186 research outputs found

    Generalizations of the sampling theorem: Seven decades after Nyquist

    Get PDF
    The sampling theorem is one of the most basic and fascinating topics in engineering sciences. The most well-known form is Shannon's uniform-sampling theorem for bandlimited signals. Extensions of this to bandpass signals and multiband signals, and to nonuniform sampling are also well-known. The connection between such extensions and the theory of filter banks in DSP has been well established. This paper presents some of the less known aspects of sampling, with special emphasis on non bandlimited signals, pointwise stability of reconstruction, and reconstruction from nonuniform samples. Applications in multiresolution computation and in digital spline interpolation are also reviewed

    Stability and Stabilization of the Wave Model.

    Get PDF
    The stability properties of 2-D systems are an important aspect of the design of acoustic, seismic, image and sonar signal processors. This research utilizes the Wave model format to transport 1-D stability techniques to the 2-D setting. The research studies stability through multistep growth bounds on the Wave state. The use of Lyapunov theory is also considered. The research considers also the problem of stabilizing a 2-D system using state and/or output information feedback to interior and/or boundary controls. Finally the problem of observer design for 2-D systems is considered, with the new stability criteria being used to assure observer/system convergence. New results based on symmetrizability are also discussed. The principal results are illustrated by a number of examples. The results are also interpreted in the context of other contemporary local state models

    An improved sufficient condition for absence of limit cycles in digital filters

    Get PDF
    It is known that if the state transition matrix A of a digital filter structure is such that D - A^{dagger}DA is positive definite for some diagonal matrix D of positive elements, then all zero-input limit cycles can be suppressed. This paper shows that positive semidefiniteness of D - A^{dagger}DA is in fact sufficient. As a result, it is now possible to explain the absence of limit cycles in Gray-Markel lattice structures based only on the state-space viewpoint

    Design of multidimensional digital filters by spectral transformations

    Get PDF
    Imperial Users onl

    <i>H</i><sub>2</sub> and mixed <i>H</i><sub>2</sub>/<i>H</i><sub>∞</sub> Stabilization and Disturbance Attenuation for Differential Linear Repetitive Processes

    Get PDF
    Repetitive processes are a distinct class of two-dimensional systems (i.e., information propagation in two independent directions) of both systems theoretic and applications interest. A systems theory for them cannot be obtained by direct extension of existing techniques from standard (termed 1-D here) or, in many cases, two-dimensional (2-D) systems theory. Here, we give new results towards the development of such a theory in H2 and mixed H2/H∞ settings. These results are for the sub-class of so-called differential linear repetitive processes and focus on the fundamental problems of stabilization and disturbance attenuation

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd

    Digital and Mixed Domain Hardware Reduction Algorithms and Implementations for Massive MIMO

    Get PDF
    Emerging 5G and 6G based wireless communications systems largely rely on multiple-input-multiple-output (MIMO) systems to reduce inherently extensive path losses, facilitate high data rates, and high spatial diversity. Massive MIMO systems used in mmWave and sub-THz applications consists of hundreds perhaps thousands of antenna elements at base stations. Digital beamforming techniques provide the highest flexibility and better degrees of freedom for phased antenna arrays as compared to its analog and hybrid alternatives but has the highest hardware complexity. Conventional digital beamformers at the receiver require a dedicated analog to digital converter (ADC) for every antenna element, leading to ADCs for elements. The number of ADCs is the key deterministic factor for the power consumption of an antenna array system. The digital hardware consists of fast Fourier transform (FFT) cores with a multiplier complexity of (N log2N) for an element system to generate multiple beams. It is required to reduce the mixed and digital hardware complexities in MIMO systems to reduce the cost and the power consumption, while maintaining high performance. The well-known concept has been in use for ADCs to achieve reduced complexities. An extension of the architecture to multi-dimensional domain is explored in this dissertation to implement a single port ADC to replace ADCs in an element system, using the correlation of received signals in the spatial domain. This concept has applications in conventional uniform linear arrays (ULAs) as well as in focal plane array (FPA) receivers. Our analysis has shown that sparsity in the spatio-temporal frequency domain can be exploited to reduce the number of ADCs from N to where . By using the limited field of view of practical antennas, multiple sub-arrays are combined without interferences to achieve a factor of K increment in the information carrying capacity of the ADC systems. Applications of this concept include ULAs and rectangular array systems. Experimental verifications were done for a element, 1.8 - 2.1 GHz wideband array system to sample using ADCs. This dissertation proposes that frequency division multiplexing (FDM) receiver outputs at an intermediate frequency (IF) can pack multiple (M) narrowband channels with a guard band to avoid interferences. The combined output is then sampled using a single wideband ADC and baseband channels are retrieved in the digital domain. Measurement results were obtained by employing a element, 28 GHz antenna array system to combine channels together to achieve a 75% reduction of ADC requirement. Implementation of FFT cores in the digital domain is not always exact because of the finite precision. Therefore, this dissertation explores the possibility of approximating the discrete Fourier transform (DFT) matrix to achieve reduced hardware complexities at an allowable cost of accuracy. A point approximate DFT (ADFT) core was implemented on digital hardware using radix-32 to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ASIC at 45-nm technology

    Finite-region boundedness and stabilization for 2D continuous-discrete systems in Roesser model

    Get PDF
    This paper investigates the finite-region boundedness (FRB) and stabilization problems for two-dimensional continuous-discrete linear Roesser models subject to two kinds of disturbances. For two-dimensional continuous-discrete system, we first put forward the concepts of finite-region stability and FRB. Then, by establishing special recursive formulas, sufficient conditions of FRB for two-dimensional continuous-discrete systems with two kinds of disturbances are formulated. Furthermore, we analyze the finite-region stabilization issues for the corresponding two-dimensional continuous-discrete systems and give generic sufficient conditions and sufficient conditions that can be verified by linear matrix inequalities for designing the state feedback controllers which ensure the closed-loop systems FRB. Finally, viable experimental results are demonstrated by illustrative examples
    corecore