4,463 research outputs found

    Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs

    Full text link
    This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebraic principles that generalize the well-known Cooley-Tukey FFT and make the algorithms' derivations concise and transparent. Application to the 16 discrete cosine and sine transforms yields a large class of fast algorithms, many of which have not been found before.Comment: 31 pages, more information at http://www.ece.cmu.edu/~smar

    General-Purpose Parallel Simulator for Quantum Computing

    Full text link
    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, the simulation methods using parallel processing are required. We have developed a general-purpose simulator for quantum computing on the parallel computer (Sun, Enterprise4500). It can deal with up-to 30 qubits. We have performed Shor's factorization and Grover's database search by using the simulator, and we analyzed robustness of the corresponding quantum circuits in the presence of decoherence and operational errors. The corresponding results, statistics and analyses are presented.Comment: 15 pages, 15 figure

    Mixed-radix discrete cosine transform

    Get PDF
    Version of RecordPublishe

    Efficient prime factor algorithm and address generation techniques for the discrete cosine transform

    Get PDF
    2001-2002 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Large Fourier transforms never exactly realized by braiding conformal blocks

    Full text link
    Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set \{\U(2), \textrm{CNOT}\}, the discrete Fourier transforms FN=(ωij)N×N,i,j=0,1,...,N1,ω=e2πiNF_N=(\omega^{ij})_{N\times N},i,j=0,1,..., N-1, \omega=e^{\frac{2\pi i}{N}}, can be realized exactly by quantum circuits of size O(n2),n=logNO(n^2), n=\textrm{log}N, and so can the discrete sine/cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms FNF_N and the discrete sine/cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that approximation is unavoidable to implement the Fourier transforms by braiding conformal blocks

    Orthogonality Conditions for Non-Dyadic Wavelet Analysis

    Get PDF
    The conventional dyadic multiresolution analysis constructs a succession of frequency intervals in the form of ( π  / 2  j , π  / 2  j  - 1 ); j  = 1, 2, . . . ,  n of which the bandwidths are halved repeatedly in the descent from high frequencies to low frequencies. Whereas this scheme provides an excellent framework for encoding and transmitting signals with a high degree of data compression, it is less appropriate to the purposes of statistical data analysis.       A non-dyadic mixed-radix wavelet analysis is described that allows the wave bands to be defined more flexibly than in the case of a conventional dyadic analysis. The wavelets that form the basis vectors for the wave bands are derived from the Fourier transforms of a variety of functions that specify the frequency responses of the filters corresponding to the sequences of wavelet coefficients.Wavelets, Non-dyadic analysis, Fourier analysis
    corecore