuity of relative entropic sets will
follow from the following important proposition, which we will refer to as the
Extension Lemma.

Proposition 7.1. ↓ (Extension Lemma) Let k, l ∈ N, k ≤ l and let X ,X ′ ∈
Prob ⟨Λk⟩ be minimal full configurations. For every Y ∈ ExtlX there exists a
Y ′ ∈ ExtlX ′ such that

k(Y ′,Y) ≤ 2l−k k(X ′,X )
⊠

The key behind the proof of the Extension Lemma, is that there is a full
configuration Z that extends both Y and the optimal coupling between X and
X ′. The configuration Y ′ can be chosen to be the restriction of Z to the full
configuration generated by X ′ and the terminal spaces in Y which are not in X .
The estimate directly follows from Shannon inequalities. We present details
at page 69.

It follows immediately from the Extension Lemma and the Lipschitz prop-
erty of the entropy function Ent∗ that asymptotically equivalent configurations
have the same solutions to all Information-Optimization problems and, conse-
quently, they have the same stabilized relative entropic set.

In fact, we have a much stronger statement. Both the unstabilized and sta-
bilized relative entropic sets have a Lipschitz dependence on the configuration,
if the distance between sets is measured by the Hausdorff distance.

Let us endow the collection of subsets of El with the Hausdorff metric with
respect to the `1-distance. For two subsets S1, S2 of El, define the Hausdorff
distance between them by

dH (S1, S2) = inf {ε > 0 ∣∣S1 ⊂ S2 +Bε and S2 ⊂ S1 +Bε}
where Bε is the `1-ball of size ε around the origin in El.

In fact, at this point the Hausdorff distance is only an extended pseudo-
metric, in the sense, that it may take infinite values and it may vanish on pairs
of non-identical points.

Suppose now that we are given two minimal full configurations X ,X ′ ∈
Prob ⟨Λk⟩, and suppose a point y ∈ El lies in the unstabilized relative entropic
set of X , that is

y ∈ Γ○
l (X )
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This means that there is an extension Y ∈ Extl(X ) such that

Ent∗(Y) = y

By the Extension Lemma, there exists a configuration Y ′ ∈ Extl(X ′) such that

k(Y,Y ′) ≤ 2l−k k(X ,X ′)

and by the 1-Lipschitz property of the entropy function the point y′ ∶= Ent∗(Y ′)
is close to the point y, that is

∣y − y′∣1 = ∣Ent∗(Y) − Ent∗(Y ′)∣1 ≤ 2l−k k(X ,X ′)

We have thus obtained the following corollary to the Extension Lemma.

Corollary 7.2. Let k ∈ N and X ,X ′ ∈ Prob ⟨Λk⟩. Then the Hausdorff distance
between their unstabilized relative entropic sets satisfies the following Lipschitz
estimate

dH (Γ○
l (X ),Γ○

l (X ′)) ≤ 2l−k k(X ,X ′)
⊠

Note that in particular, the distance between unstabilized relative entropic
sets is always finite and

dH (Γ○
l (X ),Γ○

l ({●}
Λk)) ≤ 2l−k k(X ,{●}Λk) = 2l−k∣Ent∗(X )∣1.

Let us denote by Kk,l the metric space of closed convex sets K in El such that

dH(K,Γl({●}Λk)) <∞

endowed with the Hausdorff distance.

Theorem 7.3. ↓ Let k ∈ N and X ,X ′ ∈ Prob ⟨Λk⟩. Then for all l ∈ N, the
Hausdorff distance between their stabilized relative entropic sets satisfies the
Lipschitz estimate

dH (Γl(X ),Γl(X ′)) ≤ 2l−k κ(X ,X ′)

In other words, the map Γl from minimal full configurations in Prob ⟨Λk⟩ to
Kk,l is 2l−k-Lipschitz. ⊠

Finally, as a primer to Section 9, note that for any set K ∈ Kk,l the sequence

n↦ 1

n
K

converges in the Hausdorff distance to Γl({●}Λk). The set K ⊂ El can be
viewed as a metric space itself, by just restricting the `1-metric to it. The
above convergence can then be expressed by saying that the asymptotic cone
of K equals Γl({●}Λk) and is isomorphic to Γl−k.
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8. Mixtures

Mixtures provide some technical tools, which we will use in Section 9.
The input data for the mixture operation is a family of G-configurations,
parametrized by a probability space. As result one obtains another G-configu-
ration with the pre-specified conditionals. One particular instance of a mixture
is when one mixes two configurations X and {●}G

, the latter being a constant
G-configuration of one-point probability spaces. This operation will be used
as a substitute for taking radicals “X⊗(1/n)” in Section 9 below.

8.1. Definition and elementary properties. Let G be a complete dia-
gram category and Θ be a probability space. Let {Xθ}θ∈Θ be a family of

G-configurations parametrized by Θ. The mixture of the family {Xθ} is the
reduction

Mix {Xθ} = (Y Ð→ ΘG)

such that

(8.1) Y ∣ θ ≅ Xθ

The mixture exists and is uniquely defined by property (8.1) up to an iso-
morphism which is identity on ΘG.

We denote the top configuration of the mixture

Y =⊕
θ∈Θ
Xθ

and also call it the mixture of the family {Xθ}.
When

Θ = Λα = ( {◻,∎} ;p(∎) = α)

is a binary space we write simply

X∎ ⊕Λα X◻

for the mixture. The configuration subindexed by the ∎ will always be the
first summand.

The entropy of the mixture can be evaluated by the following formula

Ent∗ (⊕
θ∈Θ
Xθ) = ∫

Θ
Ent∗(Xθ)dp(θ) + Ent∗(ΘG)

Mixtures satisfy the distributive law with respect to the tensor product

Mix({Xθ}θ∈Θ)⊗Mix({Yθ′}θ′∈Θ′) ≅Mix({Xθ ⊗ Yθ′}(θ,θ′)∈Θ⊗Θ′)

(⊕
θ∈Θ
Xθ)⊗ (⊕

θ′∈Θ′
Yθ′) ≅ ⊕

(θ,θ′)∈Θ⊗Θ′
(Xθ ⊗ Yθ′)
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8.2. The distance estimates. Recall that for a diagram category G we de-
note by {●} = {●}G

the constant G-configuration of one-point spaces.

The mixture of a G-configuration with {●}G
may serve as an ersatz of taking

radicals of the configuration. The following lemma provides a justification
of this by some distance estimates related to mixtures and will be used in
Section 9.

Lemma 8.1. ↓ Let G be a complete diagram category and X ,Y ∈ Prob ⟨G⟩.
Then

(i) κ(X ,X⊗n ⊕Λ1/n {●}) ≤ Ent(Λ1/n)
(ii) κ (X , (X ⊕Λ1/n {●})⊗n) ≤ n ⋅ Ent(Λ1/n)

(iii) κ ((X ⊗ Y)⊕Λ1/n {●} , (X ⊕Λ1/n {●})⊗ (Y ⊕Λ1/n {●})) ≤ 3Ent(Λ1/n)

(iv) κ ((X ⊕Λ1/n {●}), (Y ⊕Λ1/n {●})) ≤ 1

n
κ(X ,Y)

⊠
The proof can be found on page 71. Note, that the distance estimates in the

lemma above are with respect to the asymptotic Kolmogorov distance. This
is essential, since from the perspective of the intrinsic Kolmogorov distance
mixtures are very badly behaved.

9. Tropical probability spaces and their configurations

In this section we introduce the notion of tropical probability spaces and
their configurations. Configurations of tropical probability spaces are points
in the asymptotic cone of the space Prob ⟨G⟩, that is they are “limits” of
certain divergent sequences of “normal” configurations. We will first give the
construction of an asymptotic cone in an abstract context. Next, we will apply
the construction to the particular case of configurations of probability spaces.
For some background on asymptotic cones, see for instance [BBI01].

9.1. Asymptotic cones of metric spaces. The asymptotic cone captures
large-scale geometry of a metric space. Abstractly, the asymptotic cone of a
pointed metric space is the pointed Gromov-Hausdorff limit of the sequence
of spaces obtained from the given one by scaling down the metric. Of course,
convergence is in general by no means assured. Sometimes a weaker type of
convergence (using ultrafilters) is considered. Since, in our case, the asymptotic
cone can be evaluated relatively explicitly we do not give the definition of
Gromov-Hausdorff convergence or convergence with respect to an ultrafilter
here, but instead give a construction.

We would like to understand asymptotic cones of the space of configurations
of probability spaces, considered as a metric space with the pseudo-metric k or
κ. For a fixed complete diagram category G the space Prob ⟨G⟩ is a monoid
with operation ⊗. It has the additional property that shifts are non-expanding
maps. This simplifies the construction and analysis of its asymptotic cone. In
fact, as we will see later the metric κ is already asymptotic relative to k. The
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application of the asymptotic cone construction to the metric κ allows us to
obtain a complete metric space with a simple description of points in it.

Note that even though the monoid (Prob ⟨G⟩ ,⊗) is not Abelian it has the
property that for any X1,X2 ∈ Prob ⟨G⟩ one has

k(X1 ⊗X2,X2 ⊗X1) = 0

Thus, from a metric perspective it is as good as being Abelian.

9.1.1. Metrics versus pseudo-metrics. A pseudo-metric δ on a set X is a bivari-
ate function satisfying all the axioms of a distance function except it is non-
negative definite rather than positive definite. That is, the pseudo-distance
function is allowed to vanish on pairs of non-identical points. A set equipped
with a pseudo-metric will be called a pseudo-metric space. An isometry of
such spaces is a distance-preserving map, such that for any point in the target
space there is a point in the image, which is distance zero from it. Given such
an pseudo-metric space (X,δ) one could always construct an isometric metric
space (X/δ=0 ,δ) by identifying all pairs of points that are distance zero apart.

Any property formulated in terms of the pseudo-metric holds simultaneously
for a pseudo-metric space and its metric quotient. It will be convenient for
us to construct pseudo-metrics on spaces instead of passing to the quotient
spaces.

9.1.2. Asymptotic cone of a metric Abelian monoid. Let (Γ,⊗,δ) be a monoid
with a pseudo-metric δ, which satisfies the following properties

(i) The shifts
⋅ ⊗ γ′ ∶ Γ→ Γ, γ ↦ γ ⊗ γ′

are non-expanding for any γ′ ∈ Γ
(ii) For any γ, γ′ ∈ Γ holds

δ(γ ⊗ γ′, γ′ ⊗ γ) = 0

We will call a monoid with pseudo-metric that satisfies these conditions a
metric Abelian monoid. It follows from the shift-invariance property that for
any γ1, γ2, γ3 ∈ Γ holds

(9.1) δ(γ1 ⊗ γ3, γ2 ⊗ γ3) ≤ δ(γ1, γ2)
and for any quadruple γ1, γ2, γ3, γ4 ∈ Γ holds

(9.2) δ(γ1 ⊗ γ2, γ3 ⊗ γ4) ≤ δ(γ1, γ3) + δ(γ2, γ4)
and, in particular, the monoid operation is 1-Lipschitz with respect to each
argument.

As a direct consequence, for every n ∈ N, and γ1, γ2 ∈ Γ also holds

(9.3) δ(γ⊗n1 , γ⊗n2 ) ≤ nδ(γ1, γ2)
For a sequence γ = {γ(i)} ∈ ΓN0 define its defect with respect to the distance

function δ by
Defectδ(γ) = sup

i,j∈N0

δ (γ(i + j), γ(i)⊗ γ(j))
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The sequence γ will be called δ-linear if Defectδ(γ) = 0, and δ-quasi-linear
if Defectδ(γ) < ∞. Denote by Lδ(Γ) and QLδ(Γ) the sets of all linear and,
respectively, quasi-linear sequences in Γ with respect to the distance δ.

For two elements γ1, γ2 ∈ QLd(Γ), define an asymptotic distance between
them by

δ̂(γ1, γ2) ∶= lim
n→∞

1

n
δ (γ1(n), γ2(n))

Lemma 9.1. ↓ For a pair γ1, γ2 ∈ QLδ(Γ) the limit

lim
n→∞

1

n
δ (γ1(n), γ2(n))

exists and is finite. ⊠

We provide the proof in Section T on page 72.
The bivariate function δ̂ is a pseudo-distance on the set QLδ(Γ). We call

two sequences γ1, γ2 ∈ QLδ(Γ) asymptotically equivalent if δ̂(γ1, γ2) = 0 and
write

γ1
δ̂= γ2

We will call a sequence γ weakly quasi-linear, if it is asymptotically equiva-
lent to a quasi-linear sequence. Note that the space of all weakly quasi-linear
sequences can also be endowed with the asymptotic distance and it is isomet-
ric to the space of quasi-linear sequences. As we will see later all the natural
operations we consider are δ̂-Lipschitz and therefore coincide for the asymp-
totically equivalent sequences. Thus given a weakly quasi-linear sequence we
could always replace it by an equivalent quasi-linear sequence without any
visible effect. Thus, we take the liberty to omit the adverb “weakly”. When-
ever we say quasi-linear sequence, we mean a weakly quasi-linear sequence,
that is silently replaced by an asymptotically equivalent genuine quasi-linear
sequence, if necessary.

The validity of the following constructions is very easy to verify, so we omit
the proofs.

The set QLδ(Γ) admits an action of the multiplicative semigroup (R≥0, ⋅ )
defined in the following way. Let λ ∈ R≥0 and γ = {γ(n)} ∈ QLδ(Γ). Then
define the action of λ on γ by

(9.4) γλ ∶= {γ(⌊λ ⋅ n⌋)}n∈N0

This is only an action up to asymptotic equivalence. Similarly, in the con-
structions that follow we are tacitly assuming they are valid up to asymptotic
equivalence.

The action

⋅ ∶ R≥0 × (QLδ(Γ), δ̂)→ (QLδ(Γ), δ̂)
is continuous with respect to δ̂ and, moreover it is a homothety (dilation), that
is

δ̂(γλ1 , γλ2) = λ ⋅ δ̂(γ1, γ2)
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The group operation ⊗ on Γ induces a δ̂-continuous (in fact, 1-Lipschitz)
group operation on QLδ(Γ) by multiplying sequences element-wise. The semi-
group structure on QLδ(Γ) is distributive with respect to the R≥0-action

(γ1 ⊗ γ2)λ = γλ1 ⊗ γλ2
γλ1+λ2

δ̂= γλ1 ⊗ γλ2

In particular for n ∈ N

γn
δ̂= γ⊗n

The path

[0,1] ∋ λ↦ γ1−λ
1 ⊗ γλ2

will be called a convex interpolation and is a constant-speed δ̂-geodesic between
γ1 and γ2, that is for λ ∈ [0,1],

δ̂(γ(1−λ)
1 ⊗ γλ2 , γ1) = λ δ̂(γ1, γ2)

δ̂(γ(1−λ)
1 ⊗ γλ2 , γ2) = (1 − λ) δ̂(γ1, γ2)

9.1.3. Conditions for completeness. We would like to call

Γ
(∞)
δ ∶= (QLδ(Γ),⊗, ⋅, δ̂)

the asymptotic cone of (Γ,⊗,δ). However it is not clear in general, whether

Γ
(∞)
δ is a complete space.
We can simply consider the metric completion, and call it the asymptotic

cone of (Γ,⊗,δ). We feel, however, that it adds just another level of obscurity

as to what the points of Γ
(∞)
δ are.

Under some circumstances, however, the completeness of the space of quasi-
linear sequences comes for free. This is the subject of the proposition below.

Suppose the metric Abelian monoid (Γ,⊗,δ) has an additional property:
There exists a constant C > 0, such that for any quasi-linear sequence γ ∈
QLδ(Γ), there exists an asymptotically equivalent quasi-linear sequence γ′ with
defect bounded by C. If this is the case, we say that the metric monoid (Γ,⊗,δ)
has the (C-)uniformly bounded defect property.

Proposition 9.2. ↓ Suppose (Γ,⊗,δ) is a metric Abelian monoid such that

(i) the distance function δ is homogeneous, that is for any γ1, γ2 ∈ Γ and
n ∈ N0

δ(γ⊗n1 , γ⊗n2 ) = n ⋅ δ(γ1, γ2)
(ii) (Γ,⊗,δ) has the uniformly bounded defect property.

Then the space (QLδ(Γ), δ̂) is complete. ⊠

The proof of the proposition can be found on page 72.
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9.1.4. On the density of linear sequences. In Section 6 we have shown that
Bernoulli sequences of configurations can be approximated by sequences of
homogeneous configurations. The proposition below will allow us to extend
this statement to a wider class of sequences. It gives a sufficient condition
under which the linear sequences are dense in the quasi-linear sequences.

Proposition 9.3. ↓ Suppose (Γ,⊗,δ) has the ε-uniformly bounded defect prop-
erty for every ε > 0. Then Lδ(Γ) is dense in QLδ(Γ) ⊠

See page 74 for the proof.

9.1.5. Asymptotic metric on original semigroup. Starting with an element γ ∈
Γ one can construct a linear sequence

→
γ = {γ⊗i}i∈N0

. In view of inequality (9.3),
this map is a contraction

(9.5) (Γ,δ )→ (Lδ(Γ), δ̂ )

By the inclusions in (9.5) we have an induced metric δ̂ on Γ, satisfying for
any γ1, γ2 ∈ Γ

(9.6) δ̂(γ1, γ2) ≤ δ(γ1, γ2)

and the following scale-invariance condition is gained

(9.7) δ̂(γ⊗n1 , γ⊗n2 ) = n ⋅ δ̂(γ1, γ2)

for all n ∈ N0.
Note moreover that if δ was scale-invariant to begin with, then δ̂ coincides

with δ on Γ.

9.1.6. Iteration of construction. We may now iterate the constructions above,
that is, we may apply them to (Γ, δ̂) instead of (Γ,δ). One may wonder what

is the purpose. However, we have already observed that δ̂ satisfies the scale-
invariance condition (9.7), which is one of the conditions going into a proof
of completeness in Proposition 9.2. Moreover, when we will later apply the
theory in this section to the particular case of Γ = Prob ⟨G⟩, we will see that

(Γ, δ̂) = (Prob ⟨G⟩ ,κ)

and we will show that the latter space has the ε-uniformly bounded defect
property for every ε > 0.

By virtue of the bound δ̂ ≤ δ, sequences that are quasi-linear with respect
to δ̂, are also quasi-linear with respect to δ. Since δ̂ is scale-invariant, the

associated asymptotic distance
ˆ̂
δ coincides with δ̂ on Γ. We will show (in

Lemma 9.4 below) that
ˆ̂
δ also corresponds to δ̂ on δ-quasi-linear sequences.

In order to organize all these statements, and to be more precise, let us
include the spaces in the following commutative diagram.
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(9.8)

(Lδ(Γ), δ̂) (QLδ(Γ), δ̂)

(Γ, δ̂)

(Lδ̂(Γ), ˆ̂δ) (QLδ̂(Γ), ˆ̂δ)

ı1

1

ı2

f

ϕ

2

The maps f,ϕ and ı1 are isometries. The maps 1 and 2 are isometric
embeddings. The next lemmas show that ı2 is also an isometric embedding,
and it has dense image.

Lemma 9.4. ↓ The natural inclusion

ı2 ∶ (QLδ(Γ), δ̂)↪ (QLδ̂(Γ), ˆ̂δ)
is an isometric embedding. ⊠

Lemma 9.5. ↓ The image of the isometric embedding

ı2 ∶ (QLδ(Γ), δ̂)↪ (QLδ̂(Γ), ˆ̂δ)

is dense in (QLδ̂(Γ), ˆ̂δ) ⊠

The proofs of the two lemmas above are to be found on page 75.

9.2. Tropical probability spaces and configurations. Now we apply the
above construction to the space of complete configurations with fixed combi-
natorial type G.

Fix a complete diagram category G and consider the space Prob ⟨G⟩ of
configurations modeled on G. It carries the following structures:

(i) A pseudo-metric k or κ.
(ii) A 1-Lipschitz tensor product ⊗.
(iii) A 1-Lipschitz entropy function Ent∗ ∶ Prob ⟨G⟩→ R[[G]].

The tensor product of configurations is commutative from a metric per-
spective. Recall that in Corollary 4.5 the subadditivity of both k and κ was
established, namely for any X ,Y,U ,V ∈ Prob ⟨G⟩ holds

k(X ⊗ U ,Y ⊗ V) ≤ k(X ,Y) + k(U ,V).
and

κ(X ⊗ U ,Y ⊗ V) ≤ κ(X ,Y) +κ(U ,V).
The space (Prob ⟨G⟩ ,⊗,k) is a metric Abelian monoid. Note also that

k̂ = κ on Prob ⟨G⟩, along the lines of Section 9.1.5.
However, the metric k is not scale-invariant. Moreover, it is unclear whether

the metric semigroup (Prob ⟨G⟩ ,⊗,k) has the uniformly bounded defect prop-
erty. This is why we iterate the construction, as announced in Section 9.1.6,
and consider the space of κ-quasi-linear sequences instead.
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Lemma 9.6. ↓ For a complete diagram category, and for every ε > 0, the
space (Prob ⟨G⟩ ,⊗,κ) has the ε-uniformly bounded defect property, that is for
any κ-quasi-linear sequence X ∈ QLκ(Prob ⟨G⟩) there exists an asymptotically
equivalent sequence Y with defect not exceeding ε. ⊠

By applying the general setup in the previous section to the metric semi-
groups (Prob ⟨G⟩ ,⊗,k) and (Prob ⟨G⟩ ,⊗,κ) and as a corollary to Lemma
9.6 we obtain the following theorem.

Theorem 9.7. Consider the commutative diagram
(9.9)

(Lk(Prob ⟨G⟩), k̂) (QLk(Prob ⟨G⟩), k̂)

(Prob ⟨G⟩ ,κ)

(Lκ(Prob ⟨G⟩), κ̂) (QLκ(Prob ⟨G⟩), κ̂)

ı1

1

ı2

f

ϕ

2

Then the following statements hold:

(i) The maps f,ϕ, ı1 are isometries.
(ii) The maps ı2, 1, 2 are isometric embeddings and each map has a dense

image in the corresponding target space.
(iii) The space in the lower-right corner, (QLκ(Prob ⟨G⟩), κ̂), is complete.

⊠

We may finally define the space of tropical G-configurations, as the space in
the lower-right corner of the diagram

Prob ⟨G⟩(∞) ∶= (QLκ(Prob ⟨G⟩),⊗, ⋅, κ̂)

By the Theorem 9.7 above, this space is complete.
The entropy function Ent∗ ∶ Prob ⟨G⟩→ R[[G]] extends to a linear functional

Ent∗ ∶ Prob ⟨G⟩(∞) → (R[[G]], ∣ ⋅ ∣1)

of norm one, defined by

Ent∗(X ) = lim
n→∞

1

n
Ent∗(X (n))

9.2.1. Sequences of homogeneous configurations are dense. Let L̃k(Prob ⟨G⟩h)
stand for the weakly linear sequences of homogeneous configurations, that is
those sequences, that are asymptotically equivalent to a linear sequence (not
necessarily of homogeneous spaces).

For a sequence of homogeneous spaces H ∈ L̃k(Prob ⟨G⟩h) define aep(H)
to be a k-linear sequence asymptotically equivalent to H.
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Now we can extend the commutative diagram (9.9) as follows

(9.10)

L̃k(Prob ⟨G⟩h) Lk(Prob ⟨G⟩) QLk(Prob ⟨G⟩)

(Prob ⟨G⟩ ,κ)

Lκ(Prob ⟨G⟩) Prob ⟨G⟩(∞)

aep

ı1

1

ı2

f

ϕ

2

By the Asymptotic Equipartition Property for configurations, Theorem 6.1,
the map aep is an isometry, hence we have the following theorem.

Theorem 9.8. The map

2 ○ ı1 ○ aep ∶ L̃k(Prob ⟨G⟩h)→ Prob ⟨G⟩(∞)

is an isometric embedding with dense image. ⊠

Let Prob ⟨G⟩(∞)
h ⊂ Prob ⟨G⟩(∞)

denote the space of weakly quasi-linear

sequences of configurations H ∈ Prob ⟨G⟩(∞)
, such that for every n ∈ N0, the

configuration H(n) is homogeneous. We will refer to Prob ⟨G⟩(∞)
h as the space

of homogeneous tropical configurations.
Denote by aep the embedding

aep ∶ Prob ⟨G⟩(∞)
h ↪ Prob ⟨G⟩(∞)

Theorem 9.9. (Asymptotic Equipartition Theorem for tropical configura-
tions) Let G be a complete diagram category. Then the map

aep ∶ Prob ⟨G⟩(∞)
h ↪ Prob ⟨G⟩(∞)

is an isometry. ⊠

Proof: We need to show that for every tropical configuration X ∈ Prob ⟨G⟩(∞)
,

there exists a homogeneous tropical configuration H ∈ Prob ⟨G⟩(∞)
h such that

κ̂(H,X ) = 0

By Lemma 9.6 and Proposition 9.3, for every j ∈ N there exists a sequence
Yj ∈ Lκ(Prob ⟨G⟩) ≅ Lk(Prob ⟨G⟩) such that

κ̂(Yj,X ) ≤ 1

j

By the Asymptotic Equipartition Property for configurations, Theorem 6.1,
there are sequences of homogeneous configurations Hj such that

κ̂(Yj,Hj) = 0

Define i(j) such that for all k ≥ i(j)
1

k
κ(Yj(k),Hj(k)) ≤

1

j
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and moreover
1

k
κ(Yj(k),X (k)) ≤ 2

j

The function i can be chosen monotonically increasing. For every i ∈ N0 there
is a unique j(i) ∈ N0 such that

i(j(i)) ≤ i < i(j(i) + 1)
Define then

H(k) = Hj(k)(k)
It follows that for k > i(1),

1

k
κ(H(k),X (k)) ≤ 3

j(k)
Since j is a non-decreasing, divergent sequence, the theorem follows. ⊠

Thus we have shown that all arrows in diagram (9.10) are isometric embed-
dings with dense images. We would like to conjecture, that, in fact, they are
all isometries. In any case, the difference between metrics κ̂ and κ is so small
(κ is defined on the dense subset of the domain of definition of κ̂ and they
coincide whenever both are defined), that we will not write the hat anymore

and just use notation κ for the metric on Prob ⟨G⟩(∞)
.

9.3. Tropical probability spaces and tropical chains. In this section we

evaluate the spaces Prob(∞) and Prob ⟨Cn⟩(∞)
, where Cn is a chain, which is

the diagram category introduced in 2.1.2 on page 14.
Recall that a finite probability space U is homogeneous if Aut(U) acts tran-

sitively on the support of the measure. The property of being homogeneous is
invariant under isomorphism and every homogeneous space is isomorphic to a
probability space with the uniform distribution.

Homogeneous chains also have a very simple description. A chain of reduc-
tions is homogeneous, if and only if all the individual spaces are homogeneous.

This simple description allows us to evaluate explicitly the Kolmogorov dis-
tance on the spaces of weakly linear sequences of homogeneous chains and
consequently the space of tropical chains.

Theorem 9.10.

(i) Prob(∞) ≅ (R≥0, ∣ ⋅ − ⋅ ∣,+, ⋅)

(ii) Prob ⟨Cn⟩(∞) ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

x1

⋮
xn

⎞
⎟
⎠
∈ Rn

RRRRRRRRRRRRR

RRRRRRRRRRRRR
0 ≤ xn ≤ ⋯ ≤ x1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where the right-hand side is a cone in (Rn, ∣ ⋅ ∣1).

⊠
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To prove the Theorem 9.10 we evaluate first the isometry class of the space
of weakly linear sequences of homogeneous spaces (or chains). We will only
present an argument for single spaces, since the argument for chains is very
similar.

Lemma 9.11.

L̃k(Probh) ≅ (R≥0, ∣ ⋅ − ⋅ ∣,+, ⋅)
⊠

Note that the right-hand side is a complete metric space, thus the Asymp-
totic Equipartition Theorem for tropical configurations, Theorem 9.8, together
with Lemma 9.11, imply Theorem 9.10.

To prove Lemma 9.11 we need to evaluate the Kolmogorov distance between
two homogeneous spaces, or chains of homogeneous spaces. This is the subject
of the next lemma, from which Lemma 9.11 follows immediately.

Lemma 9.12. ↓ Denote by Un a finite uniform probability space of cardinality
n, then

(i)

k(Un, Um) ≤ 2 ln 2 + ∣ln n

m
∣

(ii)

κ(Un, Um) = ∣Ent(Un) − Ent(Um)∣
⊠

9.4. Stochastic processes. Often, stochastic processes naturally give rise to
κ-quasi-linear sequences. We include this last subsection as an indication that
our statements, together with the construction of the tropical cone, have a
much larger reach than sequences of independent random variables. We will
be brief, and come back to the topic in a subsequent article.

For a minimal diamond configuration

C

A B

D

we define the conditional mutual information between A and B given D by

I(A;B ∣ D) ∶= Ent(A) + Ent(B) − Ent(C) − Ent(D)
Shannon’s inequality (1.2) says that the conditional mutual information is
always non-negative. Any minimal two-fan A← C → B can be completed to a
diamond with the one-point probability space {●} as the terminal vertex, and
the mutual information between A and B is defined as

I(A;B) = I(A;B ∣ {●}) = Ent(A) + Ent(B) − Ent(C)
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Let

. . . ,X−1,X0,X1, . . .

be a stationary stochastic process with finite state space X. Thus, for any I =
{k, k + 1, . . . , l} ⊂ Z we have jointly distributed random variables Xk, . . . ,Xl,
that generate a full configuration

XI = ⟨Xk, . . . ,Xl⟩ = {XJ}J⊂I
as explained in Section 2.1.4. This collection of full configurations is consistent
in the sense that for k ≤ k′ ≤ l′ ≤ l there are canonical isomorphisms

XI′ ≅ R∗
I′,IXI

where I ∶= {k, . . . , l}, I ′ ∶= {k′, . . . , l′} and R∗
I′,I is the restriction operator

introduced in Section 2.4.1.
The property of being stationary means that there are canonical isomor-

phisms for any finite subset I ⊂ Z and l ∈ Z

XI
≅Ð→ XI+l

For I = {k, k + 1, . . . , l} we call the initial space XI of the configuration XI
the space of trajectories of the process over I and denote it X l

k.
Note that by stationarity, for every m ∈ Z, k ∈ N and l ∈ N0,

I(Xm+k−1
m ;Xm+k+l−1

m+k ) = I(X0
−k+1;X l

1)
Moreover the right-hand side is an increasing function of both k and l. We
make the following important observation. The defect of the sequence n↦Xn

1

is equal to

Defectκ ({Xn
1 }) = sup

m,n∈N0

κ (Xm+n
1 ,Xm

1 ⊗Xn
1 )

= sup
m,n∈N0

∣Ent(Xm
1 ⊗Xn

1 ) − Ent(Xm+n
1 )∣

= sup
m,n∈N0

∣Ent(X0
−m+1 ⊗Xn

1 ) − Ent(Xm+n
1 )∣

= sup
m,n∈N0

I(X0
−m+1,X

n
1 )

Therefore, the sequence n↦Xn
1 is κ-quasi-linear if and only if

(9.11) lim
k,l→∞

I(X0
−k+1,X

l
1) <∞

Once condition (9.11) is satisfied for a stochastic process, it defines a tropical
probability space X ∈ Prob.

Note that condition (9.11) is satisfied for any stationary, finite-state Markov
chains.

T. Technical proofs

This section contains some proofs that did not make it into the main text.
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T.2. Statements from the section “Configurations”.

Lemma 2.1. ↑ Let G be a diagram category. Then

(i) A two-fan F = (X ← Z → Y) of G-configurations is minimal, if and
only if the constituent two-fans of probability spaces Fi = (Xi ← Zi →
Yi) are all minimal.

(ii) For any two-fan F = (X ← Z → Y) of G-configurations its minimal
reduction exists, that is, there exists a minimal two-fan F ′ = (X ←
Z ′ → Y) included in the following diagram

Z

Z ′

X Y
⊠

Proof: We will need the following lemma

Lemma T.1. Suppose we are given two two-fans of probability spaces

F = (X α←Ð Z
βÐ→ Y )

F ′′ = (X ′′ α′′←Ð Z ′′ β′′Ð→ Y ′′)
such that F ′′ is minimal. Let

F µÐ→ F ′=(X α′←ÐZ ′ β′Ð→Y )
be a minimal reduction of F . Then for any reduction ρ ∶ F → F ′′, there exists
a reduction ρ′ ∶ F ′ → F ′′ such that ρ = ρ′ ○ µ ⊠

Proof: We define ρ′ on the terminal spaces of F ′ to coincide with ρ.
To prove the lemma we just need to provide a dashed arrow that makes the

following diagram commutative

Z

Z ′ Z ′′

X Y X ′′ Y ′′

µ

α

β

ρ

α′ β′

ρ′

α′′ β′′

ρ=ρ′ρ=ρ′

The reduction ρ′ is constructed by simple diagram chasing and by using the
minimality of F ′′. Suppose z′ ∈ Z ′ and z1, z2 ∈ Z are such that z′ = µ(z1) =
µ(z2). By commutativity of the solid arrows in the diagram above, we have

α′′ ○ ρ(z1) = ρ ○ α′ ○ µ(z1) = ρ ○ α′ ○ µ(z2) = α′′ ○ ρ(z2)
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Similarly

β′′ ○ ρ(z1) = β′′ ○ ρ(z2)
Thus by minimality of F ′′ it follows that ρ(z1) = ρ(z2). Hence, ρ′ can be
constructed by setting ρ′(z′) = ρ(z1). ⊠

Now we proceed to prove claim (i) of Lemma 2.1. Let G = {Oi;mij} be
a diagram category, X ,Y,Z ∈ Prob ⟨G⟩ be three G-configurations and F =
(X ← Z → Y) be a two-fan. Recall that it can also be considered as a G-
configuration of two-fans

F = {Fi; fij}
Any minimizing reduction

F =(X←Z→Y)Ð→ F ′=(X←Z ′→Y)
induces reductions

Fi=(Xi←Zi→Yi)Ð→ Fi=(Xi←Z ′
i→Yi)

for all i in the index set I. It follows that if all Fi’s are minimal, then so is F .
Now we prove the implication in the other direction. Suppose F is minimal.

We have to show that all Fi are minimal as well. Suppose there exist a non-
minimal fan among Fi’s. For an index i ∈ I let

J̌(i) ∶= {j ∈ I ∣∣HomG(Oj,Oi) ≠ ∅}
Ĵ(i) ∶= {j ∈ I ∣∣HomG(Oi,Oj) ≠ ∅}

Choose an index i0 such that

(i) Fi0 is not minimal

(ii) for any j ∈ Ĵ(i0)/{i0} the two-fan Fj is minimal.

Consider now the minimal reduction µ ∶ Fi0 → F ′
i0

and construct a two-fan
G = {Gi; gij} of G-configurations by setting

Gi ∶= {F
′
i if i = i0
Fi otherwise

and

gij ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ ○ fij if j = i0 and i ∈ J̌(i0)
f ′ij if i = i0 and j ∈ Ĵ(i0)
fij otherwise

where f ′i0j is the reduction provided by the Lemma T.1 applied to the diagram

Fi0

F ′
i0

Fj

µ
fi0j

f ′i0j

We thus constructed a non-trivial reduction F → G which is identity on the
terminal G-configurations X and Y. This contradicts the minimality of F .
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To address the second assertion of the Lemma 2.1 observe that the argument
above gives an algorithm for the construction of a minimal reduction of any
two-fan of G-configurations. ⊠
T.4. Statements from the section “Kolmogorov distance”.

Proposition 4.1. ↑ Let G be a complete diagram category. Then the bivariate
function

k ∶ Prob ⟨G⟩ ×Prob ⟨G⟩→ R
is a pseudo-distance on Prob ⟨G⟩.
Moreover, two configurations X ,Y ∈ Prob ⟨G⟩ satisfy k(X ,Y) = 0 if and only
if X is isomorphic to Y in Prob ⟨G⟩. ⊠
Proof: The symmetry of k is immediate. The non-negativity of k follows
from the fact that entropy of the target space of a reduction is not greater
then the entropy of the domain, which is a particular instance of the Shannon
inequality (1.2).

We proceed to prove the triangle inequality. We will make use of the follow-
ing lemma

Lemma T.2. For a minimal full configuration of probability spaces

⟨X,Y,Z⟩ =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

XY Z

XY XZ Y Z

X Y Z

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

holds

kd(X ←XZ → Z) ≤ kd(X ←XY → Y ) + kd(Y ← Y Z → Z)
⊠

Proof: By Shannon inequality (1.2) on page 13 we have

Ent(X ∣Z) ≤ Ent(XY ∣Z) ≤ Ent(X ∣ Y ) + Ent(Y ∣Z)
Similarly,

Ent(Z ∣X) ≤ Ent(Z ∣ Y ) + Ent(Y ∣X)
and therefore

kd(X ←XZ → Z) ≤ kd(X ←XY → Y ) + kd(Y ← Y Z → Z)
⊠

Now we continue with the proof of Proposition 4.1.
Let G be an arbitrary complete reduction category. Suppose X = {Xi; fij},
Y = {Yi; gij} and Z = {Zi;hij} are G-configurations, with initial spaces being
X0, Y0 and Z0, respectively. Let

F̂ = (X ← F → Y)
Ĝ = (Y ← G → Z)
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be two optimal minimal two-fans satisfying

k(X ,Y) = kd(F̂)
k(Y,Z) = kd(Ĝ)

Recall that each two-fan of G-configurations is a G-configuration of two-fans
between the individual spaces, that is

F = {Fi = (Xi ← Fi → Yi)}
G = {Gi = (Yi ← Gi → Zi)}

We construct a coupling H between X and Z in the following manner.
Starting with the two-tents configuration between the initial spaces, we use
adhesion to extend it to a full configuration, thus constructing a coupling
between X0 and Z0. This full configuration could then be “pushed down”
and provides full extensions of two-tents on all lower levels. Thus we could
“compose” couplings F and G and use a Shannon inequality to establish the
triangle inequality for the Kolmogorov distance. Details are as follows.

Consider a two-tents configuration

X0 ← F0 → Y0 ← G0 → Z0

and extend it by adhesion, as described in Section 2.5 to a Λ3-configuration

A0

F0 H0 G0

X0 Y0 Z0

Together with the reductions

(X0)G → X
(Y0)G → Y
(Z0)G → Z

it gives rise to a Λ3-configuration of G-configurations

(T.1)

(A0)G

(F0)G (H0)G (G0)G

X Y Z
Note that the minimal reductions of the two-fan subconfigurations of (T.1)

X ← (F0)G → Y
Y ← (G0)G → Z

are the two-fans F̂ and Ĝ, respectively, by Lemma 2.1.
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Now consider the “minimization” of the above configuration

(T.2)

A

F H G

X Y Z

It could also be viewed as a G-configuration of Λ3 configurations,

Ai

Fi Hi Gi

Xi Yi Zi

each of which is minimal by Corollary 2.2.
Now we can apply Lemma T.2 to each level to conclude that

k(X ,Z) ≤ kd(X ← H → Z)
≤ kd(X ← F → Y) + kd(X ← G → Y)
= k(X ,Y) + k(Y,Z)

Finally, if k(X ,Y) = 0, then there is a two-fan F of G-configurations between
X and Y with kd(F) = 0, from which it follows that X and Y are isomorphic.⊠

Proposition 4.3. ↑ Let G be a complete diagram category. Then with respect
to the Kolmogorov distance on Prob ⟨G⟩ the tensor product

⊗ ∶ (Prob ⟨G⟩ ,k)2 → (Prob ⟨G⟩ ,k)

is 1-Lipschitz in each variable, that is, for every triple X ,Y,Y ′ ∈ Prob ⟨G⟩ the
following bound holds

k(X ⊗ Y,X ⊗ Y ′) ≤ k(Y,Y ′)

⊠

Proof: The claim follows easily from the additivity of entropy in equation
(1.3). Suppose that X = {Xi; fij}, Y = {Yi; gij} and Y ′ = {Y ′

i ; g′ij} are three
G-configurations and

F = (Y ← Z → Y ′)
is an optimal fan, so that

k(Y,Y ′) =∑
i

[2Ent(Zi) − Ent(Yi) − Ent(Y ′
i )]

Consider the fan

G = (X ⊗ Y ← X ⊗Z → X ⊗ Y ′)
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Then, by additivity of entropy, in equation (1.3), we have

kd(F) =∑
i

[2Ent(Xi ⊗Zi) − Ent(Xi ⊗ Yi) − Ent(Xi ⊗ Y ′
i )]

=∑
i

[2Ent(Zi) − Ent(Yi) − Ent(Y ′
i )]

= kd(G)

and, therefore,

k(X ⊗ Y,X ⊗ Y ′) ≤ kd(G) = kd(F) = k(Y,Y ′)

Thus, the tensor product of probability spaces is 1-Lipschitz with respect to
each argument. ⊠

Proposition 4.7. ↑ Suppose G is a complete diagram category and δ = k,κ is
either Kolmogorov distance or asymptotic Kolmogorov distance on Prob ⟨G⟩.
Then the entropy function

Ent∗ ∶ (Prob ⟨G⟩ ,δ)→ (R[[G]], ∣ ⋅ ∣1), X = {Xi, fij}↦ (EntXi)i ∈ R[[G]]

is 1-Lipschitz. ⊠

Proof:
Let X ,Y ∈ Prob ⟨G⟩ and let

G = (X ← Z → Y)

be an optimal fan with components

Gi = (Xi ← Zi → Yi)

For a fixed index i we can estimate the difference of entropies

Ent(Xi) − Ent(Yi) = 2(Ent(Xi) − Ent(Zi)) + kd(Gi) ≤ kd(Gi)

By symmetry we then have

∣Ent(Xi) − Ent(Yi)∣ ≤ kd(Gi)

Adding above inequalities for all i we have

∣Ent∗(X ) − Ent∗(Y)∣1 ≤ kd(G) = k(X ,Y)

By the additivity of entropy we also obtain the 1-Lipschitz property of the
entropy function with respect to the asymptotic Kolmogorov distance κ. ⊠

Proposition 4.8. ↑ Suppose R ∶ G′ →G is a functor between two complete dia-
gram categories and δ stands for either Kolmogorov or asymptotic Kolmogorov
distance. Then the restriction operator

R∗ ∶ (Prob ⟨G⟩ ,δ)→ (Prob ⟨G′⟩ ,δ), X ↦ X ○R

is Lipschitz. ⊠
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Proof: The claim follows from the functoriality of the restriction operator. We
argue as follows.

Suppose that R ∶ G′ →G is a functor and R∗ is the corresponding restriction
operator. For X1,X2 ∈ Prob ⟨G⟩ let

F = (X1 ← Y → X2)
be an optimal fan. Then

F ′ ∶= (R∗X1 ← R∗Y → R∗X2)
is a fan with the terminal vertices being the restrictions of X1 and X2. It can
be considered as a G′-configuration of two-fans over individual spaces in R∗X1

and R∗X2 each of which also appears as a fan in F .
Thus, we obtain the rough estimate

k(R∗X1,R
∗X2) ≤ [[G′]] ⋅ k(X1,X2)

Since the restriction operator commutes with tensor powers, the same estimate
also holds for the asymptotic Kolmogorov distance κ. ⊠

Proposition 4.9. ↑ (Slicing Lemma) Suppose G is a complete diagram cat-

egory and we are given X , X̂ ,Y, Ŷ ∈ Prob ⟨G⟩ – four G-configurations and
U,V,W ∈ Prob – probability spaces, that are included into the following three-
tents configuration

X̂ W Ŷ

X U V Y

such that the two-fan (U ←W → V ) is minimal. Then the following estimate
holds

k(X ,Y) ≤ ∫
W

k(X ∣ u,Y ∣ v)dpW (u, v)

+ [[G]] ⋅ kd(U ←W → V )
+∑

i

[Ent(U ∣Xi) + Ent(V ∣ Yi)]

⊠

Proof: Since the two-fan (U ← W → V ) is minimal the probability space
W could be considered having underlying set to be a subset of the Cartesian
product of the underlying sets of U and V . For any pair (u, v) ∈ W with a
positive weight consider an optimal two-fan

(T.3) Guv = (X ∣ u
πX
←Ð Zuv

πY
Ð→ Y ∣ v)

where Zuv = {Zuv,i;ρij}. Let puv,i be the probability distributions on Zuv,i
– the individual spaces in the configuration Zuv. The next step is to take
a convex combination of distributions puv,i weighted by pW to construct a
coupling X ← Z → Y.
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First we extend the 7-vertex configuration to a full Λ4-configuration of G-
configurations, such that the top vertex has the distribution

(T.4) pi(x, y, u, v) ∶= puv,i(x, y)pW (u, v)
as described in the Section 2.1.4.

If we integrate over y, we obtain

∑
y

pi(x,u, v, y) = ((πX ,i)∗puv,i)(x)pW (u, v)

Then we use that by (T.3) it holds that (πX ,i)∗puv,i = pXi( ⋅ ∣ u) and therefore

∑
y

pi(x, y, u, v) = pXi(x∣ u)pW (u, v).

In the same way,

∑
x

pi(x, y, u, v) = pYi(y∣ v)pW (u, v).

Note that this exactly corresponds to adhesion, as described in Section 2.5. It
follows that

(T.5) X ∣ uv = X ∣ u and Y ∣ uv = Y ∣ v
and

(T.6) Ent(Xi∣UV ) = Ent(Xi∣U) and Ent(Yi∣UV ) = Ent(Yi∣ V )
The extended configuration contains a two-fan of configurations F = (X ←
Z → Y) with terminal vertices X and Y. We call its initial vertex Z =
{XYi, fij}.

The following estimates conclude the proof the the Slicing Lemma. First we
use the definitions of intrinsic Kolmogorov distance k and of kd(F) to estimate

k(X ,Y) ≤ kd(F)
=∑

i

kd(Fi)

=∑
i

[2Ent(XYi) − Ent(Xi) − Ent(Yi)]

Next, we apply the definition of the conditional entropy to rewrite the right-
hand side

k(X ,Y) ≤∑
i

[2Ent(XYi∣UV ) + 2Ent(UV ) − 2Ent(UV ∣XYi)

− Ent(Xi∣U) − Ent(U) + Ent(U ∣Xi)
− Ent(Yi∣ V ) − Ent(V ) + Ent(V ∣ Yi)]

We now use (T.6) and rearrange terms to obtain

k(X ,Y) ≤∑
i

[2Ent(XYi∣UV ) − Ent(Xi∣UV ) − Ent(Yi∣UV )

+ 2Ent(UV ) − Ent(U) − Ent(V )
− 2Ent(UV ∣XYi) + Ent(U ∣Xi) + Ent(V ∣ Yi)]
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By the integral formula for conditional entropy (1.4) applied to the first three
terms we get

∑
i

[2Ent(XYi∣UV ) − Ent(Xi∣UV ) − Ent(Yi∣UV )]

= ∫
UV

k(X ∣ uv,Y ∣ uv)dpW (u, v)

However, because of (T.5) this simplifies to

∫
UV

k(X ∣ uv,Y ∣ uv)dpW (u, v) = ∫
UV

k(X ∣ u,Y ∣ v)dpW (u, v)

Therefore,

k(X ,Y) ≤ ∫
UV

k(X ∣ u,Y ∣ v)dpW (u, v) + [[G]] ⋅ kd(U ←W → V )

+∑
i

[Ent(U ∣Xi) + Ent(V ∣ Yi)]

⊠

Proposition 4.11. ↑ Let S = {Si, fij} ∈ Set ⟨G⟩ be a configuration of sets
modeled on a complete diagram category G with the initial set S0. Let p, q ∈
∆S be two probability distributions. Denote X ∶= (S, p), Y ∶= (S, q) and α =
1
2 ∣p0 − q0∣1. Then

k(X ,Y) ≤ 2 ⋅ [[G]] ⋅ (α ⋅ ln ∣S0∣ + Ent(Λα))

⊠

Proof: We will need the following obvious rough estimate of the Kolmogorov
distance that holds for any p, q ∈ ∆S:

(T.7) 2 ⋅ k(X ,Y) ≤ 2[[G]] ⋅ ln ∣S0∣

It can be obtained by taking a tensor product for the coupling between X and
Y.

Our goal now is to write p and q as the convex combination of three other
distributions p̂, p+ and q+ as in

p = (1 − α) ⋅ p̂ + α ⋅ p+

q = (1 − α) ⋅ p̂ + α ⋅ q+

with the smallest possible α ∈ [0,1].
We could do it the following way. Let α ∶= 1

2 ∣p0 − q0∣. If α = 1 then the
proposition follows from the rough estimate (T.7), so from now on we assume
that α < 1. Define three probability distributions p̂0, p+0 and q+0 on S0 by setting
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for every x ∈ S0

p̂0(x) ∶=
1

1 − α min{p0(x), q0(x)}

p+0 ∶=
1

α
(p0 − (1 − α)p̂0)

q+0 ∶=
1

α
(q0 − (1 − α)p̂0)

Denote by p̂, p+, q+ ∈ ∆S the distributions corresponding to p̂0, p+0 , q
+
0 ∈ ∆S0

under isomorphism (3.5). Thus we have

p = (1 − α)p̂ + α ⋅ p+

q = (1 − α)p̂ + α ⋅ q+

Now we construct a “two-tents” configuration of G-configurations

(T.8) X ← X̃ → Λα ← Ỹ → Y

by setting

X̃i ∶= (Si ×Λα; p̃i(s,◻) = (1 − α)p̂i(s), p̃i(s,∎) = α ⋅ p+i (s))

Ỹi ∶= (Si ×Λα; q̃i(s,◻) = (1 − α)p̂i(s), q̃i(s,∎) = α ⋅ q+i (s))

and

X̃ ∶= {X̃i; fij × Id}
Ỹ ∶= {Ỹi; fij × Id}

The reductions in the “two-tents” sub-configurations of (T.8) are given by
coordinate projections. Note that the following isomorphisms hold

X ∣◻ ≅ (S, p̂)
X ∣∎ ≅ (S, p+)
Y ∣◻ ≅ (S, p̂) ≅ X ∣◻
Y ∣∎ ≅ (S, q+)

Now we apply part (i) of Corollary 4.10 to obtain the desired inequality

k(X ,Y) ≤ (1 − α)k(X ∣◻,Y ∣◻) + α ⋅ k(X ∣∎,Y ∣∎)
+∑

i

[Ent(Λα∣Xi) + Ent(Λα∣ Yi)]

≤ 2 ⋅ [[G]] ⋅ (α ⋅ ln ∣S0∣ + Ent(Λα))

⊠
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T.7. Statements from the section “Extensions”.

Proposition 7.1. ↑ (Extension Lemma) Let k, l ∈ N, k ≤ l and let X ,X ′ ∈
Prob ⟨Λk⟩ be minimal full configurations. For every Y ∈ ExtlX there exists a
Y ′ ∈ ExtlX ′ such that

k(Y ′,Y) ≤ 2l−k k(X ′,X )
⊠

Proof: Denote by X0, X ′
0 the initial spaces in the configurations X , X ′, respec-

tively. Let Y0 be the initial space of the full sub-configuration of Y generated
by Yk+1, . . . , Yl. Let K0 be the initial space in the optimal coupling between X
and X ′

F = (X ′ ← K → X )
Recall that X0 could be considered as the Cartesian product of the underlying
sets of spaces generating X with some distribution on it. A similar view holds
for X ′

0, Y0 and K0. Thus we have in particular K0 =X ′
0 ×X0

Define a full minimal configuration Z ∈ Prob ⟨Λ2k+l⟩ by providing a distri-
bution on

X ′
0 ×X0 × Y 0 =K0 × Y 0

as explained in the Section 2.1.4. The distribution will be defined by

p(x′,x,y) ∶= pF(x′,x) ⋅ pY(x,y)/pX ′(x)
It is clear that Z contains both the coupling F and configuration Y as

restrictions. It also contains the minimal full configuration

Y ′ = ⟨X ′
1, . . . ,X

′
k, Yk+1, . . . , Yl⟩

and a coupling G between Y and Y ′.
For a pair of spaces A and B in Z we denote by AB the initial space of a

minimal fan in Z with the terminal spaces A and B. The two-fan of Λk+l-con-
figurations G can be considered as a Λk+l-configuration of two-fans

GIJ ∶= (XIYJ ←Ð GIJ Ð→X ′
IYJ)

Using this notation we estimate for I ⊂ {1, . . . , k} and J ⊂ {k + 1, . . . , l}
k(Y,Y ′) ≤ kdG =∑

I,J

kd(GIJ)

=∑
I,J

[2Ent(GIJ) − Ent(XIYJ) − Ent(X ′
IYJ)]

≤∑
I,J

[2Ent(XIX
′
I) − Ent(XI) − Ent(X ′

I)+

+ (2Ent(YJ ∣XIX
′
I) − Ent(YJ ∣XI) − Ent(YJ ∣X ′

I))]

≤ 2k−l∑
I

kd(FI)

≤ 2k−l kd(F) = 2k−l k(X ,X ′)
⊠
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Theorem 7.3. ↑ Let k ∈ N and X ,X ′ ∈ Prob ⟨Λk⟩. Then for all l ∈ N, the
Hausdorff distance between their stabilized relative entropic sets satisfies the
Lipschitz estimate

dH (Γl(X ),Γl(X ′)) ≤ 2l−k κ(X ,X ′)

In other words, the map Γl from minimal full configurations in Prob ⟨Λk⟩ to
Kk,l is 2l−k-Lipschitz. ⊠

Proof: Note that by Corollary 7.2, or more directly by Proposition 7.1, for
n ∈ N

1

n
dH (Γ○

l ((X )⊗n),Γ○
l ((X ′)⊗n)) ≤ 2l−k

1

n
k ((X )⊗n, (X ′)⊗n)

Hence, by the scaling properties of the Hausdorff distance

dH ( 1

n
Γ○
l ((X )⊗n), 1

n
Γ○
l ((X ′)⊗n)) ≤ 2l−k

1

n
k ((X )⊗n, (X ′)⊗n)

For convenience, we introduce the notation

Kn = Closure( 1

n
Γ○
l ((X )⊗n)) K = Γ○

l (X )

K ′
n = Closure( 1

n
Γ○
l ((X ′)⊗n)) K ′ = Γl(X ′)

Recall that by definition,

K = Closure(⋃
n∈N

Kn) K ′ = Closure(⋃
n∈N

K ′
n)

Note that by the superadditivity property of the unstabilized relative en-
tropic sets (see inclusion (7.1)) the sequences n↦Kn! and n↦K ′

n! are mono-
tonically increasing sequences of sets, and

n

⋃
i=1

Ki ⊂Kn!

n

⋃
i=1

K ′
i ⊂K ′

n!

Now select a large radius R > 0. Let BR(0) denote the ball of radius R

around the origin in R2{1,...,l} . By compactness and the definition of the stabi-
lized relative entropic set

dH(Kn! ∩BR(0),K ∩BR(0))→ 0

dH(K ′
n! ∩BR(0),K ′ ∩BR(0))→ 0

as n→∞. Therefore also

dH (K ∩BR(0),K ′ ∩BR(0)) ≤ 2l−k κ (X ,X ′)

Because this inequality holds for every R > 0, the estimate in the lemma
follows. ⊠
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T.8. Statements from the section “Mixtures”.

Lemma 8.1. ↑ Let G be a complete diagram category and X ,Y ∈ Prob ⟨G⟩.
Then

(i) κ(X ,X⊗n ⊕Λ1/n {●}) ≤ Ent(Λ1/n)
(ii) κ (X , (X ⊕Λ1/n {●})⊗n) ≤ n ⋅ Ent(Λ1/n)

(iii) κ ((X ⊗ Y)⊕Λ1/n {●} , (X ⊕Λ1/n {●})⊗ (Y ⊕Λ1/n {●})) ≤ 3Ent(Λ1/n)

(iv) κ ((X ⊕Λ1/n {●}), (Y ⊕Λ1/n {●})) ≤ 1

n
κ(X ,Y)

⊠
Proof: Recall that for the empirical reduction

q ∶ Λ⊗N
1/n →∆Λ1/n

the quantity N ⋅ q(λ)(∎) counts the number of black squares in the sequence
λ. It is a binomially distributed random variable with the mean N/n and
variance N

n (1 − 1
n).

The first claim is then proven by the following calculation

κ(X ,X⊗n ⊕Λ1/n {●})

= lim
N→∞

1

N
k (X⊗N , (X⊗n ⊕Λ1/n {●})⊗N)

= lim
N→∞

1

N
k
⎛
⎜
⎝
X⊗N , ⊕

λ∈Λ⊗N
1/n

X⊗n⋅N ⋅q(λ)(∎)
⎞
⎟
⎠

≤ Ent(Λ1/n) + lim
N→∞

1

N ∫
λ∈Λ⊗n

1/n

k(X⊗N ,X⊗(N ⋅n⋅q(λ)(∎)))dp(λ)

≤ Ent(Λ1/n) + ∣Ent∗(X )∣1 ⋅ lim
N→∞

n

N
⋅ ∫

λ∈Λ⊗N
1/n

∣N/n −N ⋅ q(λ)(∎)∣dp(λ)

≤ Ent(Λ1/n) + ∣Ent∗(X )∣1 ⋅ lim
N→∞

n

N
⋅
√
N ⋅ 1

n
(1 − 1

n
)

= Ent(Λ1/n)
The second claim is proven similarly and the third follows from the second

and the 1-Lipschitz property of the tensor product. Finally, the fourth follows
from Corollary 4.10(iv), by slicing both arguments along Λ1/n. ⊠
T.9. Statements from the section “Tropical Probability”.

Lemma T.3. Suppose the sequence {a(i)}i∈N0
of real numbers is bounded from

below and is quasi-subadditive, that is there is a constant C ∈ R such that for
any i, j ∈ N0 holds

a(i + j) ≤ a(i) + a(j) +C
Then the limit

lim
i→∞

1

i
a(i)



72 T. Technical proofs

exists and is finite. ⊠
Proof: The lemma is standard and is sometimes refered to as Fekete’s subad-
ditive lemma. We include a proof for the convenience of the reader. Assume
first that C = 0. Then the sequence satisfies a(k ⋅ i) ≤ k ⋅ a(i) and in particular
a(i) ≤ i ⋅ a(1). Let l ∶= lim inf 1

i a(i) ∈ [0,∞). Choose ε > 0. Then we can
find k ∈ N such that 1

ka(k) ≤ l + ε. For n ∈ N let q, r be the quotient and the
reminder of the integer division of n by k, that is

n = q ⋅ k + r, 0 ≤ r < k
Then

1

n
a(n) ≤ 1

n
(q ⋅ a(k) + a(r)) ≤ 1

q ⋅ k + r(q ⋅ a(k)) +
1

n
a(r) ≤ l + ε + ε = l + 2ε

The last inequality holds once n is sufficiently large, specifically when

n ≥ 1

ε
max
0≤i≤k

a(i)

Therefore

lim
i→∞

1

i
a(i) = l

Now if C > 0 then the sequence b(i) ∶= a(i) + C is subadditive and 1
i b(i)

converges by the previous argument. Thus we have

lim
i→∞

1

i
b(i) = lim

i→∞

1

i
(a(i) +C) = lim

i→∞

1

i
a(i)

⊠
Lemma 9.1. ↑ For a pair γ1, γ2 ∈ QLδ(Γ) the limit

lim
n→∞

1

n
δ (γ1(n), γ2(n))

exists and is finite. ⊠
Proof: Suppose γ1 and γ2 are two quasi-linear sequences of elements of Γ, then
for any i, j ∈ N0

δ (γ1(i + j),γ2(i + j))
≤ δ (γ1(i + j), γ1(i)⊗ γ1(j)) + δ (γ2(i + j), γ2(i)⊗ γ2(j))
+ δ (γ1(i)⊗ γ1(j), γ2(i)⊗ γ2(j))

≤ Defectδ(γ1) +Defectδ(γ2) + δ (γ1(i), γ2(i)) + δ (γ1(j), γ2(j))
Thus the sequence δ(γ1(i), γ2(i)) is quasi-subadditive and by Lemma T.3

the limit

lim
i→∞

1

i
δ (γ1(i), γ2(i))

exists and is finite. ⊠
Proposition 9.2. ↑ Suppose (Γ,⊗,δ) is a metric Abelian monoid such that
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(i) the distance function δ is homogeneous, that is for any γ1, γ2 ∈ Γ and
n ∈ N0

δ(γ⊗n1 , γ⊗n2 ) = n ⋅ δ(γ1, γ2)

(ii) (Γ,⊗,δ) has the uniformly bounded defect property.

Then the space (QLδ(Γ), δ̂) is complete. ⊠

Proof: Given a Cauchy sequence {γi} of elements in (QLδ(Γ), δ̂) we need
to find a limiting element ϕ ∈ QLδ(Γ). We will do that by a version of the
diagonal process, that is we define ϕ(n) to have value γi(n) for i sufficiently
large depending on n. The quasi-linearity of ϕ would follow from the fact that
for a fixed n and all sufficiently large i the set {γi(n)} is uniformly bounded.

Now we give the detailed argument. First we replace each element of the
sequence {γi} by an asymptotically equivalent element with defect bounded
by the constant C according to assumption (ii) of the lemma. We will still call
the new sequence {γi}. The Cauchy sequence {γi} satisfies

sup
i,j≥i

δ̂(γi, γj)→ 0 as i→∞

By assumption (ii) of the lemma for any n, k ∈ N0 holds

k ⋅ δ (γi(n), γj(n)) = δ (γi(n)⊗k, γj(n)⊗k)
≤ δ (γi(kn), γj(kn)) + 2k ⋅C

Dividing by k we obtain

δ(γi(n), γj(n)) ≤
1

k
δ(γi(kn), γj(kn)) + 2C

Now we pass to the limit sending k to infinity, while keeping n fixed:

δ(γi(n), γj(n)) ≤ n ⋅ δ̂(γi, γj) + 2C

Given n let i(n) be a number such that for any i, j ≥ i(n) holds

δ̂(γi, γj) ≤
1

n

We may assume that i(n) is nondecreasing as a function of n. Then for any
i, j, n ∈ N with i, j ≥ i(n) we have the following bound

(T.9) δ (γi(n), γj(n)) ≤ 2C + 1

Now we are ready to define the limiting sequence ϕ by setting

ϕ(n) ∶= γi(n)(n)
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First we verify that ϕ is quasi-linear

δ(ϕ(n +m), ϕ(n)⊗ ϕ(m)) = δ (γi(n+m)(n +m), γi(n)(n)⊗ γi(m)(m))
≤ δ (γi(n+m)(n +m), γi(n+m)(n)⊗ γi(n+m)(m))
+ δ (γi(n+m)(n)⊗ γi(n+m)(m), γi(n)(n)⊗ γi(m)(m))

≤ C + δ (γi(n+m)(n), γi(n)(n)) + δ (γi(n+m)(m), γi(m)(m))
≤ C + 2(2C + 1) = 5C + 2 =∶ C ′

The convergence of γi to ϕ is shown as follows. For n, k ∈ N let q, r ∈ N0 be
the quotient and the remainder of the division of n by k, that is n = q ⋅ k + r
and 0 ≤ r < k. Fix k ∈ N and let i ≥ i(k), then

δ̂(γi, ϕ) = lim
n→∞

1

n
δ (γi(n), ϕ(n))

= lim
n→∞

1

n
δ (γi(q ⋅ k + r), γi(n)(q ⋅ k + r))

≤ lim
n→∞

1

n
(q ⋅ δ (γi(k), γi(n)(k)) + δ (γi(r), γi(n)(r)) + 2qC ′ + 2C ′)

≤ lim
n→∞

1

n
((3q + 3) ⋅C ′)

= 3C ′

k

Since k ∈ N is arbitrary we have

lim
i→∞

δ̂(γi, ϕ) = 0

⊠

Proposition 9.3. ↑ Suppose (Γ,⊗,δ) has the ε-uniformly bounded defect prop-
erty for every ε > 0. Then Lδ(Γ) is dense in QLδ(Γ) ⊠

Proof: Let γ = {γ(n)} be a δ-quasi-linear sequence. We need to approximate it
with linear sequences. For i ∈ N, let γi be a sequence asymptotically equivalent
to γ and satisfying

Defectδ γi ≤ 1/i

as provided by the 1/i-uniformly bounded defect property.
Define a δ-linear sequence ηi by

ηi(n) ∶= γi(1)⊗n
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Then

δ̂(γ, ηi) = δ̂(γi, ηi)

= lim
n→∞

1

n
δ(γi(n), ηi(n))

= lim
n→∞

1

n
δ(γi(n), γi(1)⊗n)

≤ lim
n→∞

1

n
⋅ n ⋅Defectδ(γi)

≤ 1

i
Thus lim ηi = γ. ⊠
Lemma 9.4. ↑ The natural inclusion

ı2 ∶ (QLδ(Γ), δ̂)↪ (QLδ̂(Γ), ˆ̂δ)
is an isometric embedding. ⊠
Proof: Let γ1, γ2 ∈ QLδ(Γ) be two sequences of δ-quasi-linear sequences. We
have to show that the two numbers

δ̂(γ1, γ2) = lim
n→∞

1

n
δ (γ1(n), γ2(n))

and
ˆ̂
δ(γ1, γ2) = lim

n→∞

1

n
δ̂ (γ1(n), γ2(n))

are equal. Since shifts are non-expanding maps, we have δ̂ ≤ δ and it follows
immediately that

ˆ̂
δ(γ1, γ2) ≤ δ̂(γ1, γ2)

and we are left to show the opposite inequality. We will do it as follows. Fix
n > 0, then

δ̂(γ1, γ2) = lim
k→∞

1

kn
δ (γ1(kn), γ2(kn))

≤ lim
k→∞

1

kn
(δ (γ1(n)⊗k, γ2(n)⊗k) + k ⋅ (Defectδ(γ1) +Defectδ(γ2)))

≤ 1

n
δ̂ (γ1(n), γ2(n)) +

1

n
(Defectδ(γ1) +Defectδ(γ2))

Passing to the limit with respect to n gives required inequality

δ̂(γ1, γ2) ≤
ˆ̂
δ(γ1, γ2)

⊠
Lemma 9.5. ↑ The image of the isometric embedding

ı2 ∶ (QLδ(Γ), δ̂)↪ (QLδ̂(Γ), ˆ̂δ)

is dense in (QLδ̂(Γ), ˆ̂δ) ⊠
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Proof: Given an element γ = {γ(n)} in QLδ̂(Γ) we have to find a
ˆ̂
δ-approxi-

mating sequence γi = {γi(n)} in QLδ(Γ). Define

γi(n) ∶= γ(i)⊗⌊n
i
⌋

We have to show that each γi is δ-quasi-linear and that
ˆ̂
δ(γi, γ)

i→∞Ð→ 0. These
follow from

δ̂ (γi(m + n), γi(m)⊗ γi(n)) = δ̂ (γ(i)⊗⌊m+n
i

⌋, γ(i)⊗⌊m
i
⌋ ⊗ γ(i)⊗⌊n

i
⌋)

≤ δ̂ (γ(i),1)
and

ˆ̂
δ(γi, γ) = lim

n→∞

1

n
δ̂ (γi(n), γ(n))

= lim
n→∞

1

n
δ̂ (γ(i)⊗⌊n

i
⌋, γ(n))

≤ lim
n→∞

[ 1

n
δ̂ (γ (i⌊ni ⌋) , γ(n)) +

1

n
⌊ni ⌋Defectδ̂(γ)]

≤ lim
n→∞

[ 1

n
max

k=0,...,i−1
δ̂ (1, γ(k)) + i

n
Defectδ̂(γ)] +

1

i
Defectδ̂(γ)

≤ 1

i
Defectδ̂(γ)

It is worth noting, that the defect of γi need not to be uniformly bounded with
respect to i. ⊠
Lemma 9.6. ↑ For a complete diagram category, and for every ε > 0, the
space (Prob ⟨G⟩ ,⊗,κ) has the ε-uniformly bounded defect property, that is for
any κ-quasi-linear sequence X ∈ QLκ(Prob ⟨G⟩) there exists an asymptotically
equivalent sequence Y with defect not exceeding ε. ⊠

Proof: Let X = {X (i)} be a quasi-linear sequence and let ε > 0. We will find
an asymptotically equivalent sequence with defect less than ε.

Define a new sequence Y = {Y(i)} by

Y(i) ∶= [X (k ⋅ i)]⊕Λ1/k {●}
where the number k ∈ N will be chosen later. First we verify that the sequences
X and Y are asymptotically equivalent, that is

κ̂(X ,Y) ∶= lim
i→∞

1

i
κ (X (i),Y(i)) = 0

We estimate the asymptotic distance between individual members of sequences
X and Y using Lemma 8.1 as follows

κ(X (i),Y(i)) = κ (X (i),X (k ⋅ i)⊕Λ1/k {●} )
≤ κ (X (i),X (i)⊗k ⊕Λ1/k {●}) +κ (X (i)⊗k ⊕Λ1/k {●} ,X (k ⋅ i)⊕Λ1/k {●})
≤ Ent(Λ1/k) +Defectκ(X )
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Thus κ̂(X ,Y) = 0 and the two sequences are asymptotically equivalent.
Next we show that the sequence Y is κ-quasi-linear and evaluate its defect

using Lemma 8.1. Let i, j ∈ N, then

κ(Y(i + j),Y(i)⊗ Y(j))

= κ (X (k ⋅ i + k ⋅ j)⊕Λ1/k {●} , [X (k ⋅ i)⊕Λ1/k {●} ]⊗ [X (k ⋅ j)⊕Λ1/k {●} ])

≤ κ ([X (k ⋅ i)⊗X (k ⋅ j)]⊕Λ1/k{●} , [X (k ⋅ i)⊕Λ1/k{●} ]⊗ [X (k ⋅ j)⊕Λ1/k{●} ])

+ 1

k
Defect(X )

≤ 3Ent(Λ1/k) +
1

k
Defectκ(X )

Thus, by choosing k to be a solution to the inequality

3Ent(Λ1/k) +
1

k
Defectκ(X ) ≤ ε

we can make sure that
Defectκ(Y) ≤ ε

⊠
Lemma 9.12. ↑ Denote by Un a finite uniform probability space of cardinality
n, then

(i)

k(Un, Um) ≤ 2 ln 2 + ∣ln n

m
∣

(ii)
κ(Un, Um) = ∣Ent(Un) − Ent(Um)∣

⊠

Proof: Consider a two-fan Un
f

← Unm
g

→ Um. To construct specific reductions f
and g we identify Unm, Un and Um with the cyclic groups of the corresponding
order

Unm↔ Znm
Un↔ Zn
Um↔ Zm

Consider the short exact sequences

{0}Ð→ Zn
×m
Ð→ Znm

mod m

Ð→ Zm Ð→ {0}

{0}Ð→ Zm
×n
Ð→ Znm

mod n

Ð→ Zn Ð→ {0}

Choose for f the left splitting in the first exact sequence, and for g the left
splitting in the second exact sequence.
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Now that we constructed a two-fan Un
f

← Unm
g

→ Um, let Un ← Z → Um be
its minimal reduction. Now we estimate ∣Z ∣ ≤ n +m, which implies that

k(Un, Um) ≤ 2Ent(Z) − Ent(Un) − Ent(Um)
≤ 2 ln(n +m) − lnn − lnm

≤ 2 ln 2 + 2 ln max{n,m} − lnn − lnm

= 2 ln 2 + ∣ln n

m
∣

To prove the second assertion note that entropy is a k-1-Lipschitz function.
Therefore we have

∣Ent(Un) − Ent(Um)∣ ≤ k(Un, Um) ≤ ∣Ent(Un) − Ent(Um)∣ + 2 ln 2

Substituting in the definition of asymptotic Kolmogorov distance we obtain
the required equality. ⊠
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Predictive information and explorative behavior of autonomous robots. The Eu-
ropean Physical Journal B, 63(3):329–339, 2008.

[ABK+15] Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and
Shane Mansfield. Contextuality, cohomology and paradox. arXiv preprint
arXiv:1502.03097, 2015.

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry,
volume 33 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2001.

[BFL11] John C. Baez, Tobias Fritz, and Tom Leinster. A characterization of entropy in
terms of information loss. Entropy, 13(11):1945–1957, 2011.

[BRO+14] Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, Jürgen Jost, and Nihat Ay.
Quantifying unique information. Entropy, 16(4):2161–2183, 2014.

[Csi98] Imre Csiszár. The method of types. IEEE Trans. Inform. Theory, 44(6):2505–
2523, 1998. Information theory: 1948–1998.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley
Series in Telecommunications. John Wiley & Sons, Inc., New York, 1991. A
Wiley-Interscience Publication.

[DFZ11] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-shannon information
inequalities in four random variables. arXiv preprint arXiv:1104.3602, 2011.

[Fri09] Karl Friston. The free-energy principle: a rough guide to the brain? Trends in
cognitive sciences, 13(7):293–301, 2009.

[Gro12] Misha Gromov. In a search for a structure, part 1: On entropy. Preprint available
at http://www.ihes.fr/gromov, 2012.

[Mat07] Frantisek Matus. Infinitely many information inequalities. In Information Theory,
2007. ISIT 2007. IEEE International Symposium on, pages 41–44. IEEE, 2007.

[SA15] Bastian Steudel and Nihat Ay. Information-theoretic inference of common ances-
tors. Entropy, 17(4):2304–2327, 2015.

[Sin76] Ya. G. Sinai. Introduction to ergodic theory. Princeton University Press, Prince-
ton, N.J., 1976. Translated by V. Scheffer, Mathematical Notes, 18.

http://www. ihes. fr/gromov


10. Technical proofs 79

[VDP13] Sander G Van Dijk and Daniel Polani. Informational constraints-driven organiza-
tion in goal-directed behavior. Advances in Complex Systems, 16(02n03):1350016,
2013.

[Yeu12] Raymond W Yeung. A first course in information theory. Springer Science &
Business Media, 2012.


	0. Introduction
	0.1. Single probability spaces
	0.2. Configurations of probability spaces
	0.3. Information-Optimization problems and relative entropic sets
	0.4. The intrinsic Kolmogorov-Sinai distance
	0.5. Asymptotic Equipartition Property
	0.6. The article

	1. Category of probability spaces and configurations
	1.1. Probability spaces and reductions
	1.2. Configurations of probability spaces
	1.3. Entropy

	2. Configurations
	2.1. Examples of configurations
	2.2. Constant configurations
	2.3. Configurations of configurations
	2.4. Restrictions and extensions
	2.5. Adhesion
	2.6. Homogeneous configurations
	2.7. Conditioning
	2.8. Entropy

	3. Distributions and types
	3.1. Distributions
	3.2. Types for single probability spaces
	3.3. Types for complete configurations

	4. The Kolmogorov-Sinai distance
	4.1. Kolmogorov distance and asymptotic Kolmogorov distance
	4.2. Lipschitz property for operations
	4.3. The Slicing Lemma
	4.4. Local estimate

	5. Distance between types
	5.1. The lagging trick
	5.2. Distance between types

	6. Asymptotic equipartition property for configurations
	7. Extensions
	7.1. Information-Optimization and the relative entropic set
	7.2. The entropic set and the entropic cone
	7.3. Extension lemma

	8. Mixtures
	8.1. Definition and elementary properties
	8.2. The distance estimates

	9. Tropical probability spaces and their configurations
	9.1. Asymptotic cones of metric spaces.
	9.2. Tropical probability spaces and configurations
	9.3. Tropical probability spaces and tropical chains
	9.4. Stochastic processes

	T. Technical proofs
	T.2. Statements from the section ``Configurations''
	T.4. Statements from the section ``Kolmogorov distance''
	T.7. Statements from the section ``Extensions''
	T.8. Statements from the section ``Mixtures''
	T.9. Statements from the section ``Tropical Probability''

	References

