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ABSTRACT OF THE DISSERTATION

DIGITAL AND MIXED DOMAIN HARDWARE COMPLEXITY REDUCTION

ALGORITHMS AND IMPLEMENTATIONS FOR MASSIVE MIMO

by

Najath Akram Mohomed

Florida International University, 2020

Miami, Florida

Professor Arjuna Madanayake, Major Professor

Emerging 5G- and 6G- based wireless communications systems largely rely on multiple-

input-multiple-output (MIMO) systems to reduce inherently extensive path losses

and to facilitate high data rates and high spatial diversity. Massive MIMO systems

used in mmWave and sub-THz applications consists of hundreds or perhaps thou-

sands of antenna elements at base stations. Digital beamforming techniques provide

the highest flexibility as well as better degrees of freedom for phased antenna arrays

as compared to its analog and hybrid alternatives but has the highest hardware

complexity.

Conventional digital beamformers at the receiver require a dedicated analog-to-

digital converter (ADC) for every antenna element, leading to N ADCs for N ele-

ments. The number of ADCs is the key factor determining the power consumption

of an antenna array system. The digital hardware consists of fast Fourier transform

(FFT) cores with a multiplier complexity of (N log2N) for a system of N elements

in order to generate multiple beams. It is required to reduce the mixed and digital

hardware complexities in MIMO systems to reduce the cost and the power consump-

tion, while maintaining high performance.

The well-known Σ−∆ concept has been in use for ADCs to achieve reduced com-

plexity. This dissertation explores an extension of the Σ−∆ architecture to multi-
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dimensional domain in order to implement a single N -port ADC to replace N ADCs

in an N−element system, using the correlation of received signals in the spatial do-

main. This concept has applications in conventional uniform linear arrays (ULAs)

as well as in focal plane array (FPA) receiver systems.

Our analysis has shown that sparsity in the spatio-temporal frequency domain can

be exploited to reduce the number of ADCs from N to N
K

where K ∈ Z+. By using

the limited field of view of practical antennas, multiple sub-arrays are combined

without interferences to achieve a factor of K increment in the information carrying

capacity of the N
K

-ADC systems. Applications of this concept include ULAs and

rectangular array systems. Experimental verifications were done for a 16-element,

1.8 - 2.1 GHz wideband array system to sample using 8−ADCs.

This dissertation proposes that frequency division multiplexing (FDM) receiver out-

puts at an intermediate frequency (IF) can pack multiple (M) narrowband channels

with a guard band to avoid interference. The combined output is then sampled

using a single wideband ADC and baseband channels are retrieved in the digital

domain. Measurement results were obtained by employing a four-element, 28 GHz

antenna array system that combines M = 4 channels to achieve a 75% reduction of

ADC requirement.

Implementation of FFT cores in the digital domain is not always exact because the

level of precision in this domain is finite. Therefore, this dissertation explores the

possibility of approximating the discrete Fourier transform (DFT) matrix to achieve

reduced hardware complexities at an allowable cost of accuracy. A 1024-point ap-

proximate DFT (ADFT) core was implemented on digital hardware using Radix−32

to achieve savings in cost, size, weight and power (C-SWaP) and synthesized for ap-

plication specific integrated circuits (ASIC) at 45-nm technology.
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CHAPTER 1

INTRODUCTION

Advances in radio frequency (RF) technology have led to a high rate of adoption

of smartphones and the maturity of corresponding applications. The prolific growth

in wireless traffic has enabled zeta bytes of data transmission every year, leading to

a requirement for high-speed data communication [1, 2]. To date, long term evolu-

tion (LTE), small cell densification and increased offloading were used to handle the

high data demand [3]. Most of the existing cellular communication schemes operate

in 700 MHz to 2.4-GHz spectrum, with approximately a 20 MHz channel used by

each customer. Since the early 2000s, indoor communication often uses 2.4-GHz and

5-GHz bands for WiFi [4]. The high density of multimedia devices for video and

virtual reality applications, multimedia streaming, gaming, wireless docking, and

enterprise applications that require high speed and data-intensive connections over

wireless local area networks (WLAN) has lead to high data traffic and congestion

over indoor networks [5]. Nevertheless, there must be an equal growth of commu-

nication bandwidth and signal power to accommodate the exponential growth of

wireless capacity [6]. The Shannon capacity theorem [7] states that the capacity C

is

C = B log2(1 + γ),

where B is the channel bandwidth and γ is the signal-to-noise ratio (SNR). Thus,

in referencing this equation, it is established that for SNR to remain constant, there

must be an exponential growth of bandwidth to enable the growth of capacity.

Since lower frequency bands limit the bandwidth availability, it is obvious that

communication should happen in a high-frequency spectrum with higher bandwidth

to serve the extensive bandwidth requirement. The U.S. Federal communications

commission (FCC) has allocated frequency bands between 9 kHz and 275 GHz
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Figure 1.1: The utilization of available radio frequency spectrum.

for use. Since most ground communication uses lower bands, uncongested higher

frequency bands are available for use. These higher frequency bands are open for

wideband, high-capacity wireless communications, pulse radar, imaging, electronic

warfare, pulsar science, and radio astronomy [5,8].

Striving for higher carrier frequencies obviously reduces the wavelength. The

term “millimeter wave” (mmWave) derives from the wavelength of radio signals

on frequencies between 30-GHz and 300-GHz, which essentially ranges between 1

and 10 millimeters [9]. Due to the use of much higher frequencies in the gigahertz

range as carrier frequencies, mmWave communication has a much more abundant

spectrum resource as shown in Fig. 1.1. This makes mmWaves quite alluring under

the conditions of the intensive spectrum [10].

Currently, the uncongested 60-GHz band is being used for wireless Gigabit Al-

liance (WiGig), which includes the current IEEE 802.11ad standard and the up-

coming IEEE 802.11ay standard [11–15]. This band is unlicensed in the US and

other countries with a vast bandwidth (57 – 64-GHz). Satellite communication uses

the 39.5-GHz band and the Wi-Fi standard IEEE 802.11ad operates in the 60-GHz

(V-band) spectrum to achieve data transfer rates as high as 7 Gbit/s. However,

the increasing demand for spectrum for communication is leading to the use of the
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previously unused 28-GHz and 73-GHz bands as an extension for fifth-generation

(5G) communication.

That being said, frequencies ranging from 100-GHz to 3 THz contain promising

bands for next generation (6G) wireless communication systems due to the vast

availability of unexplored spectrum. Undoubtedly, such high frequency communi-

cation is associated with a number of implementation issues related to propagation

and processing that need to be addressed [16].

1.1 Challenges Associated with mmWave Communication

Let us first consider a single element transmission antenna stationed at a distance

of R from the receiver to begin with. The Friis free space path loss equation [17]

shows the received power as,

Pr
Pt

=
GtGr

L

(
λ

4πR

)2

(1.1)
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where,

Pr = Received power

Pt = Transmitted power

Gr = Receiver antenna gain

Gt = Transmitter antenna gain

λ = Carrier wavelength

R = Distance between Tx and Rx antenna

L = Loss factor(≥ 1).

According to the Friis equation, it is necessary for the communication to happen

at a lower frequency (higher λ) to increase the received power. Since this is not

an option for mmWave and beyond communication, the only way to increase the

received power is by increasing Gt and Gr. However, as the aperture of a lossless,

unity gain, isotropic antenna (Aiso) is Aiso = λ2

4π
, antenna gain has the following

relationship with its effective aperture Ae and the frequency of operation [17,18].

G =
Ae
Aiso

=
4πAe
λ2

(1.2)

Equation (1.2) shows that the antenna gain as well as the absolute physical

size of an antenna reduces as the frequency of operation increases. On a positive

note, this phenomenon makes it possible to pack multiple antennas into a smaller

area. Therefore, systems using mmWave and beyond tend to compensate for high

path loss by introducing multiple antenna elements without increasing the total

physical size of the array [5, 16]. For example, consider a 2.4-GHz patch antenna

would have a wavelength of λ = 12.5 cm, which would yield an isotropic effective

aperture corresponding to λ2 ≈ 39 cm2. For a mmWave antenna element at 30-

GHz, the wavelength λ = 1 cm and the isotropic effective aperture is proportional
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to λ2 = 1 cm2. Considering an inter-element spacing of λ
2
, approximately 39 times

more antennas at 28-GHz could be accommodated in the same area occupied by a

2.4-GHz antenna array.

Use of multiple antennas introduces spatial sampling to high-frequency RF sys-

tems. As a result, terms such as beamforming and multi-dimensional (MD) signal

processing are related to mmWave communication. We will discuss this further in

the next few chapters.

Diffraction occurs when a wave passes through a slit that is comparable in size

to its wavelength. On one hand, at higher frequencies (say 10-GHz and beyond)

diffraction is not the dominant propagation mechanism for non-line-of-sight links,

but reflection and scattering are. On the other hand, the penetration loss from the

propagation through barriers (such as walls) increases with the frequency. There-

fore, properly directed, narrow beams are required to reduce path loss in mmWave

systems. Figure 1.3 shows that the beam width of a uniform linear array (ULA)

narrows as the number of antenna elements increases.

The thermal noise power N0 associated with RF communication is defined as,

N0 = kTcB (1.3)

where k is the Boltsman’s constant, Tc is the temperature and B is the bandwidth.

Since mmWave systems have a considerably higher bandwidth than microwave, the

high noise bandwidth causes more noise power. To have a better SNR at the re-

ceiver, it is required to increase the transmitter gain GTx. This can be achieved by

using multiple antenna elements and by using constructive interference of their sig-

nals at the transmitter to form stronger, highly directional beams. Multiple antenna

elements at the receiver can increase the aperture size of the antenna and enable

spatial filtering capabilities to effectively apply the gain towards the signal of inter-
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Figure 1.3: Antenna beams for (a) 4–element, (b) 8–element, (c) 16–element, and
(d) 32–element ULAs.

est. MIMO systems with high gain–adaptive beamforming use this phenomenon to

increase the coverage and to reduce interference.

In practical realizations of mmWave mobile communication systems, an isotropic

radiator or even wide beams allow base stations (BS) to cover multiple user equip-

ment (UE) in a single transmission. However, this is more difficult for narrow beams

unless multiple UEs are located in very close proximity to the BS. Although it may

seem insurmountable, this problem can be solved by managing beams to cover mul-

tiple devices scattered in the space and by using an adaptive control mechanism

depending on the situation. Such solutions are often referred to as “beam manage-

ment,” and digital beamforming plays a vital role in this [19].

Owing to the rapid progress in the field of complementary metal-oxide-semiconductor

(CMOS) RF integrated circuits, [20, 21] beamforming based large-scale mmWave

antenna arrays are widely exploited to extend the coverage of mmWave networks

[22, 23]. Interference in mmWave communication can be substantially cut down by

using highly directional beams, which renders noise-limited operation rather than

interference-limited operation in many cases [24].
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1.2 Motivation

Improvements of wireless applications in the fields of communication, radar, and

microwave/ mmWave imaging can be achieved by moving to wideband waveforms

such as pulse waveforms and code-division multiple-access waveforms. System band-

widths continue to increase, which makes wideband data conversion at each antenna

receiver increasingly challenging—especially for large arrays containing hundreds of

elements [16, 25, 26]. There is a push for waveform-agnostic software-defined radios

(SDRs) that can operate over a wideband (say 100 MHz–10-GHz) using a single

RF front-end and a digital signal processing (DSP) back-end. SDRs that are capa-

ble of operating over such swaths of bandwidths require analog-to-digital converters

(ADCs) and digital-to-analog converters (DACs) that can support sample rates re-

ferred to as the Nyquist rate [7] that are greater than twice the desired bandwidth of

the waveform for alias-free sampling, which is explained in Nyquist–Shannon sam-

pling theorem. For example, a waveform-agnostic SDR or a radar system operating

over 10-GHz of bandwidth requires ADCs/DACs that support sampling at rates

greater than 20 GS/s.

Achieving high-precision ADC/DAC circuit realizations has become a challenge

with high-speed applications, and a great deal of research has been conducted on the

topic [27, 28]. Despite much progress, the ADC/DAC requirement is always a ma-

jor bottleneck in wideband systems with a large number of channels/antennas. For

example, in order to provide high-capacity channels, an emerging 5G mmWave wire-

less system may require base stations that operate on the massive-MIMO principle,

which combines traditional beamforming theory with MIMO theory [29,30]. These

emerging massive MIMO 5G systems would have hundreds (perhaps thousands) of

antennas [31–33] operating as antenna arrays. Each of these antenna elements re-
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Figure 1.4: Phased array receiver system architecture.

quires a dedicated RF chain that consists of ADC/DAC circuits, LNAs and mixers

for processing, as shown in Fig. 1.4. Therefore, for a system of N elements, there

would be a requirement for N ADC/DAC circuits.

In certain MIMO applications, antenna arrays are required to process two po-

larizations (vertical and horizontal) [31–33], which are often referred to as dual-

polarized arrays. Needs for dual-polarized arrays exist in wideband radio-astronomy

aperture arrays, where scientific experiments require the computation of polari-

metric quantities [34, 35]. Also, military/weather radar systems operating over

wide bandwidths require cross-polarized elements that are orthogonal in a spatial

plane to receive the horizontal and vertical components of the electric field com-

ponents [36–38]. In fact, dual-polarized antenna arrays supporting a plethora of

elements that are vital for wireless communications, radio astronomy, radar, and

microwave imaging [39–45]. The traditional approach of a dedicated data converter

for the horizontal and vertical field components necessitate a doubling of the number

of ADC/DACs for a given size of antenna array [46, 47]. For an N -element system

with two polarizations, the requirement would be for 2N high-speed ADC/DAC

circuits at intermediate frequency (IF), and 4N ADC/DACs at baseband.
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1.3 Contributions and the Outline of the Dissertation

In most of the systems that achieve RF beams, the C-SWaP is dominated by the

ADCs. Therefore, the requirement for a dedicated ADC for every RF chain (each po-

larization) is a major bottleneck in the reduction of hardware complexity in RF sys-

tems with larger bandwidths and higher frequencies.Our research on the reduction

of hardware complexity in phased array RF receiver systems focuses two strategies.

1. Reduction of mixed domain/ADC hardware utilization by exploiting MD spec-

tral properties and

2. Reduction of digital hardware complexity (of digital beamformers) using ADFT.

Phased antenna arrays can be identified to have both analog and digital ap-

proaches for achieving RF beams [48–53]. Since the use of multiple antenna elements

sample the spacial domain, a spatio-temporal analysis of the electromagnetic (EM)

characteristics of propagating waves is required to better comprehend the work de-

scribed in the subsequent chapters. Therefore, Chapter 2 presents a review of MD

signal processing, space-time filters, beamforming architectures and MIMO systems.

1.3.1 Reduction of Mixed Domain/ADC Complexity

In this research, we followed three different approaches to reduce the ADC complex-

ity in RF receiver systems.

Approach 1: The Σ − ∆ architecture is a widely used, well known architecture

used in realizing low noise ADCs by shaping the quantization noise outside from

the signal bandwidth. A conventional Σ−∆ ADC consists of a oversampling block

followed by a feedback loop. The oversampling block reduces the noise power density

function (PDF) by spreading the quantization noise over a wider bandwidth. The
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Σ − ∆ loop consists of a comparator and an integrator to shape the quantization

noise out from the signal bandwidth.

In this approach, the well known Σ−∆ architecture is being explored to reduce

the hardware complexity in ADCs while maintaining the effective number of bits

(ENOB) by replacing multi-bit quantizer with a single bit quantizer.

In Chapter 3, we investigate the possibility of extending the concept of Σ − ∆

to phased array receiver systems by exploiting multi-dimensional signal properties

described in chapter 2 in which N− ADCs required in N−element phased array

systems are replaced by a single multiport ADC. In the conventional approach, a

spatio-temporal l extension of Σ−∆ ADCs may use oversampling before the Σ−∆

modulator. Chapter 3, presents a discussion of the possibility of extending the

Σ − ∆ loop for ULA receiver systems by eliminating the requirement for spatial

oversampling. This concept uses the sparsity in the MD frequency domain for a

signal with a coherent direction of arrival (DoA).

Focal plane array (FPA) receiver systems that are widely used in satellite and

radar communication often consist of rectangular antenna arrays placed at the focal

plane of a reflective dish. The MD representation of a received signal for such an

array does not have the line spaced sparsity observed in LNAs. The MD spectrum

for such a FPA dish is confined to a frustum for a band-limited signal, and the

half-angle of the extended cone of the frustum depends on the focal length and the

diameter of the dish reflector. Oversampling in the spatial domain can narrow down

the frustum-shaped spectrum, which allows the application of Σ − ∆ architecture

in the MD domain. The idea of extending the N−port ADC idea for FPA receivers

is discussed in Chapter 4.

Approach 2: MD spectral properties discussed in Chapter2 (Section 2.5) shows

that the region of support (RoS) of a signal captured by a ULA takes the form of a
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line in the spatio-temporal frequency domain. Such sparsity allows the use of spatial

multiplexing schemes in the MD frequency domain. Finite element patterns of ULAs

constrain the field of view (FoV) for the antenna array, which results in a confined

range for the possible RoS. A conventional fully digital beamformer would use a

single dedicated ADC per RF channel and would sample the entire MD spectrum

without considering the sparsity.

Chapter 5 presents a discussion of the possibility of exploiting sparsity properties

and correlations of spatial signals in the MD spatio-temporal spectrum to multiplex

multiple RF channels without interference. This approach is explored to divide a

ULA into K subarrays and allow the use of a single ADC per sub-array, such that

the ADC complexity could be reduced by (1− 1
K

)× 100% in the array system.

Approach 3: Conventional communication systems use multiplexing schemes to

achieve gains by serving multiple users. A perfect multiplexing scheme may combine

two or more streams of information without causing interference and allows the

perfect reconstruction of the original information at the destination. Even though

traditional approaches have explored multiplexing schemes with the intention of

increasing the number of users, the same concept can be extended to achieve reduced

hardware resource consumption in phased antenna array systems.

Advanced ADCs used in RF circuits may consume high power and facilitate high

data rates. The use of such high-speed ADCs in MIMO applications with relatively

narrowband channels may waste the available bandwidths but require more ADCs,

as one dedicated ADC is required per channel. Multiplexing methods can be used

at phased antenna array receivers to reduce the number of ADC channels required

for sampling by combining multiple RF channels. In Chapter 6, we explore the

possibility of using a FDM-based approach to save over 75% of ADC hardware

resources in a Xilinx RFSoC ZCU1285 field programmable gate array (FPGA).
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1.3.2 Reduction of Digital Hardware Complexity

Beamforming and MIMO systems use digital DFT cores to generate multiple orthog-

onal beams. The FFT can reduce the computational complexity of an N -point DFT

from N2 to O(N log2N). Since the circuit complexity of a digital design mainly de-

pends on the number of multiplications, it is preferred to have the lowest possible

number of digital multipliers. Even though the use of FFT algorithms can reduce the

number of multipliers, there exists a lower bound for multiplier complexity (depends

on N), which increases the complexity for large N .

However, it is possible to implement an ADFT core to replace the FFT core;

this results in an extensive reduction of hardware at a cost of accuracy. However,

the loss of accuracy is unlikely to have significant impacts on applications such as

digital RF beamforming, where the performance in terms of data rate is dominated

by other factors, such as the mutual coupling between elements, mismatches of

components, and non-linearities in the RF receiver electronics. In Chapter 7 the

digital implementation of a 1024−point ADFT digital core is discussed.

Finally, Chapter 8 summarizes the work and presents the insights that can be

gleaned from the conducted research.

1.4 Scientific Collaborations

The research on the MD extension of Σ−∆ architecture in developing N -port ADCs

discussed in Chapter 3 were done in collaboration with Dr. Soumyajit Mandal from

University of Florida. His expertise in analog integrated circuit (IC) design lead

to the fabrication of ASICs to implement N -port ADCs, and several papers were

published in collaboration with the team at the University of Florida. As a part

of the research, a method was proposed to eliminate the requirement of spatial
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oversampling in Σ−∆ architecture for sparse signals in the MD spectral domain, and

results were presented in IEEE 10th International Workshop on Multidimensional

(nD) Systems [28]. This research was extended for focal plane array (FPA) receivers;

the results were presented in the 2018 IEEE International Symposium on Circuits

and Systems (ISCAS) [27].

Dr. Leonid Belostotski, who is also a specialist in various aspects of RF and mm-

wave circuits and systems and mixed-signal circuits and who works at the University

of Calgary, Canada, collaborated on the work described in Chapters 3 and 5. This

collaboration lead to several presentations at number of conferences.

The FDM research work described in Chapter 6 was performed in collaboration

with Dr. Theodore S. Rappaport and Dr. Thomas L. Marzetta at NYU Wireless

in New York University. Dr. Rappaport is the founding director of NYU Wireless

and the author of one of the founding documents on 5G mmWave technology. Dr.

Marzetta originated massive MIMO, which is one of the cornerstones of 5G wireless

technology and is the application that is the main focus of this dissertation. Their

expertise in the fields of massive MIMO and 5G mmWave has helped in evaluat-

ing the practical relevance of this research. This collaboration has lead to several

publications as well as a patent application.

Dr. Renato J. Cintra at Federal University of Pernambuco (UPFE) in Brazil and

his student, Dr. Diego Coelho at the University of Calgary, collaborated with us

on the ADFT work presented in Chapter 7. Digitally implemented ADFT matrices

were derived and provided by Dr. Cintra and his team. Results of this collaboration

were published in a DARPA report [54] and an IEEE Access paper [55].
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CHAPTER 2

MULTI-DIMENSIONAL SIGNAL PROPERTIES

This chapter contains a review on the implementation of mmWave MIMO sys-

tems, spatial diversity, MD signal processing theories and beamforming. Although

mmWave systems have several advantages over microwave systems (4G LTE and

before) because of the high carrier frequency, they suffer from certain issues due

to the same reason. Table 2.1 summarizes the main differences between microwave

communication and mmWave communication in wireless communication systems.

Table 2.1: Comparison of operational characteristics of mmWave and microwave
communication systems [56].

Microwave
WiFi or Cellular

mmWave

WiFi 5G Cellular

Freq. of operation
900 MHz,

1.8 GHz or 2.4 GHz
60 GHz unlicensed

28 GHz,
38 GHz or 71 GHz

Bandwidth 1.4 MHz to 160 MHz 2.16∼GHz 100 MHz to 2 GHz

# Antennas at BS or AP 1 to 8 16 to 32 64 to 256

# Antennas at MS 1 to 2 16 to 32 4 to 16

Delay spread 100 ns to 2 µs 5 ns to 47 ns 12 ns to 40 ns

No. of clusters 4 to 9 < 4 < 4

Orientation sensitivity low medium high

Small-scale fading Rayleigh Nakagami
non-fading

or Nakagami

Large-scale fading
distant dependent

+ shadowing
distant dependent

+ shadowing
distant dependent

+ blockage

Path loss exponent 2 to 4
2 LOS,

2.5 to 5 NLOS
2 LOS,

3.5 to 4.5 NLOS

Penetration loss some varies possibly high

Channel sparsity less more more

Spatial correlation less more more
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2.1 mmWave MIMO

The MIMO communication paradigm–which employs multiple antennas at the trans-

mitter and multiple antennas at the receiver–has been in use for more than two

decades. Although extensive research has been conducted on MIMO, different ap-

proaches at the transmitter and the receiver are still being explored to achieve higher

performance, high data rates and greater reliability by changing the algorithms and

system design.

As a result of the vast growth of the frequency of operation, mmWave MIMO

systems differ from their low-frequency implementations by the power consumption

of ADCs and the hardware complexity of the RF chains. Early mmWave commercial

systems IEEE 802.11ad/WiGig and wireless HD have used the analog beamforming

model shown in Fig. 2.1 to reduce the RF chain and ADC/DAC complexity. In

this approach, the baseband radio at the transmitter sees a single RF chain and a

DAC. The analog beamformer takes the same signal and shifts its phases by using

configurable time delays to steer the antenna beam to a desired direction [57–59].

In this scheme, called a single-stream MIMO communication, spatial multiplexing

gains could not be obtained since it is difficult to extend this approach to multiple

streams/multiple users.
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Figure 2.1: Analog beamforming model consists of low noise amplifiers (LNAs),
power amplifiers (PAs), low pass filters (LPFs), and local oscillators (LOs) .
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Figure 2.2: Hybrid beamforming model consisting of analog and beamforming com-
ponents.

This limitation can be successfully overcome by using hybrid analog/digital pre-

coding [60,61], which enables spatial multiplexing and multi-user(MU)-MIMO. Dig-

ital beamforming, which can correct for analog limitations, and its implementations

are discussed further in the subsequent chapters. Even though digital beamformers

provide high flexibility and more degrees of freedom as compared to their analog

counterparts, as they require a dedicated RF chain and an ADC for each antenna

element. This extensive resource consumption can be handled while also providing

similar performance through the implementation of hybrid beamformers, which have

both analog and digital components. A typical hybrid beamformer uses RF phase-

shifters, true time delays (TTDs) or lenses at the level-1 analog beamforming and

uses baseband digital processing at the level-2 digital beamforming. The baseband

precoder in a hybrid transmitter side beamformer shown in Fig. 2.2 provides multi-

ple output streams that require a dedicated RF chain and a DAC that is connected

to analog beamformers. These analog beamformers could be a set of phase shifters

or even a lens that can be used to create multiple physical beams. This process is

referred to as second order spatial multiplexing and can be used at the transmitter

and/or the receiver to support multiple data streams for a single user or to support

multiple users.
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Hybrid beamformers at the receiver could be complex from a wireless point

of view, as the channel state information (CSI) that is required to configure the

analog beamforming component will not be available until the digital beamformer.

However, considering the benefits of hybrid beamforming, this limitation can be

handled by using coarse phase shifters at the analog beamformer and using fine

tuning in the digital domain [62].

Use of multiple antenna elements in MIMO communication gives rise to three

main terms: antenna diversity, spatial multiplexing, and beamforming. The next

section discusses antenna diversity from the perspective of wireless technology and

how it can be used to facilitate MU communication.

2.2 Antenna Diversity

The use of multiple antennas to improve the quality and reliability of a wireless

link is known as antenna diversity. Diversity order L is defined as the number of

independent communication paths in a multi-antenna system. For comprehension

purposes, we will discuss antenna diversity for a receiver and transmitter separately

[63].

2.2.1 Receiver

For a system with a single-transmitter and two receiver antennas, the received sym-

bols at each of the antenna elements (y1, y2) for a transmitted symbol x can be

written as,

y1 = h1x+ w1 and,

y2 = h2x+ w2.
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Here, a coherent detection system with known CSI is assumed, where h1, h2 are

channel coefficients for independent fading and where w1, w2 indicate additive white

Gaussian noise (AWGN). The vector relationship between the received vector, the

channel and the Gaussian noise is given in Eqn. (2.1)

y =



y1

y2


 ,h =



h1

h2


 ,w =



w1

w2




y = hx+ w (2.1)

As the receiver is aware of the channel vector h for a coherent detection, the symbol

is detected by following Eqn. (2.2).

h∗

‖h‖y =
h∗

‖h‖hx+
h∗

‖h‖w (2.2)

ỹ = ‖h‖x+ w’ (2.3)

The term ‖h‖ is the L2 norm of the channel vector, where ‖h‖2 = h∗h and h∗ is the

conjugate transpose vector of h. This method is often referred tp as maximum-ratio

combining (MRC) method. The vector ỹ is the detected symbol, and w′ is the

random noise vector normalized by the channel norm. Since the channel norm is a

real constant by definition, variables in the normalized noise vector continue to have

an independent and identical distribution (IID). The error probability for an MRC

at a given SNR can be derived as Pe = Q(
√

2‖h‖2SNR). Here, the Q-function is

the tail distribution function of the standard normal distribution [63]. For a given

SNR,

‖h‖2 = h2
1 + h2

2 + ...+ h2
L

‖h‖2 · SNR = L · SNR · (h2
1 + h2

2 + ...+ h2
L)

L
(2.4)
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Since the mathematical process in this equation is equivalent to averaging out the

channel coefficient over multiple independent paths, small scale-fading is negligible

for large antenna arrays. This phenomenon has wide applications in massive-MIMO

systems and is often referred to as “channel hardening” [64].

2.2.2 Transmitter

For a system with two transmitter antennas and a single receiver antenna, trans-

mission by two antennas can either be sent simultaneously or in two different time

slots. The spatial diversity order is 1 for simultaneous transmission, as there is only

one communication path available when both antennas are transmitting the same

symbol. Therefore, the channel variables for two transmitter antennas are added

together in order to provide a combined channel variable for the receiver antenna.

The received signal for this scenario can be written as

y = (h1 + h2)x+ w. (2.5)

Repetitive transmission of the same symbol in two different time slots, as shown in

Eqn. (2.6), increases the diversity to an order of 2 because of the availability of two

communication paths. However, considering that the antennas will dissipate the

same amount of power in both the scenarios, the transmission power observed at

the receiver is halved for this case. Another issue associated with this transmission

scenario is the reduction of the data rate, as the first antenna is idle in the second

time slot and the second antenna is idle in the first time slot.

slot 1→ y1 = h1x+ w1

slot 2→ y2 = h2x+ w2 (2.6)
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Therefore, simultaneous transmission is required from both the antennas to gain the

highest data rate and spatial diversity. A vast amount of research had been carried

out in this area under the rubric of space-time coding. The simplest, and yet one

of the most elegant, space-time code is widely known as the Alamouti scheme; it is

a general code that is used for the transmission to simultaneously achieve spatial

and temporal diversity [65]. The Alamouti scheme (defined for two transmitter

antennas) achieves this by transmitting two symbols in two adjacent time slots

while eliminating idle slots. These antenna diversity techniques can be utilized to

improve SNR and to extend the link budget in mmWave MIMO systems.

The majority of 5G and 6G applications use MIMO to serve multiple users while

maintaining high capacity. To accomplish this, mmWave and sub-THz communica-

tion use more than a few antennas and facilitate massive MIMO. Since most of the

research work discussed in this dissertation has applications in massive MIMO, the

next section introduces the basic concepts of massive MIMO.

2.3 Massive MIMO

Massive MIMO can be interpreted as a spatial multiplexing scheme pushed to a wide

extreme that is able to serve all users while employing the same time/frequency re-

sources. Essentially a MIMO system has many physically small, low-power antennas

to provide aggressive spatial multiplexing. The key point of massive MIMO is that

it uses measured channel characteristics as opposed to using assumed channel char-

acteristics. With measured channel information, the beamforming gain can grow

linearly with the number of antennas despite the noisiness of the channel [66].

MIMO technology is categorized into three main categories: point-to-point MIMO,

MU-MIMO, and massive MIMO. The following sections briefly discuss the first two
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Figure 2.3: Overview of MIMO architecture: (a) point-to-point MIMO, (b) MU-
MIMO, and (c) massive MIMO.

categories and how they pave the way to massive MIMO. In this discussion, com-

munication links between base stations that are assumed to have M antennas and

user equipment having K antennas are considered.

Point-to-Point MIMO

Point-to-point MIMO is the simplest case of using multiple antennas at the trans-

mitter as well as at the receiver to form a point-to-point communication link by

increasing the reliability and capacity of a channel for downlink, as illustrated in

Fig. 2.3 (a). In this case, CSI is available at the receiver end for detection purposes.

The time required to train a point-to-point MIMO increases with the system

size–consequently, it is not scalable, and multiplexing gains at cell edges are disap-

pointingly low because of high path loss. In addition, line-of-sight (LOS) conditions

are stressing for point-to-point MIMO, and the assumption of min(M,K) indepen-

dent schemes is practically not the case for compact antenna arrays.

MU-MIMO

MU-MIMO splits the multi-antenna user into multiple single-antenna users without

decreasing the sum-throughput for downlink as shown in Fig. 2.3 (b). For this

case, CSI is available at the receiver as well as at the transmitter. Unlike the
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terminals in point-to-point MIMO, user terminals in MU-MIMO require only a single

antenna. As long as the transmitter antenna resolution is high enough and the gain

is sufficient, use of the single antenna at the receiver does not cause any issues for

clear LOS cases, as multiple antennas in the base station can resolve different users

and form a beam towards the corresponding receiver.

The uplink and downlink sum spectral efficiencies for MU-MIMO in IID, Rayleigh

fading channels are given by Eqn. (2.7) and Eqn. (2.8) respectively,

cul = log2 |IM + ρulHH∗| (2.7)

cdl = max
νk≥0∑K
k=1 νk≤1

log2 |IM + ρdlHDνH
∗| (2.8)

where ν = [ν1, . . . , νK ]>, ρul is the uplink SNR and ρdl is the downlink SNR per

terminal.

MU-MIMO is more propagation tolerant, but not scalable in its original form and

require dirty-paper coding/decoding to cancel the interference [67]. In addition to

that, the requirement for channel coherence at both ends of the link is not favorable

in economical aspects.

Massive MIMO

The concept of massive MIMO was proposed by Dr. Thomas L. Marzetta [68, 69]

and involves adding more base station antennas relative to the number of users

(i.e., M � K) for downlink as shown in Fig. 2.3 (c). The analysis described in this

chapter is primarily based on Marzetta’s book, Fundamentals of Massive MIMO [66].

Underlying Shannon theory for Eqns. (2.7) and (2.8) suggests the optimality of a

rough parity between M and K in conventional MU-MIMO, stating that a growth

of M would only yield a logarithmic increment in throughput while incurring linear

increment of time for training. The massive MIMO concept ignores the dictates
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of Shannon theory by introducing higher M values–and yet, paradoxically, it can

achieve better performance than conventional MU-MIMO systems.

In massive MIMO, the CSI is only available to the base station, users do not

perform any signal processing, and linear pre-coding/decoding is used instead of

dirty-paper decoding. High spectral efficiency is achieved by serving many users

simultaneously and using strong directive signals; some efficiency also results from

the small amount of interference leakage.

Consider two users communicating over an M element base station with two

M−dimensional channels denoted by h1 and h2. If the directions of the channels

are are distinct (i.e., h1

‖h1‖ and h2

‖h2‖ are orthogonal), the base station can fully separate

the users in space, as a large M can form multiple beams with high resolution. In

the literature, this is referred to as “favorable propagation”. It should be noted that,

in theory, M has to be infinite to achieve fully orthogonal channels by providing an

infinite resolution in the spatial domain. However, fairly orthogonal channels start

to appear for approximately M ≥ 50 in practical scenarios [70].

2.3.1 Spatial Multiplexing in Massive MIMO

In order to achieve spatial multiplexing, the same signal is transmitted from all

antennas, yet the phase/amplitude is varied per antenna and per subcarrier, de-

pending on the desired user and the channel. In other words, digital beamforming

is employed for the M -element system. Therefore, massive MIMO implementations

require individual control over each of the M antenna elements to form M control-

lable beams. Since digital beamfomers can form multiple (M) simultaneous beams,

it is possible to serve multiple users at the same time achieving spatial multiplexing.
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The information presented in Section 2.1 suggests that mmWave MIMO sys-

tems may use hybrid beamforming approaches to form multiple beams and achieve

spatial multiplexing. The analog stage in hybrid beamformers reduce its degrees

of freedom by combining multiple antenna elements with phase shifters and pro-

viding them with the same digital baseband signal. For an example, consider an

M -element antenna system connected to a hybrid beamformer with N -point digital

beamforming component where N < M . Such a system is capable of forming N

simultaneous beams, but phase shifters in the analog component further reduces the

control of the individual beams, allowing only one beam to be formed towards a spe-

cific direction. The reduction of flexibility in hybrid beamformers is not favorable for

massive MIMO applications, which theoretically need infinite, individually control-

lable beams capable of spanning the entire space. Therefore, digital beamforming is

the future of communication, even though hybrid beamformers are being used in cer-

tain applications (particularly for vertical beamforming in the first implementations

of 5G).

Massive MIMO is based on the fact that the base station is aware of the CSI.

The use of an extensive number of antenna elements will result in the formation of

highly directional narrow beams. Therefore, the base station should be aware of the

direction to which the beam should be aimed.

In a simple, conventional approach, an M element base station may form M

angular stationary beams (grid of beams) and index each of the beams. Users can

communicate with the base station using time-domain-duplex (TDD) or frequency-

domain-duplex (FDD) to separate uplink and downlink, then determine the opti-

mum beam index for communication. However, this approach almost never has a

perfect match for the user, as the beam angles are fixed and the approach can result

in too much inter-user interference.
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To avoid imperfect beam directions and inter-user interference, massive MIMO

uses uplink estimation. In uplink estimation, the user sends a pilot signal, which

is detected by using a spatial FFT at the base station. The base station is able to

provide a good estimate of the channel based on the measured pilot signal, without

considering any other factors as being in LOS or channel nature at the beginning.

Uplink estimation is highly scalable, as the channel estimation at the base station

happens separately for each of the antennas, regardless of the total number of anten-

nas in the entire system. Since the CSI depends on the frequency, uplink estimation

is usable in TDD, which uses the same frequency for uplink and downlink–but is

not usable in FDD, which uses different frequencies.

2.3.2 Downlink Data Transmission

Information-bearing symbols are combined with measured channel characteristics

to create transmitted signals. Using the channel measurements, antennas transmit

weighted message-bearing symbols to arrive in-phase at the intended user and out-

of-phase elsewhere, as shown in Fig. 2.4 (a). Since the channels are orthogonal

to each other, a conjugate multiplication can retrieve the information signal; this

process is thus known as “conjugate beamforming.”

In the uplink-matched filtering shown in Fig. 2.4 (b)–which is the opposite of con-

jugate beamforming–the base station weights and adds received signals for construc-

tive reinforcement of the transmission from the intended user. This decentralized

array architecture follows a simple pre-coding scheme, yet it yields impressive per-

formance. However, zero-forcing may outperform conjugate beamforming–matched

filtering for higher signal-to-interference-plus-noise-ratios (SINR).
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2.3.3 Importance of Beamforming with Measured Channels

The main characteristic of massive MIMO is replacing open-loop beamforming by

channel measurements. As a result, massive MIMO is scalable, and the gain grows

linearly with the number of antennas, irrespective of the noisiness of CSI. For as-

sumed channel characteristics, massive MIMO may not be scalable, and the gain

would grow logarithmically following Shannon theories in Eqns.(2.7) and (2.8).

As opposed to traditional open-loop beamforming approaches, no tightening of

array tolerance is required in using channel measurements rather than using assumed

values. In other words, the base station does not have to be aware of the location

of the user or the nature of propagation. A traditional open-loop approach would

require precise phasing of hundreds or perhaps thousands of antennas in massive

MIMO applications, a requirement that is eliminated by using measured CSI.

In a hypothetical scenario, direct measurements could be avoided by using an

M -point DFT to form M orthogonal beams, and each user could report back the

optimum beam for communication. First, the user has to be in LOS with the base

station to be able to choose a beam out of M stationary beams for communication.

As M increases, phase tolerances for these open loop beams are required to be

tighter and more precise to achieve the highest gain. The use of measured CSI can

easily avoid these limitations.
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2.3.4 Pilot Contamination

Each of the mobile users in a massive MIMO system requires an orthogonal pilot.

If the same pilot is transmitted by more than one user, the base station may obtain

a linear combination of channels. This can happen when the same pilot is being

used in adjacent cells in a multi-cellular network, where the base station receives a

combination of the pilot from a home cell user and a neighboring cell user. Coherent

interference caused by pilot contamination is not eliminated by using more antennas.

Although it is not possible to completely avoid pilot contamination, it is possible

to reduce pilot contamination by making the cells smaller and/or using a pilot reuse

factor greater than one [66].

2.3.5 Holographic Beamforming

Holographic beamforming is a dynamic beamforming technique that uses a software-

defined antenna (SDA) to employ the lowest C-SWaP [71]. Passive electronically

steered antennas (PESAs) are used in realizing holographic beamforming, such that

a distribution network that consists of phase shifters (often referred to as “holo-

grams”) to form spatial beams. This concept is illustrated in Fig 2.5 (a). The

behavior of such a system is similar to a hybrid beamformer, where each digital
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beam is spatially narrowed by an analog stage for better directionality. A PESA

has a single RF input followed by a distribution network to vary the directivity of

beamforming. According to our discussion regarding Eqns. (2.7) and (2.8), such a

single-user beamformer may improve the SINR, yet the capacity has a logarithmic

relationship with the number of antennas M .

Holographic MIMO may use an array of phase-shifted distribution networks or

PESAs, as illustrated in Fig 2.5 (b) to achieve gains from spatial multiplexing in

massive MIMO topology. Since narrower beams may spatially multiplex many users

with less interference, the capacity of holographic MIMO grows linearly with the

number of users. Such a system would behave as a hybrid realization for massive

MIMO, where serving K users would require K PESAs [72].

Since the realization of PESA has effective C-SWaP parameters, it may have

impressive applications in cost-efficient deployment of massive MIMO. Such an ap-

proach may have ULAs or surface realizations for the antenna array. Widely used

IID Rayleigh fading channel model may have limitations for such scenarios, as will

be discussed in the next section.

2.3.6 Limitations of Independent Rayleigh Fading Model

Basic studies in multi-antenna propagation mostly assume IID, Rayleigh fading

channels. Spatial diversity studies using Rayleigh fading channels suggest the diver-

sity gain is proportional to the number of antennas and, in characterizing the ergodic

capacity for massive MIMO, simple closed-form bounds suggest that the SINR is

proportional to the number of antennas [66]. Given that both these conclusions are

correct, it is necessary to identify the limitations of the fading model.
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.

Consider two points with a spacing of d in the three dimensional (3D) space in

an isotropic scattering environment (i.e., an environment where multi-path compo-

nents are uniformly distributed). The fading model for a propagating signal suggests

a correlation of sinc (2d/λ) between these two points, where λ is the wavelength.

Therefore, d must be a multiple of λ/2 for the two points to be uncorrelated, such

that the argument in the sinc function is a non-negative integer. Since IID Rayleigh

fading channel coefficients, by definition, follow a Gaussian distribution, any uncor-

related fading will result in independent fading.

The illustration in Fig.2.6 (a), contains circles with radius of multiples of λ/2

correspond to independent locations from the corresponding antenna, for a three

antenna system. In order to deploy a fourth antenna, while maintaining the Rayleigh

fading channel, the antenna must be positioned at a point where all three circles

intersect. As illustrated, such a point would only exist in a ULA with an inter-

element spacing of λ/2. This ULA could be placed in any orientation (as shown

in Fig. 2.6 (b)) if and only if no other correlating sources exist in the 3D space.

Therefore, the IID Rayleigh fading model cannot be applied for a rectangular array

shown in Fig. 2.6 (c), where the inter-element spacing along the diagonals is no

longer λ/2 [73].
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Large intelligent surfaces (LIS) and reconfigurable intelligent surfaces (RIS) are

gaining the attention of researchers in antenna array systems. As the term “surface”

in their names suggest, LIS and RIS are planar arrays and, therefore, an IID fading

model cannot be applied. For such systems, a more general spatially correlated

Rayleigh model can be applied [74].

2.4 EM Characteristics of Planar Wave Propagation

Spatial multiplexing and beamforming concepts can be combined to improve chan-

nel performance. Subsequent chapters discuss the hardware complexity reduction

and beamforming for mmWave MIMO systems from the perspective of MD signal

processing. This section contains a detailed review on spatio-temporal signal pro-

cessing concepts that provide the basis for a better understanding of the processes

discussed in later chapters.

MD signal processing considers the spatial dimension along with the temporal

dimension. Multiple antenna elements used in phased antenna arrays are used to

sample a signal in the spatial domain, such that discrete transforms (such as Fourier

and Z transforms) are applicable over the spatial dimension. In other words, tem-

poral transfer functions can be extended to take spatial dimensions into account.

The far-field for an EM wave x(t) emitted by an isotropic transmitter (shown in

Fig. 2.7), exists beyond a distance d from the transmitter for d > 2D2

λ
. Here, λ is

the wavelength and D is the aperture of the transmitter antenna [75]. A far-field

MD planar wave w(t) defined in t = (t1, t2, . . . , tn) ∈ Rn is called a planar wave if

there exists an MD vector d such that w(t) is constant valued everywhere in each

of the planes dT t = l; ∀l ∈ R.
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Figure 2.7: Propagating wave in the 3D space with a DoA of (ψ, θ).

Consider either the transverse electric E(x, y, z, ct) or magnetic H(x, y, z, ct) field

of a propagating electromagnetic planar wave, where (x, y, z) ∈ R3 is the 3D space

and t ∈ R is the time-continuous domain where c ≈ 3 × 108 ms−1 is the speed of

light. A hyper plane can be defined in the given 4D continuous spatio-temporal

domain as,

dxx+ dyy + dzz + ct = ±λ (2.9)

where (dx, dy, dz) ∈ R and d2
x + d2

y + d2
z = 1. The hyper plane λ defined here is

merely a parameter and is not related to the wavelength of the propagating signal.

The DoA of the wpw signal in the 3D space is denoted by the unit vector d̂, where

d̂ = [dx dy dz]
>.

Therefore, the one-dimensional (1D) function of a wave propagating in this 4D

hyper-plane is defined as,

w(x, y, z, ct) = wPW (λ); ∀λ ∈ R (2.10)

Equation (2.10) shows that there exists a corresponding iso-surface in (x, y, z, ct) for

every value of the parameter λ.
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Figure 2.7 illustrates a traveling planar wave wPW (x, y, z, ct) in the 4D spatio-

temporal domain at an arbitrary time and located at the far-field of the isotropic

transmitter for the iso-surface λ. Therefore, we can conclude that there exists a set

of infinite iso-surfaces (described in Eqn. (2.10)) in 4D, over time t with speed c for

a propagating signal. This signal could be either temporally narrowband or wide

band, depending on the 1D spectral properties of the c-scaled temporal signal w(ct).

With reference to the notation in Fig. 2.7, the polar form of the 4D parametric

λ can be expressed in terms of the azimuth θ ∈ [0, π] and the elevation ψ ∈ [0, 2π]

as,

λ = −x sin θ cosψ + y sinψ + z cos θ cosψ + ct (2.11)

and the same polar coordinate system can be used to redefine the unit vector d̂ as,

d̂ = [dx dy dz]
> = [− sin θ cosψ sinψ cos θ cosψ]> (2.12)

For convenience, this discussion is limited to propagating waves with their elec-

tric or/and magnetic field on planar surfaces (3D) and straight lines (2D). The

z coordinate is zero for a rectangular array receiver system; thus the parametric

relationship between (x, y, z) in Eqn. (2.11) reduces to,

λ3D = −x sin θ cosψ + y sinψ + ct (2.13)

Next, the planar region for a 3D spatio-temporal planar wave can be expressed as,

pw3D = w(x, y, ct) = w(dxx+ dyy + ct))

= w(−x sin θ cosψ + y sinψ + ct) (2.14)

Similarly, Eqn. (2.11) can be reduced for the case of a ULA placed on the y axis in

Fig. 2.7, (i.e., pw2D = w(0, y, 0, ct)) by disregarding the x and z components as,

λ2D = y sinψ + ct (2.15)
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For such a ULA receiver system, the Eqn. (2.9) will be reduced to dyy + ct = ±λ.

Consider a ULA placed on the x−axis by swapping the x-axis and the y-axis for the

convenience, in which the DoA is measured with respect to the y-axis. Figure 2.8 (a)

shows such a system, where a planar wave is arriving at an angle of ψ measured with

respect to the y-axis. For this system, the parametric relationship in Eqn. (2.15) can

be rewritten with respect to ψ as (− sinψ0)x+ ct = λ. If the DoA in the space-time

domain is θ 1 where,

θ = tan−1(sinψ). (2.16)

As illustrated in Fig. 2.8, the DoA is constrained to [−π/2, π/2]. Therefore, the

angle θ is confined in the region in Fig. 2.8 (c) where −π
4
≤ θ ≤ π

4
.

This property is used in practice to analyze the operation of phased array sys-

tems. In order to begin with the MD signal properties of planar waves, let us

consider a ULA where the spatial sampling distance is ∆x.

1The angle θ is merely an angle in the space-time domain and does not depend on the
azimuth angle θ.
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2.5 MD Properties of ULAs and Rectangular Arrays

In most practical implementations of mmWave MIMO systems, 2D or 3D planar

waves are sampled in the spatial domain using ULAs or rectangular arrays. Because

of the finite aperture size of antenna elements, the spatial dimension is discretized

and the temporal dimension could either be continuous or discrete based on the

signal processing domain. This section contains a discussion of planar wave char-

acteristics, starting from the continuous domain and then extends to the discrete

domain.

To begin our discussion of the spectral properties of planar waves, let us first

consider the continuous-time Fourier transform (CTFT) of the planar wave equation

(Eqn. (2.10)), which can be expressed as Eqn. (2.17).

PW4D(Ωx,Ωy,Ωz,Ωct) ≡
+∞∫∫∫∫

x,y,z,ct=−∞

pw4D(x, y, z, ct)e−j(Ωxx+Ωyy+Ωzz+Ωctct)dx dy dz dct,

(2.17)

where (Ωxx,Ωyy,Ωzz,Ωctct) ∈ R4. The angular frequencies are defined as Ωk =

2πfk, where k ∈ {x, y, z, ct}. Note that the temporal frequency is scaled by c such

that fct = ft/c. Based on the analysis in [76], Eqn. (2.17) can be simplified to have

the form of,

PW4D(Ωx,Ωy,Ωz,Ωct) = W (Ωt)cΩct · δ(dxΩct − Ωx) · δ(dyΩct − Ωy) · δ(dzΩct − Ωz)

(2.18)

where W (Ωt) is the CTFT of the 1D temporal signal w(t) with the relationship

w(t)
F⇐==⇒ W (Ωt) and δ(.)is the impulse function. Eqn. (2.18) can be simplified

for the 2D and 3D cases by simply eliminating the corresponding impulse terms

δ(dyΩct − Ωy) and/or δ(dzΩct − Ωz) respectively.

Even though the analysis is performed for a continuous space domain, finite

aperture sizes of antenna elements break the continuity of the spatial domain. This
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discussion considers uniformly spaced rectangular and linear antenna arrays, as these

are the most widely used in RF applications [77]. However, it should be noted that

non-uniform geometries and other sampling grids such as triangular [78], circular

[79], and hexagonal [80] are being used in certain applications.

To begin with the analysis for sampled spatial domain, an infinite grid is as-

sumed. A spatially sampled, yet temporally continuous signal can be expressed as

wDSCT,3D(nx, ny, ct), where (nx, ny) are the spatial index of the grid. The frequency

domain representation for such a signal can be derived using Eqn. (2.17) as follows:

WDSCT,3D(ωx, ωy,Ωct) =

+∞∫

ct=−∞

+∞∑

nx=−∞

+∞∑

ny=−∞
wDSCT,3D(nx, ny, ct)e

−j(ωxnx+ωyny+Ωctct)dct.

(2.19)

Following [76], Eqn. 2.19 can be simplified as,

WDSCT,3D(ωx, ωy,Ωct) =
1

∆x∆y

+∞∑

nx=−∞

+∞∑

ny=−∞
PW3D

(
ωx − 2πnx

∆x
,
ωy − 2πny

∆y
,Ωct

)

(2.20)

where ωx = Ωx∆x, and ωy = Ωy∆y in which ∆x,∆y are the inter-element spacing

in the x-axis and y- axis, respectively. The planar wave function PW3D(.) is the 3D

CTFT function derived from Eqn. (2.17). Similar to the spectral repetition in the
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temporal Fourier transform, the spatially sampled signal spectrum repeats infinitely

with a period of 2π along both ωx and ωy. Therefore, according to the Nyquist

theorem, we must keep (ωx, ωy) ≤ π to avoid spatial aliasing. For temporally band-

limited signals (i.e., where Ωct ≤ c−1Ωct,max), and the spatial bandwidth (Ωx,Ωy) is

greater or equal to c−1Ωct,max tan θmax (refer to Fig. 2.9 (b)). Since tan θ = sinψ,

the sampling criterion to avoid spatial aliasing can be expressed as,

(∆x,∆y) ≤ c

2.ft,max. sin(ψmax)
(2.21)

For an omni-directional antenna, ψmax = π
2
. Eqn. (2.21) is simplified to,

(∆x,∆y) ≤ c

2ft,max
or, (2.22)

(∆x,∆y) ≤ λmin
2

(2.23)

where λmin is the wavelength corresponding to the highest frequency of interest

fmax.

A simpler 2D spectral analysis may consider a wide band, planar wave arriving

at a ULA with a DoA of ψ, where (−π
2
≤ ψ ≤ π

2
), as discussed with regard to

Fig. 2.8 (a). The spatial domain is sampled by a finite number of finite aperture

antenna elements uniformly spaced at ∆x. The DoA ψ is measured with regard to

the broadside direction of ULA, in a counter-clockwise direction as illustrated. The

signal received by each of the elements in the ULA produces a discrete-in-space and

continuous-in-time signal that can be written as,

wDSCT (nx, ct) = ws(−nx∆x sinψ + ct). (2.24)

Two adjacent antenna elements have a time shift of

∆TD =
∆x sinψ

c
(2.25)
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where the element at the left has a time advancement of TD for 0 ≤ ψ ≤ π/2 in

the received waveform. ADCs with sampling frequencies of fs = 1/(∆T ) are used

at each antenna element to discretize the continuous time signal, where fs is chosen

to satisfy the temporal Nyquist criterion. The temporally discretized signal can be

expressed as,

wDSDT (nx, nct) = ws(−nx∆x sinψ + cnct∆T ).

2.5.1 Region of Support

The region of support (RoS) is defined as the region where the magnitude of the

frequency spectrum is not defined to be zero. Equation (2.18) suggests that the

RoS of the 4D spectrum is confined by the intersection of 4D hyper-planes that

are defined by each of the δ functions. (i.e., dxΩct − Ωx = 0, dyΩct − Ωy = 0 and,

dzΩct − Ωz = 0). For the sake of simplicity and to indicate the relevance of the

discussed research work, this chapter is focused on 2D and 3D planar waves.

For a planar wave impinging on a surface in the 3D space (Z = 0) shown in

Fig. 2.9 (a), the RoS is confined to a line in the 3D spectrum. The range of θ is

constrained by the spatial DoA such that −π
4
≥ θ ≥ pi

4
, as presented in Eqn. (2.16).

In the 2D spatio-temporal frequency domain, the RoS of W (Ωx,Ωct) is confined

to a straight line passing through the origin, which creates an angle of θ as measured

from Ωct axis, where tan θ = sinψ as shown in Fig. 2.9 (c–d). Here, (Ωx,Ωct) ∈ R2

is the domain of the continuous 2D frequency spectrum, where Ωct represents the

normalized temporal frequency.
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Figure 2.10: MD filtering for a (a) wideband (b) narrowband ULA. Received MD
spectrum for a ULA in (c) RF and (d) downsampled at baseband.

2.5.2 Practical Aspects

In practice, antennas have a directional receive pattern, such that the main lobe

extends in the broadside direction and is directional in nature, where the radiation

pattern is reduced to a pre-determined level (say −10 dB, or 90% power) at angles

ψ = ψmax. An example of such an antenna pattern takes the shape of cosn(ψ).

Since −1 ≤ sinψ ≤ 1, the range of θ is constrained by −1 ≤ tan θ ≤ 1
(
i.e., − π

4
≤ θ ≤ π

4

)
. When directional antennas that do not produce signals be-

yond ψmax are used in the array in place of omni-directional elements, the spectral

RoS is further constrained to line-shaped regions that are within the dual-fan bound

by θmax = ± tan−1(sinψmax) [81–83]. This phenomenon and its applications are dis-

cussed in greater detail in Chapter 5.

2.6 Spatio-temporal Filter Implementations

The received signal spectrum for a planar wave lies on a line passing through the

origin in the MD spectral domain, as discussed in Section 2.5.1. Therefore, space-

time filters that are implemented to achieve selective enhancements are required to

have the passband aligned with the line-shaped RoS. This is illustrated in Fig. 2.10

for the scenario where a 2D spatio-temporal planar wave is captured by a ULA.
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For a narrowband signal, the passband of the filter does not essentially lie on the

RoS line, but it may cover the considered narrowband frequency of operation as

shown in Fig. 2.10 (b). Such filters are applicable in most of the narrowband,

analog phase-shifting–based receiver arrays to achieve directional enhancements.

However, these passbands are known to suffer from a phenomenon widely known as

beam squinting, which leads to a deviation in the beam direction for not-so-highly-

narrowband systems [50, 84]. The ideal passband filter that can be realized in the

digital or analog domain for a temporally wideband signal should have the form

shown in Fig. 2.10.

The concept of beamforming discussed in Section 2.1 can also be explained in

the form of spatial filtering at the receiver side, where the signal of interest arriving

from a given DoA is subjected to selective enhancements. The MD spectrum of

such beamforming filters have the same forms shown in Fig. 2.10, which are based

on their bandwidths. Similar to any other MD filter, beamforming can also be

achieved either in IF or in baseband according to the design specification. How-

ever, most of the existing digital beamformers operate at low-IF frequencies or in

the baseband in order to reduce the hardware complexity. Downconversion of a

signal w(w, ct)
F⇐==⇒ W (ωx, ωct) has the modulation property of the MD Fourier

transform given by,

w(w, ct)e−jω0ct F⇐==⇒ W (ωx, [ωct + ω0]) (2.26)

Figure 2.10 (c) shows the narrowband RF signal spectra of a 2D planar wave signal

with a DoA of (π/3), and Fig. 2.10 shows the baseband spectrum for the same

signal where the downconverion is followed by downsampling. Even though the

ideal passband expected for such an MD signal has a rectangular shape, practical

implementations often follow an approximation. An application of such spatial filters
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is discussed in Chapter 5.

2.7 Digital Beamforming

While digital beamforming has high flexibility, reconfigurability and higher degrees

of freedom as compared to analog beamforming, it requires one ADC per RF chain

(or two per RF chain for baseband I-Q components) . Section 2.1 discussed the

limitations of analog beamforming and the necessity for hybrid beamforming, which

contains both analog and digital beamforming components to achieve the best of

both worlds. This section discusses digital beamforming in greater detail as well as

strategies for its implementation.

Figure 2.11 (a) shows the general model for a N -element phased antenna array

with Nyquist spacing i.e., ∆x = λmin/2, where λmin is the wavelength corresponding

to the highest frequency of interest. Consider a 2D spatio-temporal planar wave

wm(nx, t) arriving at the considered ULA at a DoA of ψ. The continuous time

output vector of the array caused by the impinging signal is defined as x ∈ C(N,1),

where x = [xo(t) x1(t) . . . xN−1(t)]> and xnx(t) = wm(nx, t). The mixed domain

output vector wm can be expressed for the N -element array as,

wm = [Wm(0, jΩt) Wm(1, jΩt) . . . Wm((N − 1), jΩt)]
> . (2.27)

Beamforming can be achieved by weighting and summing each of the antenna out-

puts as illustrated in Fig. 2.11. This weighting vector is given by,

α = [α0 α1 . . . αN−1]> . (2.28)

where (α0, α1, . . . , αN−1) ∈ C. This operation is equivalent to the implementation

of a spatial filter where the z-domain transfer function is given by,

H(zx) =
N−1∑

k=0

αkz
−k
x (2.29)
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By replacing the spatial zx variable with ejωx , where ωx = ∆xΩct sinψ, the frequency

response can be rewritten as,

H(zx) =
N−1∑

k=0

αke
−jωxk (2.30)

The output response Ym(jΩt) for the input planar wave signal wm(nx, t) can now be

expressed as,

Ym(jΩt) = α · Z ·wm. (2.31)

The matrix given by Z is essentially an N ×N diagonal matrix, where zi,i = ejωxi.

For narrowband cases, αi coefficients in the weighting vector α become complex and

the time domain output derived from Eqn. (2.31) simplifies to,

y = α>x. (2.32)

2.7.1 FFT and TTD Beamforming

The beam pattern generated in the far-field for a given phased antenna array is

related to the discrete Fourier transform (DFT) of the spatial weighting factor vector

α [85]. Therefore, the weighting vector α defined in Eqn. (2.28) can also be expressed

using αi = e−jΩtiτ as,

α =
[
1 e−jΩtτ . . . e−jΩt(N−1)τ

]>
. (2.33)

where, τ = ∆x sinψ
c

. The term e−jΩtτ realizes a true time delay (TTD) across the

signal bandwidth. Therefore, ideal realization of such a weight can produce a squint-

free beam for wideband systems as shown in Fig. 2.11 (b). As the temporal frequency

component does not spread too much from the carrier frequency fc for narrowband

systems, Ωnb ≈ 2πfc and the term e−j2πfcτ becomes a complex constant. Equa-

tion (2.28) can be expressed for such a system as,

α =
[
1 e−j2πfcτ . . . e−j2πfc(N−1)τ

]>
. (2.34)
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Figure 2.11: (a) Receive mode model for an N -element ULA with a wave impinging
at DoA of ψ and (b) the TTD and sum beamforming architecture.

The realization of multiple beams M(< N) requires the extension of the weight-

ing vector to a Vandermonde matrix of size M × N [86]. Each row of this ma-

trix corresponds to a weighting vector realizing a beam at an angle of ψm, where

1 ≤ m ≤ M . To achieve the highest number of degrees of freedom, each of the

M rows should be linearly independent and M = N would give all the degrees of

freedom. The N -point DFT matrix can be used to realize the M = N beams, as

the matrix is full ranked and captures all degrees of freedom. In other words, an

N -point spatial DFT of an N−element narrowband phased antenna array would

provide the maximum number of orthogonal beams.

Realization complexity of such DFT matrices in hardware can be simplified by

fast Fourier transform (FFT) approaches. The upper-bound computational com-

plexity, which is determined by the number of multiplications of the DFT matrix, is

in the order of O(N2); Cooley–Tukey FFT can reduce the complexity to the order

of O(N log2N). However, the theoretical lower bound for the DFT multiplicative

complexity was established as a function of N , where the lowest achievable com-

plexity is O(N) [87], which can still be high for applications in mmWave, sub-THz

systems and massive-MIMO. Chapter 7 includes a discussion of the possibility of

approximating the DFT matrix for particular N values in order to realize much

greater efficiencies than at the theoretical lower bound.
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CHAPTER 3

MD SPACE-TIME Σ−∆ MULTIPORT CIRCUITS

In achieving our primary goal of reduction of ADC complexity in RF systems,

we consider extending the well known Σ−∆ architecture to the MD spatio-temporal

domain. This chapter discusses the possibility of implementing a single multiport

ADC to replace the N -ADCs required in N -element phased array systems.

The idea of Σ − ∆ modulation is based on the ideas of differential PCM and

delta modulation, which were independently developed in research laborataries at

International Telephone and Telegraph [88, 89], Philips [90, 91], and Bell Telephone

Company [92]. In delta modulation, the input analog signal is quantized using a

one-bit ADC (a comparator) (see Fig. 3.1 (a)). The comparator output is converted

back to an analog signal using a 1-bit DAC, to be subtracted from the input after

passing through the integrator. The systems transmits“1” to indicate that a positive

excursion has occurred since the last sample and “0” to indicate that a negative

excursion has occurred since the last sample. For a fixed DC input, the modulator

generates an alternating pattern of 0s and 1s.

Delta modulation does not have a theoretical limitation for the amplitude of

the analog signal, as there is no limit to the number of pulses with the same sign

to occur. However, unlike the case for a slowly varying signal (see Fig. 3.1 (b)),

Analog

input Digital

output

clk

Comparator

1−bit

DAC

(b)

(c)

overload

slope(a)
∫

Figure 3.1: (a) Architecture of a delta modulator; quantization using a delta mod-
ulator for (b) slowly varying signals and (c) rapidly varying signals.
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the quantizer is unable to keep phase for a case where the signal varies rapidly as

shown in Fig. 3.1 (c). The variation in the signal can be reduced by increasing

the quantum step size and/or by increasing the sampling rate. However, delta

modulation requires very high sampling rates (typically 20× highest frequency) as

compared to the Nyquist rate of 2×. However, a slight modification of the delta

modulator leads to the Σ − ∆ architecture, which is considered to be one of the

most popular ADC architectures today.

3.1 Background

Quantization noise has a rms value of q/
√

12, which is uniform distributed within

the Nyquist band (DC to fs/2) (see Fig. 3.2 (a)), where q is the quantum step size

and fs is the sampling frequency. As the quantization noise does not depend on the

sampling rate, using a higher sampling rate (say Kfs) distributes the noise over a

wider bandwidth of DC to Kfs/2. Next, we can apply an LPF to the output to

remove most of the quantization noise without affecting the desired signal as shown

in Fig. 3.2 (b). A decimation block after the digital filter is used to convert the

signal back to the original sampling rate. As ENOB = SQNRdB−1.76
6.02

, a reduction of

quantization noise will increase ENOB [93, 94]. In other words, a high-resolution

44



(b) (c)(a)

0

0

1 1

−π, π

−π,−π

π,−ππ,−π
−π, π

−π,−π
ωx

ωtωt ωx

Figure 3.3: (a) 1D signal (low pass) and noise (high pass) transfer functions; (b)
2D space-time transfer function for the desired plane-wave signal; (c) 2D space-time
transfer function for the unwanted quantization noise.

ADC can be achieved using a low-resolution ADC. However, in order to increase

the ENOB by N bits using this method, the oversampling factor has to be 22N .

However, the use of a Σ−∆ modulator to replace the traditional ADC can reduce

the requirement for a higher oversampling rate by shaping the quantization noise,

such that most of it falls outside the passband, as shown in Fig. 3.2 (c).

The architecture of a first-order Σ − ∆ ADC is shown in Fig. 3.2 (d). In the

typical case, a feedback loop is used to achieve the following:

i. a low-pass response to the analog signal being sampled; and

ii. a high-pass response to the quantization noise injected by the quantizer into

its digital outputs, which is known as noise-shaping (see Fig. 3.3 (a)).

A low-resolution quantizer is used to improve hardware efficiency, which results

in a highly non-linear quantization process that injects a significant amount of har-

monic distortion into the quantized samples. Fortunately, the Σ−∆ feedback loop

also reduces the non-linearity of the system, which is known as distortion-shaping.

As a result, Σ − ∆ modulation allows low-precision quantizers to generate digital

outputs with low levels of quantization noise and harmonic distortion.
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3.2 Σ−∆ Concept in MD Signal Processing for ULAs

Although used for ADCs, the mathematics of Σ−∆ conversions are not necessarily

limited to ADC circuits. In fact, the Σ−∆ modulation technique can been applied

in spatio-temporal MD circuits and systems found in antenna arrays, including

LNAs. Work in [95–97] has shown that all types of electronic noise and non-linear

distortion can be significantly reduced using spatio-temporal extensions of the Σ−∆

modulation principle.

The use of spatial over-sampling [95–98] leads to dense antenna arrays which, in

turn, lead to MD spatio-temporal wave spectra that are artificially compressed into

a smaller area in the 2D Nyquist region. In this section, we discuss the possibility of

extending MD Σ−∆ algorithms for new applications in array processing to develop

N -port ADCs to replace the traditional N number of M -bit ADCs (see Fig. 3.5 (a)),

as well as the possibility of eliminating the need for spatial over-sampling, such that

there is no need to increase the number of antenna and transceiver circuits in the

array processor. Elimination of spatial oversampling is efficient in terms of RF and

digital hardware, since the number of array elements and transceiver circuits does

not need to be increased in order to benefit from noise and distortion shaping.

In other words, extension of Σ−∆ architecture for MD also implies an extension

of the high-pass filter applied on the signal and the low-pass filter applied on the

quantization noise to 2D space-time domain as shown in Fig. 3.3 (b) and Fig. 3.3 (c)

respectively.

To develop a model for Σ − ∆ arrays, we begin by considering the (frequency-

and bandwidth-normalized) temporal first-order Σ−∆ loop in the Laplace domain

s ∈ C. The corresponding block diagram and the mathematical model are shown in

Fig. 3.4 (a) and Fig. 3.4 (b) respectively.
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The temporally-oversampled analog input W (s), digital output Y (s), and quan-

tization noise N(s) (assumed to be additive and wideband) in the loop are related

via

Y (s) = W (s)
1

1 + s
+N(s)

s

1 + s
∈ C. (3.1)

This is the simplest possible Σ−∆ ADC; it has the following features:

i. a first-order low-pass transfer function 1
1+s

for W (s), and

ii. a first-order high-pass transfer function s
1+s

for N(s).

Performance can be further improved by using more complex loops that apply

higher-order low-pass and high-pass transfer-function pairs to the signal and quan-

tization noise, respectively. Once sampled and quantized, the signal of interest is

recovered using digital low-pass filtering followed by temporal down-sampling (dec-

imation).

The received signal can be spatially oversampled by using closely spaced ULA.

Since the spatial sample values are discrete, by applying the LDI transform given
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by 1
s

= z−1
x

1−z−1
x

[99], we obtain the equations below:

E(zx) = W (zz)− Y (zx) (3.2)

Y (zx) = P (zx) +N(zx)

P (zx) =
z−1
x

1− z−1
x

E(zx) (3.3)

From Eqns. (3.2) and (3.3) the Z−domain output before quantization is obtained

as,

P (zx) = z−1
x [P (zx) +W (zx)− Y (zx)]. (3.4)

The difference equation for the multi-port ADC can now be written as,

y(nx, t) = Q[w(nx − 1, t) + p(nx − 1, t)− y(nx − 1, t)]. (3.5)

Implementation of the difference equation Eqn. (3.5) is shown in Fig. 3.5 (b).

The key point is that the mathematics of non-linear distortion/noise shaping are

independent of the physics of its source. In our proposed array processing approach,

the same Σ − ∆ loop can be applied for any source of noise, whether it is ADC

quantization noise, LNA thermal noise, mixer noise and intermodulation products,
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or power amplifier (PA) distortion products. By recognizing the fact that the Σ−∆

concept is agnostic to the source of noise, we are able to extrapolate it to the

entire transceiver electronics for array apertures, covering LNA, mixer, PA, ADC,

and DACs by using MD filtering and signal processing concepts. In our proposed

approach, the conventional temporal-only Σ−∆ loop is expanded in dimensions of

space and time and is realized using MD circuits and systems concepts.

This is a fundamentally new concept in antenna array aperture design, and it

has the potential to offer performance improvements under certain conditions.
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Figure 3.6: (a) Light cone, RoS and effect of oversampling. (b) Spectrum of the
down-sampled signal.

The RoS of a signal received by a linear antenna array falls into the light cone

which has a half-angle of π/4. FPA reduces the RoS of the signal such that it will be

entirely included in a cone with a half-angle of α, where oversampling further reduces

the angle to β, as shown in Fig. 3.6 (a). Down-sampling shifts the spectrum over the

temporal frequency axis, and oversampling reduces the highest spatial frequency to

wx,max
Ku

as shown in Fig. 3.6 (b).
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3.2.1 Relaxation of Spatial Oversampling Requirement in

MD Σ−∆ ADCs.

The extension of the Σ−∆ concept to antenna arrays for improving the noise and

distortion of the array transceiver electronics requires two important distinctions

from the well-known two-port (input-output) ADC case:

i. The Σ−∆ algorithm now encompasses both spatial and temporal dimensions,

and is therefore MD in nature; and

ii. While over-sampling is required for 2-port Σ−∆ ADCs, when the principle is

extended to the MD spatio-temporal case, causality conditions for propagating

electromagnetic waves imply that the spatio-temporal spectra of the signals of

interest have a well-defined RoS.

In fact, the spectral RoS of each wave is extremely sparse in the MD frequency

domain, pertaining to direction and frequency variables (space and time). Such

sparsity allows us to employ Σ−∆ in MD SFGs while removing the need for spatial

and temporal over-sampling.

The objective of over-sampling is to make the signal of interest “low pass” com-

pared to the “shaped noise”, in order to separate them in the spectral domain.

In the spatio-temporal domain pertaining to aperture arrays, we can “shape” the

noise/distortion in spatio-temporal dimensions such that they are mutually exclusive

(do not overlap) with the sparse RoS of the desired wave signals.

The first step in mapping a Σ−∆ modulator to a digital phased-array aperture

is to include both time and space dimensions in the mathematical model. We

can achieve this by adopting a linear transform of the type s = sx sinψ + st (see

Fig. 3.4 (c)) where (sx, st) ∈ C2 are Laplace variables pertaining to the spatial
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frequency ωx and the temporal frequency ωt, respectively, where the direction of

propagation (launch angle) of the transmitted waves is given by ψ ≤ 90o measured

counter-clockwise from the broadside of the array. The proposed Laplace domain

mapping leads to a 2D spatio-temporal realization of the Σ − ∆ modulator for

0 ≤ ψ ≤ π
2
, which is given by,

Y (sx, st) = W (sx, st)
1

1 + sx sinψ + st
+N(sx, st)

sx sinψ + st
1 + sx sinψ + st

. (3.6)

The realization of the proposed 2D spatio-temporal Σ − ∆ modulator requires

computing the algorithms only at locations where the antennas and transceivers are

spatially located. We achieve the spatial discretization by employing the bilinear

transform sx = 1−z−1
x

1+z−1
x
∈ C. The resulting system (see Fig. 3.4 (d)) is a 2D mixed-

domain MD spatio-temporal Σ−∆ modulator having the transform equation

Y (zx, st) = W (zx, st)
1

1 + 1−z−1
x

1+z−1
x

sinψ + st
+N(zx, st)

1−z−1
x

1+z−1
x

sinψ + st

1 + 1−z−1
x

1+z−1
x

sinψ + st
. (3.7)

This equation describes an aperture array that shapes away non-linearity/noise

generated by the analog electronics. Because the proposed Σ − ∆ algorithm is

recursive in nature in both the spatial and temporal dimensions, the stability of the

system is important. We utilize the theory of practical bounded-input bounded-

output (p-BIBO) stability of MD filters [100] to show that the system is stable for

0 ≤ ψ < 90◦. To check p-BIBO stability [100], we first set zx = 1 and tested

the 1D BIBO stability of the resulting system given by Y (1, st) = W (1, st)
1

1+st
+

N(1, st)
st

1+st
. The poles are on the left half of the s-plane, and therefore, BIBO stable.

Then, we set st = 0 and check the stability of the resulting 1D discrete system.

Y (zx, 0) =
W (zx, 0)

1 + 1−z−1
x

1+z−1
x

sinψ
+N(zx, 0)

1−z−1
x

1+z−1
x

sinψ

1 + 1−z−1
x

1+z−1
x

sinψ
. (3.8)

The pole zx = sinψ−1
1+sinψ

, 0 ≤ ψ < 90o is real-valued and lies inside the unit circle |zx| ≤

1 (which ensures stability). Thus, the 2D system is guaranteed to be practically
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BIBO stable (p-BIBO stable). In addition, the proposed Σ − ∆ algorithm can be

thought of as a 2D p-BIBO stable extension of a classical resistively-terminated

passive first-order inductance-resistance network [101].

interference
ROS of

(eliminated)
desired signal

ROS of the

(a) (b)

Figure 3.7: (a) The inclusion of the proposed 2D spatio-temporal Σ−∆ loop shapes
the 2D noise such that the PSD of AWGN is significantly reduced along the line-
shaped RoS of the desired RF signal; (b) in the proposed 2D Σ − ∆ loop, the
distortion components are shaped outside the beam shaped passband of interest.

The shaping of both additive white Gaussian noise (AWGN) and non-linear

distortion by the proposed algorithm is explained using examples in Figs. 3.7. The

AWGN in a conventional array occupies the entire frequency space in 2D (or in 3D,

for rectangular arrays). However, plane waves that fall on the array are sparse in

the 2D/3D frequency domain. Non-linear distortion generated by the electronics,

especially due to quantization in the ADCs may lead to additional waves that overlap

with the MD frequency-domain RoS of the input plane wave. Such overlap makes

is impossible to use linear filtering to remove the undesired distortion components.

Fortunately, noise shaping can greatly improve the signal-to-noise ratio of the array

receiver.

In particular, the shaped noise power spectral density (PSD) of the proposed 2D

Σ − ∆ loop is close to zero along the chosen beam axis, as shown in Fig. 3.7 (a).

That implies the received desired signal will be significantly less noisy than the
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undesired signal components. The digital beamformer that appears subsequent to

2D sampling removes the out-of-band noise without affecting the plane-wave input

signal of interest. Similarly, distortion components are also greatly reduced along

this axis (see Fig. 3.7 (b)). Therefore, the distortion due to quantization is signifi-

cantly reduced for the passband of interest, while the quantization noise/distortion

for undesired plane-waves still exist. Here, the distortion component for the plane-

wave signal of interest (which falls on the primary RF beam of the antenna array)

has effectly disappeared, leaving only the distortion of the out-of-band components.

These components correspond to directions that are in the side-lobes of the subse-

quent digital beamformer and are, therefore attenuated in the final output signal.

Thus, the proposed technique can effectively remove ADC non-linearities from the

input plane wave of interest as long as it is aligned with the chosen beam axis. This

concept is, to our knowledge, new to the signal processing literature.

3.2.2 Implementation of the Proposed MD Σ−∆ Architec-

ture

A Conventional antenna array RF chain consists of N -bit ADCs, as shown in Fig.

3.8 (a). The use of high-resolution ADCs in receiver chain increases the hardware

complexity. The proposed architecture eliminates the need to use multiple N -bits

ADCs by introducing a multiport ADC with 1-bit quantization.

Implementation of the proposed MD Σ − ∆ algorithm is best understood by

considering the first-order 2D case. An antenna array processor realization of such

a system based on receivers with dedicated direct-conversion electronics is shown

in Fig. 3.8 (b); the algorithm has been applied to the ADCs. The use of Nyquist

spacing in the spatial sampling operation requires the inter-element distance between
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antennas to be equal to ∆x = λmin/2, where λmin is the free-space wavelength of the

highest frequency wave that is expected to be received by the array. The necessary

2D analog beam filter consists of an active RF implementation denoted as H(zx, st).

We will next explain how a suitable infinite impulse response (IIR) beam filter can

be designed in a manner that can be implemented in high-speed integrated circuit

(IC) technologies.
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Figure 3.8: Conventional N -bit ADCs in the array receiver are replaced by spatio-
temporal MD Σ − ∆ ADCs. These form a multi-port analog-digital mixed-signal
control system in which the forward path consists of a 2D-IIR analog beam filter
that provides the 2D version of an ideal integrator 1/s. Quantization noise is thus
removed from the passband beam that falls on the resonance region s = 0. A high-
resolution beam can then be recovered by digital beamforming; quantization noise
is shaped into the side-lobes of the beamformer and is thus attenuated.

The transfer function of the 2D beam filter used in the forward path of the

2D Σ − ∆ modulator takes a direct-form mixed zx − st domain representation

given by Eqn. (3.7). However, this representation can be complex and difficult

to realize in analog RF-IC form. To address this problem, we propose the use

of mixed differential-direct-form mixed-domain analog circuits, where the spatial

interconnections between the different array processors are based on a differential-

form operator and the temporal operations are maintained as direct-form opera-

tions. The spatial differential-form operator takes the mathematical form zD =
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z−1
x

1+z−1
x
∈ C [102]. The forward beam transfer function can be written in the form

H(zx, st) ≡ Y (zx,st)
W (zx,st)

= 1
1+αzD+st/B

, where W (zx, st) denotes the input signals from

the antenna array, α = f(sinψ,R, T ) ∈ R with f(., ., .) being a closed form rational

function, and B ∈ R is the bandwidth of a first-order low-pass filter. To find the

corresponding SFG, we change the zx transform variable back to the discrete spatial

domain by computing an inverse spatial z-transform under zero initial conditions

while maintaining the Laplace nature of the 2D filter (corresponding to the time

dimension). Using well-known MD systems theory [101], we compute the inverse

z-transform to obtain an array processor that uses a parallel realization of locally

interconnected 2-input-2-output analog (i.e., non-quantized and non-sampled) mod-

ules to yield the final transfer function as shown in Fig. 3.9 (b). Thus, the 2D filtering

operation is achieved by a locally interconnected array of 2D analog modules (2D

AMs) described using yD(nx, t) = y(nx − 1, t)− yD(nx − 1, t) ∈ R, where yD(nx, st)

is the continuous-time domain quantity corresponding to the output of the differen-

tial operation in space given in the zx-domain as zD. Taking the temporal Laplace

transform of the above spatial differential operator, we obtain a 2D mixed-domain

quantity YD(nx, st) = Y (nx− 1, st)−YD(nx− 1, st) that can be used to describe the

primary signal flow path of the 2D AM using

Y (nx, st) =
W (nx, st)− αYD(nx, st)

1 + st
B

. (3.9)

A full description of the mathematical and circuit theoretical aspects of deriving

the SFG can be found in [103]. A circuit realization of the SFG in the forward path

provides the 2D spatio-temporal feedback necessary for MD noise and distortion

shaping (see Fig. 3.8). In particular, the forward path consists of a linear combina-

tion of two quantities followed by a first-order low-pass filtering operation in the ana-

log domain, as shown in Fig. 3.9 (a). It can be represented in the 2D mixed z-Laplace
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domain using a 2D extension of an ideal integrator, given by
(

1−z−1
x

1+z−1
x

sinψ + st
B

)−1

,

where the bandwidth B can reach several GHz for modern antenna arrays.
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Figure 3.9: (a) SFG of a single 2D analog module (2DAM) used to realize the
proposed IIR beam filter; (b) spatial interconnection of 2-input-2-output analog
modules used to realize the proposed IIR beam filter.

3.2.3 Applications of the Proposed Architecture

Typical applications of the proposed MD Σ − ∆ architecture include microwave

and mm-wave imaging, wireless communications and emerging 5G wireless systems,

phased-array radar, and radio astronomy instrumentation. The required operations

can be realized over large bandwidths (multiple GHz) using combinations of active

and passive RLC elements in a complementary metal–oxide–semiconductor (CMOS)

or bipolar-CMOS (BiCMOS) RF-IC technology. In the proposed system, the pre-

viously described 2D IIR analog beam filter is implemented in RF-IC form using

CMOS circuits and embedded in a MD feedback loop such that the quantization

noise generated by the 1-bit ADCs is shaped in both spatial and temporal frequency

domains. The overall goal is for the RoS of the noise and distortion to lie outside

the RoS of the signals of interest for far-field plane waves.

The receiver front-ends consist of LNAs having sufficient bandwidth and an NF

low enough to meet application specifications. The amplified and low-pass filtered

signals of each element in the antenna array must be digitized using a dedicated ADC
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for direct-conversion digital aperture array applications such as phased-array radars,

radio-astronomy instrumentation, and mobile base stations for wireless communica-

tions. The digitization of the antenna array signals requires fast temporal sampling

at rates greater than the Nyquist frequency, and the ADC resolution should be high

enough to achieve sufficient linearity and low quantization noise. However, the rel-

atively high bandwidth of RF applications necessitates ADC sampling rates in the

range of hundreds of MHz to several GHz. Such high sampling rate requirements

necessitate the use of highly parallel ADC architectures such as flash converters.

As mentioned earlier, a N -bit flash ADC requires 2N parallel comparators, which

indicates that chip area and power consumption grows exponentially with the reso-

lution of each ADC. The proposed MD noise-shaping method allows the resolution

of such converters to be greatly reduced (ideally, to 1-bit) without sacrificing ENOB

and signal-to-noise-and-distortion ratio (SNDR), thus reducing both chip area and

power consumption.

3.3 Conclusion

A 2D feedback topology is proposed based on a MD spatio-temporal extension of

the ∆ − Σ algorithm used in conventional high-resolution ADCs. By expanding

the ∆ − Σ concept to both space as well as time dimensions while discretizing

space and keeping time continuous, it was shown that analog mixed-signal 2D IIR

filters and low-resolution (ideally 1-bit) ADC/DAC pairs can be used in antenna

array processing to effectively remove quantization noise from plane wave signals of

interest. The proposed technique has been analyzed theoretically, and is believed to

be suitable for experimental verification. Future high-bandwidth implementations

of the concept will employ CMOS RF-IC technology.
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CHAPTER 4

Σ−∆ CONCEPT IN MD SIGNAL PROCESSING FOR PARABOLIC

DISH ANTENNA ARRAYS

The extension of Σ−∆ to multidimensional systems, as discussed in Chapter 3,

has possible applications in focal plane array (FPA) receiver systems. In this chapter,

we will discuss the basics of FPA systems and the effects of spatial oversampling in

Σ−∆ multidimensional extension for FPA systems.

Parabolic dish antennas and microwave lens antennas find a variety of appli-

cations in wireless communications, radar, electronic warfare, and radio astron-

omy [104, 105]. Both dish antennas and microwave lens antennas possess a focal

plane that is parallel to the aperture and going and passes through the prime focus

of the dish/lens. The prime focus is typically used as the feed location containing

a horn antenna or similar element such that the combined radiation pattern of the

dish/lens and the feed horn provides a highly directional beam of RF energy [106].

A prime-focus–fed antenna provides a “pencil beam” pattern that is on-axis with

the dish/lens. A dish/lens fed with a horn at the prime focus leads to a single pencil

beam. However, the high cost of the antennas, as well as the requirement for more

than one beam has led to the development of the FPA [107,108].

FPA

Wavefront

FPA
pattern

Combined

dish pattern

(a)

pattern
FPA

FPA

(b)

Combined dish +

FPA pattern

Figure 4.1: (a) Case 1: the prime-axis pencil-beam. (b) Case 2: an off-axis pencil-
beam.

58



4.1 Background

An FPA is an array of elements located on the focal plane of the dish/lens in a

manner such that the electric and magnetic fields at several locations on the focal

plane are sampled instead of only the prime focus [109, 110]. Every point on the

focal plane corresponds to an axis in a particular direction that contains its own

pencil beam. Therefore, an N -element FPA provides N individual RF pencil beams.

It is possible to combine the signals from the N -elements using various phasing

techniques, leading to the concept of a phased-array feed (PAF) where more than

N beams can be obtained, with better SNR than using a single element feed per

beam. For additive white Gaussian noise (AWGN) conditions, the conjugate phase

matching (CFM) method of finding the individual phases of the PAF network is

best for finding the optimum SNR for a particular beam direction. The CFM PAF

algorithm is effectively a matched filter based on finding the TTDs that coherently

combine the signals from each PAF element for a particular focus spot on the focal

plane. This chapter discusses the prime-axis pencil beam shown in Fig. 4.1 (a)

in detail for simplified linear FPA. Extensions to off-axis pencil-beams shown in

Fig. 4.1 (b) as well as rectangular FPAs will be considered in a future work.

Reflector antennas are known to achieve high gain and to have considerably lower

manufacturing cost [107]. Use of phased array antennas facilitate electronic beam

steering by manipulating the amplitude and phase distribution. A FPA has of two

main components–a dish reflector and a 2D phased antenna array (as shown in Fig.

4.2 (a))–in which the above mentioned capabilities are combined. The antenna angle

α is defined as tan(α) = d
2f ′ where f ′ is the distance between the focal plane and

the dish and where d is the diameter of the dish antenna (Fig. 4.2 (b)). For a 3D

sampled sequence of w(nx, ny, nct) with a DOA of (ψ, φ) with respect to the array
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Figure 4.2: (a) Parabolic dish antenna, (b) notation used, (c) region of support of
parabolic antenna.

surface, the spatio-temporal frequency spectrum, which is given by W (ωx, ωy, ωct),

is entirely contained in a cone-shaped region with a half-angle of α as shown in Fig.

4.2 (c), given by Bruton and Bartley [101]:

(ωx − tan θi cosφi ωct)
2 + (ωy − tan θi sinφi ωct)

2 ≤
(

tan ε ωct
cos θi

)2

(4.1)

Since the reflected signal on the FPA for a given planar wave is formed by signals

arriving from −α to +α, the corresponding 2D spectrum is no longer sparse. There-

fore, spatial oversampling is required for this case, and implementation of the system

follows Eqn. (3.5). Multiport ADC circuit realization is shown in Fig. 3.5 (b).

4.1.1 Spatio-temporal Σ−∆ ADC

In order to develop the spatio-temporal Σ−∆ architecture for noise shaping, we con-

sider a frequency- and bandwidth-normalized, first-order Σ−∆ loop in the Laplace

domain s ∈ C, as shown in Fig. 3.4 (b). The analog input W (s), quantized out-

put Y (s), and the additive wideband noise by the quanitzer N(s) are related via

Y (s) = W (s) 1
1+s

+ N(s) s
1+s
∈ C. It can clearly be seen that Σ − ∆ architecture

applies a low-pass transfer function on W (s) and a high-pass transfer function on

N(s).
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4.1.2 Simulation Results

For the simulation in this study, an FPA with circular-aperture prime-focus paraboloidal-

dish reflector was assumed. The EM field formed by the incident wave can be calcu-

lated by considering the superposition of currents generated by an infinite number

of points in the reflector. Hence, the ideal infinite extent focal EM field can be

written as,

efr(x, y, z, t) =
∑

θ

∑

φ

Êθ,φpωθ,phi(x, y, z, t) (4.2)

where Êθ,φ is the polarization unit vector [76]. An FPA simulator whose design

was based on this concept was used to simulate a wide band signal on the FPA.

This system had a dish diameter (d) of 5 m, a focal length (f) of 2.25 m, and an

array size of 32× 32 elements. Cases of Nyquist spacing, ×2 oversampling and ×4

oversampling for a wideband signal between 2.1 GHz - 5.1 GHz of bandwidth are

considered.

4.1.3 Noise Shaping

A reflected signal from the dish antenna on a uniform linear array of 16 elements

was selected to simulate noise shaping. Frequency domain spectrum of this signal is

shown in Fig. 4.3 (a). Figures 4.3 (b) and 4.3 (c) show the effect of spatial oversam-

pling, which squeezes the signal in the spatial frequency (Wx) axis for oversampling

factors of 2 and 4, respectively. A 1-bit quantizer with Σ−∆ architecture was used

to quantize the considered wideband signal. Figures 4.3 (d), 4.3 (e) and 4.3 (f)

show the quantization noise spectrum for the cases with no spatial oversampling,

spatial oversampling with factor of ×2, and spatial oversampling with factor of ×4,

respectively, where the quantization noise is shaped out of the ROS of the quantized

signal.
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(a) (b) (c)

(f)(e)(d)

Figure 4.3: Spectrum in 2D: (a) wideband with no spatial oversampling, (b) wide-
band with spatial oversampling ×2, (c) wideband with spatial oversampling ×4;
shaped noise for (d) wideband with no spatial oversampling, (e) wideband with
spatial oversampling ×2, (f) wideband with spatial oversampling ×4.

4.1.4 Improvements in Signal-to-Noise Ratio

Figure 4.4 shows a signal-to-quantization-noise ratio (SQNR) comparison between

quantization with proposed Σ − ∆ architecture and normal quantization. Fig-

ures 4.4 (a), 4.4 (b), 4.4 (c) show the SQNR comparison results for cases from

1 to 3 bits for wideband signals with no spatial oversampling, oversampling ×2, and

oversampling ×4, respectively. The results show that the SQNR improvement is

significant for the case of 1-bit quantization and that spatial oversampling improves

SQNR.

The spectrum with no spatial oversampling spans over the entire region of

(−π, π). Application of Σ − ∆ quantization shapes the noise out of the ROS of

the signal. A comparison of SNR values for normal quantization and Σ−∆ quan-

tization is shown in Fig. 4.4 (a) for cases from 1 to 3 bits.
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(a) (b) (c)

Figure 4.4: SNR improvements: (a) wideband with no spatial oversampling, (b)
wideband with spatial oversampling ×2, (c) wideband with spatial oversampling
×4.

Oversampling of the wideband signal by a factor of 2 reduces the spatial fre-

quency span of the signal such that the spectrum narrows down over the spatial

frequency axis shown in Fig. 4.3 (b). This improves the SQNR as shown in Fig.

4.4 (b) for cases with 1 to 3 bits. Oversampling by a factor of 4 further squeezes the

spectrum of the wideband signal over the spatial axis. Noise shaping on this signal

improves the SQNR as shown in Fig. 4.4 (c) for cases with 1 to 3 bits.

4.2 Conclusion

A MD spatio-temporal extension of the ∆−Σ was proposed in this chapter for mul-

tiport ADCs for microwave focal plane array dish receivers. The extension involved

modifying the conventional ADCs with the use of 1-bit quantizers. The proposed

extension can be used for wideband signals with spatial oversampling to remove

quantization noise. The proposed technique was analyzed using a simulation and it

is believed to be suitable for experimental verification.
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CHAPTER 5

ANALOG MULTIPORT NETWORK ALGORITHMS

Chapter 2 discussed the spatio-temporal representation of a planar wave im-

pinging on a uniform linear array (ULA) or a rectangular array and the correlation

among the signal received by each element in the phased array. Einstein’s causality

light cone, discussed in Chapter 2, also showed that the 2D space-time frequency

domain (ωx, ωct) ∈ R2 is 50% empty even for the simplest case having a single spa-

tial variable. That is, the RoS of all possible waves lies within the 2D projection

of the light-cone of the frequency domain. For rectangular geometries (2D arrays),

the frequency domain is a whopping 66% empty. Therefore, assigning a dedicated

ADC for antenna/receiver ignores wave physics and treats the channels if they are

uncorrelated. In this chapter, we will explore a suite of microwave circuits and

digital signal processing (DSP) algorithms that exploit wave physics to drastically

reduce the ADC count and overall complexity by packing information from multiple

antenna elements into a single channel in a non-interfering manner.

We propose an array processing approach that exploits the the MD RoS of prop-

agating plane-waves received from array antennas, which is constrained to a sparse

region in the spatio-temporal frequency domain ω ≡ (ωx, ωct) ∈ R2. This chapter

presents the theoretical and mathematical analysis of the proposed analog multiport

network algorithms (AMNA) for ULAs, the process of extending these algorithms

to rectangular apertures, and a discussion of the required hardware implementation.

5.1 Theoretical Analysis of AMNA

Practical antennas have constrained radiation patterns that act like spatial low-pass

filters (Fig. 5.1(a)). The element patterns are constrained to the region −ψmax ≤

ψ ≤ ψmax for a predetermined gain threshold (e.g., −10 dB), such that the gain is
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Figure 5.1: (a) Positive half (temporal) of the 2D frequency plane showing the
finite element pattern; (b) Illustration of the linear transformed spectrum using the
transformation matrix V.

much lower than this threshold for |ψ| > ψmax. The resulting 2D spatio-temporal

frequency domain is sparse, and the approximately empty space can be utilized

to multiplex signals from multiple antenna elements (or polarizations) through a

receiver chain. Such multiplexing occurs at a controlled level of interference that is

part of the design trade-off for the system. The number of multiplexed signals can be

increased to reduce the required number of front-ends and ADCs. Mathematically,

this can be achieved by employing multidimensional linear transforms (MDLTs) to

transform the spectra of different sub-arrays to minimally interfering regions of the

MD domain of the spatio-temporal Fourier transform.

After the sparse regions of support are linear-transformed to lie on (ideally)

mutually exclusive regions of the 2D spectral domain, they can be linearly combined

without interference and sampled using one set of ADCs. Finally, the individual

signals from the ULA can be recovered using a 2D digital filter. If the pattern per

element (or sub-array) is constrained to be within ±ψmax = π/2K, where K ∈ Z+,

then the number of ADCs can be reduced by a factor of K in the best case scenario.

In this chapter this concept is referred to as “Analog Multiport Network Algorithms”

or “AMNA”. The theoretical analysis in this chapter was conducted in collaboration

with Dr. Viduneth Ariyarathna [59].
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5.1.1 Mathematical Analysis

If Wm(Ω) is the mixed domain 2D Fourier spectrum of the 2D mixed-domain plane

wave denoted as wm(u), ω = [ωx, Ωct]
>, and if u = [nx, ct]

> (nx ∈ Z, ct ∈ R), then

the Fourier spectrum of wm(Vu) (in which V is an invertible 2× 2 square matrix)

is
Wm(V−>ω)
|det V | , as proven below [77,111].

Let xa(t) be a 2D analog signal where t = [t1, t2]> ∈ R2 and let V be the sampling

matrix made up of linearly independent sampling vectors v1 = [v11, v21]> , v2 =

[v12, v22]>, where V = [v1|v2]. In this case, t = Vn, where n = [nx, ct]
>, nx ∈ Z,

and ct ∈ R. The spatially sampled, mixed-domain signal is then represented as

xm(n) = xa(Vn). The original analog signal xa(t) satisfies the Fourier relationships

Xa(ω) =

∫ +∞

−∞
xa(t)e−jω

′tdt,

xa(t) =
1

4π2

∫ +∞

−∞
Xa(ω)ejω

′tdω. (5.1)

Letting ζ = V′ω, the corresponding Fourier relationships for the sampled signal

xm(n) are given by

Xm(ζ) =
∑

nx

[∫ +∞

−∞
xm(n)e−jΩctcte−jωxnxdΩct

]
,

xm(n) =
1

4π2

∫ +∞

−∞

∫ +π

−π
Xm(ζ)ejΩctctejωxnxdωxdΩct.

Since xm(n) is obtained by sampling Eqn. (5.1), we can also write

xm(n) = xa(Vn) =
1

4π2

∫ +∞

−∞
Xa(ω)ejω

′V ndω. (5.2)

Substituting ζ = V′ω,

xm(n) =
1

4π2

∫ +∞

−∞

1

| det V|Xa(V
−>ζ)ejζ

′ndζ

=
1

4π2

∫ +∞

−∞

∫ +π

−π

1

| det V|
∑

k

Xa(V
−>(ζ − 2πke1))ejζ

′ne−j2πke
′
1ndω, (5.3)
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where e1 = [1 0]>, k ∈ Z, and the last term is unity. Thus,

xm(n) =
1

4π2

∫ +∞

−∞

∫ +π

−π

1

| det V|
∑

k

Xa(V
−>(ζ − 2πke1))ej(Ωxnx+Ωctct)dω. (5.4)

By comparing Eqn. (5.4) with Eqn. (5.2), we can see that

Xm(ζ) =
1

| det V|
∑

k

Xa(V
−>(ζ − 2πke1)). (5.5)

Setting V =




1 0

−cτ 1


, i.e., V−> =




1 cτ

0 1


, would enforce a linear transform

on the 2D signal by introducing a nxτ, τ ∈ R delay to the signal at each spatial

sample location nx; here, τ would depend on ∆x sinψmax
c

. The linearly transformed

spectra of Wm

(
V−>ω

)
(corresponding to the original Wm (ω) shown in green in

Fig. 5.1(a)) are shown in Fig. 5.1(b). For an antenna array receiving a 2D plane

wave, the received signal sm (u) and its spectrum Sm (ω) are filtered by the antenna

response, where Sm (ω) = Wm (ω) Ψ (ω) and where Ψ (ω) is the radiation pattern

in the 2D Fourier domain.

The antenna pattern provides room for different spectra captured by equally

spaced, equi-element sub-arrays to be shifted and combined together, thus reducing

the number of required front-end chains. Alternatively, omni antennas may also be

used under conditions of constrained field-of-view (FoV) with no strong directional

interference outside the expected FoV. For example, radio astronomy arrays may

look up at the sky in a 30◦ FoV, or a long-range radar receiver may sense within

a cone of interest. The signal energy of the spectrum Sm(ω) within the frequency

band Ul (in Fig. 5.1(b)) is given by

Il,0 =
1

4π2

∫ ∫

Ul

1

| det V|2 |Sm(V−>ω)|2dω. (5.6)

If Ul is defined by ωx = [βl, βh], the corresponding 2D spectral region is defined by the

intersection of four lines: Ωct = Ωct,h, Ωct = Ωct,l, Ωct =
Ωct,h
βl
ωx, and Ωct =

Ωct,h
βh

ωx.
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As a result, Eqn. (5.6) can be written as

Il,0 =
1

4π2

∫ Ωct,h

Ωct,l

∫ βhΩct
Ωct,h

βlΩct
Ωct,h

1

| det V|2 |Wm(V−>ω)Ψ(V−>ω)|2dω. (5.7)

5.1.2 Extension to K Bands with Different Linear Trans-

forms

Suppose we use different transformations Vk =




1 0

−cτk 1


, k ∈ [0, K − 1] to trans-

form signals from antenna elements (or sub-arrays of identical spacing and size) in

a ULA. The idea is to choose matrices Vk such that all Sm,k(Vku)s are combined

to make

ym,k(u) =
K−1∑

k=0

Sm,k(Vku) (5.8)

such that the required ADC complexity can be reduced by a factor of K (K ∈ Z+)

while also minimizing the interference between different spatial bands. The spectrum

of the combined mixed-domain 2D signal after the linear transformation is

Ym(ω) =
K−1∑

k=0

Sm,k
(
V−>k ω

)
, (5.9)

where Sm,k
(
V−>k ω

)
is the spectrum of the linearly-transformed 2D signal from the

kth sub-array. Suppose Vk=l is used to transform the signal of the lth sub-array

such that the dominant spectrum of the signal Sm,k
(
V−>l ω

)
is moved to the spatial

frequency band Ul. The interference energy that is artificially created in the Ul band

can now be calculated as follows:

Il =
1

4π2

∫ Ωct,h

Ωct,l

∫ βhΩct
Ωct,h

βlΩct
Ωct,h

∣∣∣∣∣∣∣

K−1∑

k=0
k 6=l

[
1

| det Vk|
Wm,k

(Vk
−>ω) Ψk(Vk

−>ω)
]∣∣2 dω. (5.10)
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Figure 5.2: (a) Conventional architecture of an all-digital beamforming array. (b)
Overview architecture of the MDLT method, in which linear-transformed spectra
are combined to reduce the ADC count. (c) The intact MD spectrum observed by
the ULA; linear-transformed spectra for (d) Sub-array 1, and (e) Sub-array 2.

The model in Eqn. (5.10) can now be used to derive the distortion introduced

by the added signal processing by substituting the analytical or simulated antenna

radiation patterns.

5.1.3 Simulated Example: ULA

Consider an N -element Nyquist-sampled ULA (shown in Fig. 5.2(a)) where the

antenna patterns are restricted to 0 < ψ < π
6
, such that the RoS in the MD spectrum

is constrained to be within − tan−1 1
2
≤ θ ≤ tan−1 1

2
as shown in Fig. 5.2(c). To

apply the proposed MDLT, the ULA is divided into two sub-arrays, as shown in

Fig. 5.2(b), without changing the inter-element spacing. The linear transform shifts

the MD spectra of Sub-array 1 and Sub-array 2 to the left and right respectively,

as shown in Figs. 5.2(d–e), such that the signals can be combined without spectral

interference as shown in Fig. 5.2(f).
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5.2 Extension to Rectangular Apertures

Consider an Nx×Nx Nyquist-sampled rectangular aperture in the far-field shown in

Fig. 2.7. By extending the mathematical analysis to the mixed-domain 3D Fourier

spectrum Wm(ω), where the 3D mixed-domain plane wave is denoted as wm(u),

ω = [e−jωx , e−jωy , Ωct]
>

and u = [nx, ny, ct]
> (nx, ny ∈ Z and ct ∈ R), the Fourier

spectrum of wm(Vu), (where V is an invertible 3× 3 square matrix) is
Wm(V−>ω)
|det V | .

For V =




1 0 0

0 1 0

−τx −τy 1




, i.e., V−> =




1 0 τx

0 1 τy

0 0 1




, the linear transform ex-

tends to 3D such that the temporal frequency remains unaffected, while the spatial

frequencies are shifted to

ω′x = ωx + τxΩct, ω
′
y = ωy + τyΩct, and Ω′ct = Ωct, (5.11)

where τx depends on ∆x sin θ cosψ
c

and τy depends on ∆y sin θ sinψ
c

. The transformed

mixed-frequency domain takes the form [e−jω
′
x , e−jω

′
y ,Ωct] ∈ C2R.

Assume the antenna patterns are restricted to 0 < θ < θmax for all φ. The

RoS of the spectrum observed by the rectangular aperture is constrained by a cone

ω2
x + ω2

y = (KΩct)
2, as illustrated in Fig. 5.3(a). The linear transform slants the

conical region of the RoS to a different direction while following the equation (ω′x−

τxΩ
′
ct)

2 + (ω′y − τyΩ
′
ct)

2 = (KΩ′ct)
2. Such a linearly transformed spectrum for a

rectangular aperture is shown in Fig. 5.3(b). Linear transforms can be used in

different configurations, as shown in Figs. 5.3(c–d), to reduce the number of ADCs

required to sample the receiver chains.

70



Ωct
ωy

ωx

(−π, π)

ωxωx (−π,−π)

(π, π)

ωy

Ωct
(b)

Ωct,h

Ωct,l

(c)

U0

U1

U3

U4U2

(d) ωy

ωx

(−π,−π)

(−π, π)

U1 U6

U2 U0 U5

U3 U4

(−π, π)

(−π,−π)

(a)

ROS of plane
waves

antenna pattern at
a constant Ωct

(π, π)

(−π, π)

(π,−π)(π,−π)(−π,−π)

(π, π) (π, π)

βx,l βx,h

βy,hβy,l

ωy

(π,−π) (π,−π)

Figure 5.3: (a) The spectrum observed by the rectangular aperture, and (b) linear
transformed spectrum. Possible linear transform configurations to combine (c) five,
and (d) seven channels.

5.2.1 Simulated Example: URA

The uniform rectangular array (URA) in Fig. 5.4(a) is considered for simulation.

The simulated RoS of the input spectrum seen by the URA takes the form of a

frustum bounded by the light cone, as shown in Fig. 5.4(c). A 2D matrix of τ is

considered for the convenience of illustration, such that τx,y = τx + τy where (x, y)

are the coordinates corresponding to each antenna location (nx, ny). This configu-

ration considers four sub-arrays (one for each quadrant) that are defined as shown

in Fig. 5.4(a). Four different linear transforms are applied to the RF signals from

these sub-arrays. These linear-transformed signals are combined without interfer-

ence, processed by RF chains for amplification and down-conversion, and sampled

using ADCs as shown in Fig. 5.4(b).

Our simulations assumed 0 < θ < π/6 for a Nyquist-spaced URA with M × N

elements. The spectrum of sub-array a (red) was shifted to the second quadrant

by applying delays over both rows (τy steps) and columns (τx steps) starting from

the top left corner, whereas the spectrum of sub-array b (blue) was shifted to the

first quadrant (on ωx−ωy plane) by applying increasing delays over rows (τy steps)

and decreasing delays over columns (τx steps). The spectra of sub-arrays c and d

were transformed to the third and fourth quadrants, respectively. These signals can

be combined using a K : 1 combiner without spectral overlap (Fig. 5.4(d)), thus
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Figure 5.4: (a) Uniform rectangular array (URA) with MD linear transforms at
RF, and (b) combination stage followed by RF chains (RFCs) and ADCs for a fully
digital beamformer. Simulated spectra: (c) observed by the rectangular aperture,
and (d) linear-transformed and combined without interference.

allowing the ADC count to be reduced by a factor of K = 4. As a result, ADC

complexity is reduced by 75%.

5.3 Hardware Implementation

The linear transforms are realized using passive transmission line segments, with

lengths chosen to provide the required true time delays within the frequency bands

of interest. The amplified output of each LNA is applied to a set of transmission

lines. The delayed signal components are combined using passive microwave power

combiners (based on microstrip lines or transformers) before being applied to the

ADCs.

Due to their use of low-loss delay elements, the linear transforms will not signif-

icantly affect receiver noise figure. However, the increased signal power present at

each ADC input will reduce the effective number of bits (ENOB) of the final sam-

pled and quantized received signal on a per-antenna basis. Specifically, the peak

signal amplitude from each K-fold multiplexed component must be reduced by a
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factor of K to prevent ADC saturation. Thus, multiplexing will reduce each ADC’s

peak signal-to-noise and distortion ratio (SNDR) by 20 log10(K) dB, and ENOB will

degrade by 1 bit each time the value of K is doubled. Such degradation may not

be significant, since low-resolution ADCs (down to 1-bit resolution) are becoming

more popular for wireless systems [112].

5.4 Conclusion

The conventional use of ADCs in receiver systems assumes omni-directional antenna

patterns, which are directional in practice and waste resources due to the sampling

of unoccupied regions in the 2D spectral domain. This chapter explained how we

exploited directional sparsity of directional antenna arrays by using a linear transfor-

mation, such that the unoccupied region of the 2D spectrum can be used to include

information from multiple antennas/sub-arrays. The mathematical analysis shows

that the ADC requirement can be reduced by at least 50% for ULAs and by 75%

for URAs without losing array degrees of freedom.
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CHAPTER 6

RECEIVER APPROACHES BASED ON DIFFERENT

MULTIPLEXING METHODS

In previous chapters, we used multidimensional spectral properties to reduce the

ADC requirement in RF systems. In this chapter, we will discuss the possibility of

time-division, code-division and frequency-division multiplexing (TDM, CDM AND

FDM, respectively) in order to combine outputs from multiple receiver antennas

into a single ADC.

The advent of RF-enabled digital hardware, such as the Xilinx RF system on chip

(SoC) technology, allows the combined realization of programmable digital fabrics

with high-speed ADC/DAC on the same chip [113]. An RF SoC platform such as

Xilinx ZCU 1285 platfrom (shown in Fig. 6.4 (a)) contains 16 high-speed ADCs

(≈2 GS/s) and 16 high-speed DACs (6.5 GS/s) on the field programmable gate

array (FPGA) chip. Although such state-of-the-art RF SoCs support a maximum

of only 16 channels, the bandwidth per DAC channel can be up to 3.25 GHz.

Multiplexing of multiple receiver channels into a single wideband signal with

subsequent digitization using a high-precision RF-ADC is a trade-off between the

number of ADCs M and the signal bandwidth B [114]. If the sample rate is Fs,

then it follows that multiplexing in the primary Nyquist zone is bounded by MB ≤

Fs/2. TDM, CDM [115–118] and FDM are the three main techniques for combining

multiple analog streams into an over-sampled ADC with the objective of ADC reuse

over multiple spatial channels. The multiplexing of M antenna channels into a single

ADC allows an M -fold increase in the supported independent spatial channels on a

single RF-SoC device.
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Figure 6.1: Implementation architectures for (a) TDM-based and (b) CDM-based
hardware reduction schemes.

TDM-based Receiver Approach

In TDM, antenna elements are periodically switched to the same RF channel using

a commutating analog switch as shown in Fig. 6.1 (a). The switching rate has to

be greater than MB Hz which, in turn, leads to artifacts and non-linearities in the

signal due to practical constraints with real-world RF switches. Since the signal

from each antenna is received for a duration of time of 1/M duration, for an M -

element system, this approach exhibits a considerable amount of SNR degradation.

To overcome this, FDM-based and CDM-based approaches can be considered.

CDM-based Receiver Approach

CDM solves the problem of switching artifacts and non-linearities by modulating

each channel using an orthogonal code (shown in Fig. 6.1 (b)), such as Walsh–

Hadamard (WH) codes [119], before summation and digitization in a single ADC

[115,116]. The multiplexed channels are recovered using cross-correlation.

The use of an on-site coding receiver (OSCR) is a recently proposed approach

[115–117] that facilitates the use of a single ADC instead of using a dedicated ADC
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for each antenna element. This approach uses the concept of CDM to uniquely

identify the signal received by the corresponding antenna element, as shown in

Fig. 6.1 (b). The receiver consists of a series of analog multipliers to code the output

from each receiver by multiplying the output with a set of orthogonal, binary-coded

(typically WH) waveforms. Since these coding waveforms are orthogonal, the coded

outputs from multiple receivers can be summed without having interference, such

that the summed output can be sampled and quantized using a single ADC. Once

digitized, the original channels can be recovered with minimal signal degradation

using cross-correlation in digital. In this approach, SNR does not degrade. Since

every signal is coded with a unique code, this approach is resilient to interference and

jamming. The combination of multiple (M) channels require M unique modulation

waveforms for coded down-conversation and sampling. The bandwidth of these

coded outputs increases extensively with the number of bits. Therefore, the ADCs

are required have to high sampling rates and support high bandwidths in order for

CDM to be applicable in wideband applications.

FDM-based Receiver Approach

In the FDM approach, signal received by each antenna are frequency-multiplexed

into narrowband with different center frequencies. FDM-based approaches may use
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a single ADC to process each shared group of channels, but strict filtering is required

to separate the channels in the digital domain. We propose FDM in multi-antenna

access points with fully-digital DSP beamforming. The proposed concept is verified

using a four-element prototype operating at 28 GHz using Xilinx RF SoC ZCU-

1285 where a discrete Fourier transform (DFT) is applied spatially to achieve four

orthogonal receive-mode RFl beams at 28 GHz, thereby experimentally verifying

four-fold increase (i.e.,M = 4) in the number of supported spatial degrees of freedom

per ADC channel.

6.1 Design of the FDM Array Receiver

6.1.1 Multi-Stage Down-Conversion

The proposed system shown in Fig. 6.2 will employ FDM for down-converting M

antenna signals into an intermediate frequency (IF) channel where each receiver is

frequency translated to a known center frequency using a two-stage down-conversion.

In Stage − 1, a common local oscillator (LO) is employed to achieve bulk down-

conversion to the microwave band f0. Subsequently, in Stage − 2, an M -array of

different LOs provide frequency-division multiplexed IF signals that are combined

in the analog/microwave domain after suitable passive filtering to obtain the FDM

signal that is sampled by a single ADC. After sampling, the IF signal is processed

using DSP in which FDM-multiplexed signals are split into their corresponding

antenna channels in baseband using digital sub-band filtering. Sub-band filtering is

realized in a real-time DSP filterbank, such as a polyphase finite impulse response

(FIR) perfect-reconstruction filterbank [120]. Sub-banded channels are finally down-

converted to baseband using one digital down-converter (DDC) per channel.
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Towards this goal, a variety of DSP filter topologies can be utilized for baseband

signal recovery. The recovered signals correspond to the M individual antenna

channels and are available for subsequent multi-beam DSP beamforming, spatial

interference nulling, computation of channel state information (CSI) or any other

MIMO signal processing operation. Major challenges involved with FDM realization

include the following:

1. Phase synchronization,

2. Computation of phase offset term corresponding to the element index,

3. Calibration of analog/digital Stage− 2 LO, and

4. Increased digital hardware complexity.

Section 6.1.2 presents an extensive analysis of the impact of the first three chal-

lenges and proposes an approach to overcome them. Digital hardware complexity

reduction is achieved by designing optimized poly-phase FIR filter structures, which

is discussed in Section 6.1.3.

6.1.2 Phase Synchronization and Frequency Locking

FDM across multiple antenna channels requires synchronization between the Stage−

2 analog down-conversion and the digital down-conversion to retrieve phase infor-

mation from the M channels. Here, we will discuss the mathematical reasoning

behind this requirement. Consider a planar wave impinging on a M -element ULA

with an inter-element spacing of ∆x at a direction of arrial (DOA) of ψ. The signal

received by the kth antenna element rk(t) is given by Eqn. (6.1), where x(t) is the

information-bearing signal.

rk(t) = x(t− τk) cos(ωct− θk) (6.1)
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Here, ωc = 2πfc where fc is the carrier frequency and where θk = ωcτk in which

τk = ∆x sinψ
c

(k−1) and c is the speed of light. Since x(t−τk) ≈ x(t) for a narrowband

signal, the signal pk(t), k ∈ [1, 2, . . . ,M ] at each of the kth receiver after the first

down conversion can be expressed as,

pk(t) = LPF {rk(t) cos(ω0t+ φ0)}

= K1x(t) cos[(ωc − ω0)t− φ0 − θk], (6.2)

where K1 is a constant dependent on the gain of the low pass filter (LPF) response

and K1 = 1/2 for a unit gain filter. Here, ω0 = 2πf0 and the angle φ0 is the phase of

the Stage−1 down-converter local oscillator (LO) at the initial time of consideration

(i.e., t = 0). For (ωc − ω0) = ω′, Eqn. (6.2) is simplified as,

pk(t) = K1x(t) cos(ω′t− θk − φ0). (6.3)

Assume there exists a temporal offset of t′k between the Stage − 2 down-converter

and the digital down-conversion stage. This t′k is caused by propagation delays and

synchronization issues between the two systems. If the kth FDM output is qk(t) at

the second stage of down-conversion, it is given by

qk(t) = LPF {pk(t) cos(ωk(t− t′k))}

= LPF



pk(t) cos


ωkt− 2π(ku+ v)t′k)︸ ︷︷ ︸

kα+β+φk





 . (6.4)

Since each kth frequency band in the FDM output has a unique center frequency, the

discrete frequency variable ωk can be expressed as ωk = 2π(ku+v), where (u, v) ∈ R.

Since t′k is a constant for a channel, we can find the angles α, β, and φk such that,

2π(ku + v) = kα + β + φk, where 0 ≤ (α, β, φk) ≤ π. The angle φk is caused by

the mismatch of propagation delays and φk = 0; k = [1, 2, . . . ,M ] for equal length

paths of propagation. The term kα + β results from the lack of synchronization
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between the analog FDM LOs and the corresponding digital down-converter LOs.

Therefore,

qk(t) = LPF {K1x(t) cos(ω′t− θk − φ0) cos(ωkt− kα− β − φk)} (6.5)

= K2x(t) cos


(ω′ − ωk)t− θk + φk + kα + β − φ0︸ ︷︷ ︸

φ


 (6.6)

Equation (6.6) shows that the phase shift has a linear dependency on the array index

k, in addition to the phase shift caused by the inter-element propagation delay θk,

for an equal length (i.e., φk = 0) propagation. The digital beamforming core takes

θk into account, and the φ parameter could be eliminated by calibration. Yet, the kα

term still remains and causes an additional, progressive phase offset between each

of the down-converted channels. Frequency mismatches and additional phase offsets

have considerable effects in beamforming applications where the phase information

has a vast importance. The use of frequency-locked oscillators allow the digital

down-converter to bring the FDM channels down to the same frequency as the one

required by the digital beamformer. In order for the proposed approach to be used in

beamforming, it is required to eliminate the kα term from the equation. This can be

achieved by the use of the same LO samples in the digital down-converter to generate

the Stage− 2 LO signal to ensure the synchronization. This requires the operation

of both the ADC and the DAC using the same clock. A calibration stage is required

between the DAC oscillator and the digital down-converter to compensate for the

phase offset term corresponding to the element index (i.e., the term (kα+φ1 +φ2)).

The complex calibration coefficient Ck = Ake
−j[φ+kα] is determined by a test down-

conversion measurement at the broadside, and this value can be used to compensate

for the issues caused by different cable lengths and RF components as shown in

Fig. 6.4. Finding the Ck values using an oscilloscope before sampling could be tricky,

since all the M inputs are combined at the ADC input. Therefore, Ck needs to be
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set to (1+0j) for all k in the initial design, and corresponding phase and magnitude

offsets of the digitally down-converted (DDC) signals are measured at the broadside.

To compensate for these magnitude mismatches and the phase offsets, calibration

coefficients are updated, and the digital design is regenerated.

6.1.3 DDC and FIR Filtering

High sampling rates of ADCs (GSamples/s) can provide billions of data samples

per second. However, the operation frequency of the digital hardware is limited due

to certain timing restrictions as dictated by the critical path delay (CPD) in the

design. Complex designs introduce larger CPDs to the system, which leads to a

reduction of the operable clock frequency, and these designs often run at rates of

few hundred MHz. Therefore, it is required to have a parallel processing system

to process multiple samples at each digital hardware clock cycle. In practice, high-

speed ADCs in an RF chain (shown in Fig. 6.3(a)) provide a polyphase data stream

as shown in Fig. 6.3(b). In an a-phase system, the ADC provides a samples at

each digital hardware clock cycle. Therefore, it is required to follow a polyphase

architecture when implementing the desired filter structures. The use of polyphase

ADCs and the implementation of the FIR filterbank in polyphase result in lower

clock rate requirement for sampling and DSP. The derivation of the polyphase filter

function follows an approach similar to radix factorizing in discrete Fourier transform

implementations. Assuming that an ADC of a channels with an fs/2 sampling clock

is used and the Kth-order FIR filter with a Z domain transfer function H(z) is given

by coefficients b:

y[n] =
K∑

k=0

b[k]x[n− k]. (6.7)
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Figure 6.3: (a) Digital down-conversion. (b) Poly-phase filterbank.

By factorizing Eqn. (6.7), the polyphase filter functions for a phases can be derived

as:

y[n] =

H0︷ ︸︸ ︷
K/a∑

k=0

b[ak]x[a(n− k)] +

H1︷ ︸︸ ︷
K/a∑

k=0

b[ak + 1]x[a(n− k) + 1]+ . . .

+

K/a∑

k=0

b[ak + a− 1]x[a(n− k) + a− 1]

︸ ︷︷ ︸
Ha−1

. (6.8)

The filterbank can be implemented in polyphase as shown in Fig. 6.3(b). It

should be noted that the output data stream from each phase is undersampled by

a factor of a and that the set of a phases can reconstruct the total response by

providing a sets of outputs at each digital clock period. However, as the same filter

is repeated a times, the hardware complexity for polyphase structures increases by

a factor of a. Designing the FIR filters in the digital domain and determining the

guard band (Bg) involve a trade-off between the system bandwidth and hardware

complexity. We aim to pack as many frequency bands in the spectrum having the

smallest possible guard band. FIR filter implementations to filter closely packed

frequency bands require high-order “brick-wall filter” like structures. Polyphase

implementations of FIR filters require extensive hardware resources. We employed
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Figure 6.4: Overview of F0 = 28 GHz, 240 MHz/channel four-element FDM array
receiver.

the Xilinx SSR blockset for Xilinx RF-SoCs. For synchronization, both the DAC

and the ADC use a common clock signal.

6.1.4 Test-Bed Validation

A bank of M phase- and frequency-locked oscillators is used to frequency translate

inputs at known frequency offsets. The proposed FDM architecture is shown in

Fig. 6.4. Here Stage− 2 oscillators are required to be synchronized with each other

as well as with the digital down-conversion clock, using a stable low-jitter reference

clock via a bank of N frequency synthesizers (where N is an integer). To achieve

precisely synchronized samples, we use an RF-SoC DAC to generate LO2 while

using the same sampling clock for both the ADC and the DAC. A double-sided

signal bandwidth of B = 240 MHz per receiver and M = 4 antenna elements, each

designed for 28 GHz operation, have been assumed. The double-sided bandwidth of

four frequency multiplexed channels with a 10-MHz guard band (Bg) per channel is

1 GHz.

In the next stage (Stage− 2), the IF signals are down-converted to the required

IF for sampling and centered at LO2,k = 250k − 125 MHz, where k = 1, 2...M .

LO frequencies of 125, 375, 625, and 875 MHz are then applied to each of the
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Figure 6.5: (a) Simulation results showing the combined output from the Stage− 2
analog down-conversion fed to the ADC. Digital down-conversion and filtering for
narrowband signals centered at (b) 125 MHz, (c) 375 MHz, (d) 625 MHz, and
(e) 875 MHz. (f) Measurements of the combined signal sampled by RFSoC.

antennas to translate the received signals to 875-, 625-, 375-, and 125-MHz center

frequencies, respectively. The IF components are fed into a combiner to create the

FDM signal. Note that the FDM “baseband” can be sampled using a single ADC,

and the subsequent digital signal can be filtered, down-converted, and subjected to

a Hilbert transform to obtain the quadrature component. The inter-band frequency

guard bands Bg are needed to accommodate finite-order FIR filtering in the digital

domain. The output from this second-stage analog down-conversion is fed to the

ADC and is sampled at a sampling rate of Fs = 2 GHz.

Figure 6.5 (a) shows the sampled spectrum for M = 4 FDM channels, where

each has a bandwidth of 250 MHz (i.e., including Bg). Simulations have used a

combination of 32 tones with a space of 240/32 = 7.5 MHz to generate the wideband

signal, such that
∑16

n=1 cos(2π(fk ± 7.5n)t) for k = 1, 2, 3, 4. The digital down-

converter causes the aliased image components to fall back into the same Nyquist
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Figure 6.6: Experimental setup showing (a) the four-element, 28-GHz receiver an-
tenna array and (b) the transmitter array, and (c) Xilinx RFSoC ZCU1285.

zone. Highly selective FIR low-pass digital filters of the order of 70 were applied

to filter out the image components from each of the antenna spectra. The filtered

spectrum from the simulation of the DDC is shown in Figs. 6.5 (b–e).

6.1.5 Digital FDM Multi-Beam Measurements

The proposed digital FDM concept is verified through the measurements obtained

by using the prototype experimental setup shown in Fig. 6.6. A four-element patch

antenna array operating in the frequency range of 27.5 to 28.35 GHz that was

designed in our previous study [121] was used for this purpose. The Stage − 1

down conversion for each of the 28-GHz receiver antennas use an Analog Devices

EVAL01-HMC1065LP4E [122] module that contains HMC1065 chips. The experi-

mental validation requires an initial measurement to calibrate the phases of each of

the RF channels as well as synchronize fk with DDC LO. Therefore, a pilot tone

is transmitted at 28 GHz, and the antenna array is used to receive the signal at a

DOA of 0o as measured from the broadside.
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Figure 6.8: Retrieved carrier signals digitally down-converted to baseband.

Each EVAL01-HMC1065LP4E RF receiver contains an internal frequency dou-

bling circuit in the LO path of the first down-conversion stage. A National Instru-

ments RF signal generator was used to generate the first LO signal of 13.5 GHz,

yielding an LO of 27 GHz after the frequency doubler. The 1-GHz centered IF sig-

nals resulted from mix-down operation are low-pass-filtered for image-rejection and

noise suppression, and are passed to the second down-conversion stage as shown in

Fig. 6.7.
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Figure 6.9: Theoretical and measured beams at 28 GHz using digital real-time
beamforming using a single ADC to sample 4 independent channels.

RF-SoC DACs were used to generate the four phase- and frequency-synchronized

LO frequencies that are needed for the Stage−2 down-conversion. Frequency trans-

lation at the second stage is used to down-convert the antenna outputs to differ-

ent center frequencies such that the corresponding narrowband signals from the

four antennas are visible at 125 MHz, 375 MHz, 625 MHz, and 875 MHz. Four

commercial-off-the-shelf (COTS) RF mixers (MiniCircuits ZX05-12MH-S+) were

used in Stage− 2 followed by VLF-180, VLF-400+, VLF-630+, and VLF-800 LPFs

respectively. These LPFs were chosen to have sufficient attenuation to suppress the

effect of the second-order-harmonic of the corresponding FDM channel. A COTS

combiner (MiniCircuits ZFRSC-4-842-S+) was used to combine the four RF chan-

nels that were frequency translated by FDM.
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After the Stage − 2 down-conversion, outputs are combined and are sampled

at 2 GS/s to obtain the spectrum shown in Fig. 6.5 (f). The Xilinx ZCU-1285

FPGA shown in Fig 6.6 (c) is used to sample the input, DDC, and FIR filtering.

Since the digital hardware is designed to run using a 250-MHz clock, samples at

2 GS/s are processed using an eight-phase multi-rate DSP implementation (i.e.,

a = 8). Samples arriving from the ADC are then digitally down-converted to a

lower IF (10 MHz in this case) and then low-pass-filtered to retrieve the spectra.

Down-conversion plots shown in Fig. 6.8 presents information on the frequency and

the magnitude of the down-converted signals. Measurements show an SINR of

approximately 15 dB, which is an artifact of the measurement setup and LPF gains.

A digital spatial FFT was used to generate multiple beams. The RF source DOA

was swept from −π/3 ≤ ψ ≤ π/3 (measured from the broadside) to obtain spatial

beam patterns. MATLAB was used to generate the theoretical beam pattern for a

four-element antenna array with ∆x = 0.75λ spacing between antenna elements, and

the measurements of the received RF beams are plotted with their corresponding

theoretical beams in Fig. 6.9. An ideal digital beamformer is expected to have the

beam pattern shown in black, whereas the measured beam pattern (shown in red) is

observed to show the desired array factor with some deviations in the sidelobes. The

4-beam beamformer is operating as expected but there is deviation in the sidelobes,

most likely due to reflections in the measurement area (we were unable to access

a sufficiently large anenoic chamber due to pandemic restrictions over the last six

months; therefore the measurements were conducted in an indoor open space that

may suffer from unexpected reflections).

The same mixer was used in all four RF channels in the Stage − 2 down-

conversion, and the LPFs were chosen carefully to reduce the effect of second- and

third-order harmonics, which is the primary determinant of the SINR in this system.
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Second-order harmonics for 125 MHz and 250 MHz channels lie closer to the pass-

band and the filter roll-offs of the chosen COTS are not sufficient to completely block

the prominence of intermods and harmonics. In addition, implementation of two

cascaded down-conversion stages may combine the noise figures of active and pas-

sive elements in both stages, leading to a lower SINR. Effects of such non-idealities

can be reduced by choosing steeper LPFs at a tradeoff with the cost. Extension of

the implemented system to larger values of M , say M = 16, could achieve greater

savings from a cost standpoint for implementing massive MIMO at scale for large

arrays.

6.2 Conclusion

The requirement for large numbers of independent ADC channels is a bottleneck for

implementation of mm-wave massive MIMO. The largest available RF SoC device

can accommodate 16 ADCs per chip. FDM was proposed at the receiver to reduce

ADC counts in order to facilitate large massive-MIMO arrays having multiples of

16 independent receivers without compromising the spatial degrees of freedom us-

ing available devices. Multiple antenna signals were multiplexed in the frequency

domain and were sampled using a single ADC to increase the number of anten-

nas per RF SoC by a factor of M . The proposed architecture was verified for a

four-element 28-GHz digital array with fully digital beamforming using a Xilinx RF

SoC ZCU-1285. The proposed architecture allows over-sampled ADCs to digitize M

independent receive antennas via FDM. Measurements of the four-element 28-GHz

system shows support for 240 MHz of bandwidth per channel at an SINR of 15 dB.

Improvements in RF circuit designs (better linearity and noise reduction) will enable

future systems with improved SINR. A multi-beam digital beamformer was realized
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using four-point FFTs in the digital domain using the four-antenna outputs sampled

using a single ADC. The proposed method allows 64 antennas and 64 independent

spatial channels at 28 GHz when using a Xilinx ZCU-1285 RF SoC with 16 ADCs.
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CHAPTER 7

USE OF ADFT IN DIGITAL BEAMFORMING TO REDUCE

HARDWARE COMPLEXITY

Methods discussed in previous chapters are used in reduction of ADC complex-

ity in RF circuits. Processing of received signals is mostly happened in the digital

domain using digital hardware. Digital FFT cores have numerous applications in

multidimensional systems, where lower complexities are preferred to achieve lower

area and power consumption. This chapter discusses about the digital implementa-

tion of a low complexity 1024-point ADFT core to replace FFT and its applications.

The DFT is a linear transform widely applied to convert a sampled (discrete-

time) signal into a representation over the discrete frequency domain. The N -

point DFT computes N uniformly spaced frequency domain outputs (also called

“bins”) using N uniformly sampled discrete-time signal values by means of an N×N

transformation matrix. In a typical scenario, both spatial and temporal signals

can be transformed to the corresponding frequency domain using the DFT [123].

However, the computational complexity of computing the N -point DFT using direct

matrix-vector multiplication is O(N2) where O(·) represents the big O notation for

asymptotic complexity [124].

The computational complexity of computing the N -point DFT can be signifi-

cantly reduced by using a suite of fast algorithms known as FFTs which can reduce

the computational complexity to O(N log2N). Because implementations of the

multiplication operation generally require much more chip area and/or processing

time than other arithmetic and logic operations, the computational complexity of

computing the DFT is usually expressed in terms of its multiplication count [125].

The required number of multiplications depends on the fast algorithm employed

for the particular transform length N in consideration. In [87], the theoretical
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lower bound for the DFT multiplicative complexity was established as a function

of N . The search for particular N -point FFT methods that strives to attain the

theoretical lower bound for multiplicative complexity is a separate field of research

in signal processing, computer science, and applied mathematics, with a multitude

of FFT algorithms available [126–129].

Usually, FFTs are based on sparse factorizations of the DFT matrix and provide

DFT computations at arbitrarily high levels of precision depending on a particular

implementation. For example, a typical double precision realization in software

using a modern 64-bit processor can provide nearly-exact computation. However,

these realizations are often prohibitively slow. For example, in modern MRI where

hundreds or thousands of antenna elements are used, computational efficiency is

vital for real-time imaging of fast-moving objects (e.g., arterial blood flow or heart

musculature), and may require MIMO antenna signal processing and/or exploitation

of sparsity [130,131].

Fortunately, such high accuracy is of limited practical relevance in certain RF

applications [16], such as MRI, SDR, and radar signal processing, where the accu-

racy of the results is limited by other system parameters or environmental conditions

(e.g., thermal noise in a receiver, or harmonic distortion in a microwave mixer or

amplifier). In such applications, relentless pursuit of high accuracy in the compu-

tation of the DFT is fruitless in terms of overall performance, and smart system

design recognizes this for power and cost optimization. A good example of this was

the design of the GSM second-generation wireless cellphone standard, and its choice

of Gaussian Minimum Shift Keying (GMSK) modulation. Designers realized that

the wireless system noise due to oscillators and channel multipath effects was much

greater than the self-noise induced by intersybmol interference (ISI) of the GMSK

modulation. Choosing a non-coherent modulation scheme such as GMSK would not
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be ideal in a perfect channel, but was suitable in this case due to practical device

and channel limitations (e.g., self-noise was well below the system-level noise floor).

However, the DFT computations should not be too coarse, since signal errors

and uncertainties imposed by the system become dominant only after a certain level

of precision is achieved. In other words, the precision of the DFT computation can

only be compromised as long as the overall performance of the system is negligibly

affected.

The adoption of ADFT computation opens up new possibilities for fast algo-

rithms which do not compute the DFT in a strict mathematical sense, but never-

theless can be good enough for a particular application. Such approximations allow

tremendous reductions in computational complexity; much more than the reduced

complexity levels of traditional FFTs, albeit at a deterministic price paid in per-

formance due to inherent non-exact computation. We suggest that such a loss of

accuracy is justified when one considers the significant reductions in chip-area and

power consumption of the approximate algorithms compared to traditional FFT re-

alizations. The loss of accuracy is unlikely to have significant impacts on applications

such as digital RF beamforming which has performance dominated by other factors,

such as the mutual coupling between elements, mismatches of components, and

non-linearities in the RF receiver electronics. In this chapter, we explore three fast

algorithms for the approximate computation of the 1024-point DFT. The introduced

1024-point ADFT is based on a recently proposed 32-point DFT approximation and

multiplierless fast algorithm [132,133] which furnishes a reasonable’ approximation

of the 32-point DFT albeit without using any multiplications at all (i.e., it is an

adder-only signal flow graph).

The proposed work extends the 32-point ADFT [132, 133] to the 1024-point

transform case via three new fast algorithms having different trade-offs in computa-
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tional complexity and computational accuracy compared to the baseline exact DFT.

The proposed approximations are compared to the DFT in terms of arithmetic com-

plexity and relevant beamforming metrics, such as worst side lobe. The resulting

hardware designs are compared in terms of hardware resource consumption met-

rics such as area, maximum operating frequency, critical path delay, and dynamic

power. 32-point ADFT matrix derived by Dr. Renato Cintra and his team was used

in deriving an ADFT matrix for 1024-point case.

The chapter is organized as follows. Section 7.1 reviews the DFT and selected

popular FFT algorithms. In Section 7.2, we discuss the mathematical background

for the 32-point DFT approximation introduced in [132] and describe its associated

fast algorithm in matrix form. In Section 7.3, we present 1024-point DFT approx-

imations and discuss three different algorithms to implement them. Section 7.4

explores the digital VLSI realization of the proposed 1024-point DFT approxima-

tion. Section 7.5 discusses an application of the proposed transform in the context

of wireless modulation.

7.1 Review of the DFT and FFT

In this section, we cover mathematical background related to the DFT definition

and FFT algorithms.

7.1.1 DFT Mathematical Definition

Let the vector x =

[
x[0] x[1] . . . x[N − 1]

]>
represent a signal with N samples.

The DFT maps the input signal x into an output signal
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X =

[
X[0] X[1] · · · X[N − 1]

]>
according to the following relationship:

X[k] ,
1√
N

N−1∑

n=0

x[n] · ωnkN , k = 0, 1, . . . , N − 1, (7.1)

where ωN = e−j
2π
N is the Nth root of unity and j ,

√
−1. On the other hand, the

inverse DFT (IDFT) is given as

x[n] =
1√
N

N−1∑

k=0

X[k] · ω−nkN , n = 0, 1, . . . , N − 1. (7.2)

The DFT of x can be expressed through a matrix-vector multiplication X = FN ·x,

where

FN =
1√
N




1 1 1 ... 1

1 ωN ω2
N ... ω

(N−1)
N

1 ω2
N ω4

N ... ω
2(N−1)
N

1 ω3
N ω6

N ... ω
3(N−1)
N

...
...

...
...

...
1 ω

(N−1)
N ω

2(N−1)
N ... ω

(N−1)(N−1)
N




(7.3)

is the N -point DFT matrix [134].

7.1.2 FFT Algorithms

The computational complexity associated with performing the N -point DFT oper-

ation in direct form is O(N2). This complexity is prohibitive for most engineering

applications since a high number of operations accounts for (i) higher energy con-

sumption; (ii) higher latency; (iii) higher number of gates; and, in consequence,

(iv) higher chance of system failure. To address these issues, FFT factorizations

furnish a product of sparse (mostly zeros) matrices that reduces the DFT computa-

tional complexity to O(N logN). Different FFT algorithms can be identified in the

literature [135–138]. In particular, we separate the Cooley-Tukey FFT [125], the

split-radix FFT [136], and the Winograd FFT [139], which are given the following

brief descriptions.
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Cooley-Tukey Algorithm

A very popular form of the Cooley-Tukey algorithm is the radix-2 decimation-in-

time FFT, which splits the N -point DFT computation into two N/2-point DFT

computations resulting in an overall reduced complexity [135]. Recursive use of this

algorithm reduces the number of multiplications from O(N2) down to O(N log2N).

Split-radix Algorithm

This is a variant of the Cooley-Tukey FFT algorithm which uses a blend of radix-2

and radix-4 by recursively expressing the N -point DFT in terms of one N/2-point

DFT and two N/4-point DFT instantiations [136]. The split-radix algorithm can

reduce the overall number of additions required to compute the DFT of size power

of two without increasing the number of multiplications [140].

Winograd Algorithm

The Winograd algorithm exploits the multiplicative structure on the data indexing

of DFT and converts it into a cyclic convolution computation [137, 138]. In several

particular cases, the Winograd algorithm achieves the theoretical minimum multi-

plicative complexity [87] as shown in [137]. For large DFT blocklengths that can be

decomposed as a product of small primes, Winograd algorithm achieves near linear

complexity [125].

7.1.3 Matrix Representation of the N 2-point DFT in Terms

of the N-point DFT

We derive a matrix representation for the computation of the N2-point DFT in

terms of the N -point DFT via a radix-N FFT approach. Generally speaking, the
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N2-point DFT computation corresponds to a vector-matrix multiplication with a

N2 ×N2 matrix transformation:

X = FN2 · x. (7.4)

The above computation can be rewritten by directly invoking the Cooley-Tukey

algorithm in its more general form as detailed in [125, p. 69]. By explicitly following

the Cooley-Tukey algorithm, the N2-point DFT can be computed by means of:

1. address-shuffling the input column vector into a 2D N ×N array;

2. computing the N -point DFT of each array column using FFTs;

3. element-wise multiplying the twiddle-factors;

4. computing the N -point DFT of each resulting row using FFTs; and

5. undoing the address shuffling to convert the obtained 2D array into the final

output column vector.

The 1D to 2D mapping can be accomplished by means of the inverse vectorization

operator invvec(·) [141] (Cf. [142,143]) which obeys the following mapping:

invvec







x0

x1

...

xN2







=




x0 xN · · · xN(N−1)

x1 xN+1 · · · xN(N−1)+1

...
...

. . .
...

xN−1 x2N−1 · · · xN2−1



. (7.5)

From the above discussion, we have that the N2-point DFT shown in (7.4) can be

given the following matrix expression based on the Cooley-Tukey algorithm:

X = vec

({
FN ·

[
ΩN ◦

(
FN · (invvec(x))>

)]>}>
)
, (7.6)
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where vec(·) is the matrix vectorization operator [144, p. 239],◦ is the Hadamard

element-wise multiplication [144, p. 251], the superscript > denotes simple trans-

position (non Hermitian), and ΩN is the twiddle-factor matrix given by ΩN =

(ωm·nN2 )m,n=0,1,...,N . Noting that Ω>N = ΩN , (7.6) can be further simplified. In partic-

ular, for N = 1024 = 322, we have

X = vec
([

Ω32 ◦
(
F32 · (invvec(x))>

)]
· F>32

)
. (7.7)

The inner DFT call corresponds to row-wise transformation of invvec(x), whereas

the outer DFT performs column-wise transformations on the resulting intermediate

computation. The formulation shown in (7.7) is the fundamental expression on

which the proposed approximations in this work are based.

7.2 Multiplierless 32-point ADFT

In this section, the adopted multiplierless 32-point ADFT, introduced in [132], is

presented and its complexity and error analysis are discussed.

7.2.1 Matrix Representation

The considered 32-point ADFT matrix—denoted by F̂32—can be computed through

a product of sparse matrices whose real and imaginary parts of its coefficients con-

tains only ±1 entries. Such simple arithmetic leads to hardware designs that can be

realized with adders only.
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To present the factorization of F̂32, we need the auxiliary structures shown next.

Let Bt be a t× t real matrix given by

Bt =





[
I(t−1)/2 Ī(t−1)/2

1
Ī(t−1)/2 −I(t−1)/2

]
, if t is odd,

[
It/2 Īt/2
Īt/2 −It/2

]
, if t is even,

(7.8)

where Ik and Īk being the identity and counter-identity matrix of order k, respec-

tively. Let also Z1, Z2, and Z3 be the following matrices (for clarity, only the

non-zero elements are shown):

Z1 =




1 1
1

1
1

1 1
1

1
1

1 −1
1

1
1

1 −1
1

1
1




, (7.9)

Z2 =




1
−1 1

1
1 1

1 1 1
1 1

1 −1
1 −1

1 −1
1 −1

1
1 1

1 1 1
1 −1

1 −1
1 1

1 −1




, (7.10)

and

Z3 =




1 1 −1
1

1 1
1 −1

1 −1
1

1 1
1

1 1 −1
1

1 1
1

1 −1
1 −1

1 1




. (7.11)
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The 32-point ADFT matrix is factorized into eight sparse matrices Wk, for k =

0, 1, . . . , 7, according to [133]

F̂32 = W7 ·W6 ·W5 ·W4 ·W3 ·W2 ·W1 ·W0, (7.12)

where

W0 =
[
B17

B15

]
, W1 =




I16

[
0
I15

]

[
0
I15

]
I16


 ,

W2 =
[
B9

B7
I16

]
, W3 =




B5
1
B3

1
B3

B3
Z1


 ,

W4 =




B3
B2

B4
B4

B2
Z2


 , W5 =

[
B2

I15
Z3

]
,

W6 =




I16 

1 1
1 1
−1 1

1
1

1 1
1 −1

1 1
1 −1

1 1
1 −1

1
1 1

1 −1
1

1 −1






,

and W7 is given in (7.13).

7.2.2 Arithmetic Complexity

The associated multiplicative complexity of the Cintra-32-point ADFT is null [133].

No bit-shifting operations are required. The only source of arithmetic complexity

is the number of additions in the factorization in (7.12). Considering the case of
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complex input, the matrices W0, W1, and W4 require 60 real additions each and no

bit-shifting. The matrices W2, W3, and W5 require 28 real additions each and no

bit-shifting, as well. The matrix W6 requires 24 real additions and no bit-shifting.

The only complex matrix in the factorization, W7, requires 60 real additions and no

bit-shifting operations. In total, the transform F̂32 requires 348 real additions and

no bit-shifting. For comparison, the Cooley-Tukey radix-2 algorithm requires 88

real multiplications and 408 real additions [125,136].

7.2.3 Error Analysis

The filterbank frequency responses for four of the bins of the 32-point DFT, 32-

point ADFT, and the corresponding error plots are shown in Fig. 7.1. The four bins

shown are the ones corresponding the the rows of the 32-point ADFT that performs

the worst in terms of frequency response; thus they can be undestood as worst-case

scenarios. The 32-point ADFT is “close enough” to the exact DFT to be useful in

many practical applications, especially for wireless communications and SDR, where

its error level of about −10 dB is within the margin of error of the rest of the system

(which includes both electronics and electromagnetics).

7.3 Approximations for the 1024-point DFT

7.3.1 Approximation Methodology

High-precision VLSI implementation of FFT algorithms may result in unnecessarily

large circuits, high critical path delays, and wasted power. All of those factors con-

tribute to higher-cost circuits, reduced frequency of operation, and higher operation

costs. This is because digital multipliers demand a large amount of circuit resources
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W7 =




1
−j 1

1 −j
−j −1

1 j
−j 1

−1 −j
−1 −j

1 −j
−j −1

1 −j
−j −1

−1 j
−j −1

1 j
−j −1

1
j −1

1 −j
j −1

−1 −j
j −1

1 j
j −1

1 j
−1 j

−1 j
j 1

1 −j
j −1

1 j
j 1




.

(7.13)

when compared to simple adders. This makes the reduction of the number of mul-

tipliers in a given system crucial when chip area and power must be conserved and

high-speed operation is desirable.

We propose three ADFT algorithms which have small deviations of their filter-

bank responses when compared to the DFT. We assume that the applications at

hand will be tolerant of the given deviations of frequency response, and that such

deviations will be a small price to pay in exchange for the significantly smaller circuit

realizations and power consumption over traditional fixed-point FFTs. It should be

noted that the implementation of such approximate methods is not constrained by

the minimum theoretical bounds of multiplicative complexity [87], that apply to the

exact DFT. Indeed the proposed algorithms are not in fact calculating the DFT,

but furnishing approximations that are nevertheless deemed reasonable for most
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(c) Error

Figure 7.1: Filter-bank responses for (a) the exact 32-point DFT, (b) the 32-point
ADFT and (c) absolute error of the ADFT response for the rows with the poorest
performance.

high-speed digital-RF applications.

Based on (7.7), we propose the replacement of the exact 32-point DFT F32 by the

32-point ADFT proposed in [132].

Therefore, a suite of approximations for the DFT computation emerges.

We propose three different algorithms:

• Algorithm 1: ADFT-ADFT. Substitute both row- and column-wise 32-

point DFT F32 with the multiplierless 32-point ADFT F̂32;

• Algorithm 2: Hybrid ADFT-DFT. Replace only the row-wise 32-point

FFTs with the multiplierless 32-point ADFT in Section 7.2 leaving column-

wise DFTs exact, and;

• Algorithm 3: Hybrid DFT-ADFT. Replace only the column-wise 32-point

FFTs with the multiplierless 32-point ADFT in Section 7.2 leaving row-wise

DFTs exact.

Let X̂i for i = 1, 2, 3 denote approximations for X given by Algorithm 1, Algo-

rithm 2, and Algorithm 3, respectively. Thus we have mathematically:

X̂1 = vec
([

Ω32 ◦
(
F̂32 · (invvec(x))>

)]
· F̂>32

)
, (7.14)
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X̂2 = vec
([

Ω32 ◦
(
F̂32 · (invvec(x))>

)]
· F>32

)
, (7.15)

X̂3 = vec
([

Ω32 ◦
(
F32 · (invvec(x))>

)]
· F̂>32

)
. (7.16)

The above combinations of ADFT and DFT yield low-complexity approximations

for the 1024-point DFT, which—due to its relatively large blocklength—is a compu-

tationally intractable task via usual direct numerical search methods. Algorithms

1, 2, and 3 have considerably different computational complexities and performance

trade-offs as discussed in the next section.

7.3.2 Arithmetic Complexity

Twiddle-factor Matrix

In the three proposed algorithms, only the DFT computation F32 is subject to an

approximation; the twiddle-factor matrix Ω32 is left unaltered in its exact form

(cf. (7.7)). Therefore, a minimum number of multiplications remains due to Ω32.

Considering only the nontrivial multiplications, the twiddle-factor matrix requires

961 complex multiplications, which translate into 2883 real multiplications and 2883

real additions.

Algorithm 1

Here the only source of multiplicative complexity are the twiddle factors in between

the row- and column-wise 32-point ADFT blocks. Since the 32-point ADFT requires

348 additions and it is called 64 times, it contributes 64×348 = 22272 real additions

to the overall arithmetic complexity of Algorithm 1. The resulting arithmetic costs

are: 2883 real multiplications and 2883 + 22272 = 25155 additions.
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Table 7.1: Real arithmetic complexity for the exact 1024-point DFT and for the
proposed approximations

Algorithm Real Mult. Real Add. % Red. Comp.to Split Radix

Split-Radix FFT [136] 7,172 27,652 Real Mult. Real Add.

Cooley-Tukey Radix-2 FFT [125] 10,248 30,728 -42.89 -11.12

Winograd FFT [139] 10,248 30,728 -42.89 -11.12

Proposed Algorithm 1 2,883 25,155 59.80 9.03

Proposed Algorithm 2 5,699 27,075 20.54 2.09

Proposed Algorithm 3 5,699 27,075 20.54 2.09

Algorithm 2

Here multiplicative costs stem from the twiddle factors and the column-wise 32-

point exact DFT. The column-wise exact DFT is computed using the Cooley-Tukey

radix-2 FFT [125, 136] (see Section 7.2.2). Since this algorithm requires 32 calls

to the exact 32-point DFT and 32 calls to the 32-point ADFT, we have a total of

(32×88)+2883 = 5699 real multiplications and (32×408)+(32×348)+2883 = 27075

real additions.

Algorithm 3

Here the operation count follows the same rationale as for Algorithm 2, with the

difference that the roles of the row and column-wise transforms are swapped. There-

fore, Algorithms 2 and 3 have the same arithmetic costs. The arithmetic complexity

of the proposed methods is summarized in Table 7.1.

7.3.3 Performance of the Proposed Approximations

The rows of a linear transform matrix can be understood as a finite impulse response

(FIR) filter bank [124]. Thus we can assess how close the filter bank implied by the
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Figure 7.2: Log-magnitude error of the frequency response of the rows of the pro-
posed approximations where the least error is bounded to -60 dB

proposed approximations are relative to the exact 1024-point DFT. Considering the

frequency response error expressed in log-magnitude, the Fig. 7.2 shows (i) the up-

per and lower envelopes and (ii) the first, second, and third quartiles of the error

resulting from the proposed approximate filter banks [145, 146]. For ease of visual

inspection, we show only the normalized frequencies on the interval [−π/4, π/4].

The error of the frequency response for the remaining parts of the interval [−π, π]

are just a repetition of the plots in Fig. 7.2. Note that the three approximations

resulting from Algorithm 1, Algorithm 2, and Algorithm 3 have distinct frequency

response. Fig. 7.2 indicates that the Algorithm 1 is the one presenting the largest

deviation from the exact DFT. This is expected given that the transform result-

ing from Algorithm 1 is obtained through the substitution of both the row- and

column-wise DFT block by the discussed approximate 32-point DFT. This qualita-

tive analysis is confirmed once we calculate the errors in the frequency responses

of the rows of the three proposed approximations. Table 7.2 displays the minimum

(nonzero), mean, and maximum for the squared magnitude of these errors. Notice

that the transform resulting from Algorithm 1 has the highest deviations from the

expected frequency response for its rows. In Table 7.2, we also show the worst-case

side lobe in dB for each of the transforms. All considered transforms possess a low

worst-case side lobe, on the order of −12 dB.
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Table 7.2: Statistics of errors in the rows of the proposed approximations: frequency
response magnitude and worst-case side lobe level.

Transform Min (dB) Mean (dB) Max (dB)
Worst Side
Lobe (dB )

Algorithm 1 −10.67 −5.49 −4.43 −12.85

Algorithm 2 −10.67 −9.86 −9.01 −12.85

Algorithm 3 −10.67 −9.86 −9.01 −12.90

7.4 Digital VLSI Realization

Next, we explore the digital VLSI realization of the proposed systems using a time-

multiplexed approach. To distinguish the mathematical tool from its physical re-

alization, hereafter we refer to the circuit implementation of the selected 32-point

DFT and ADFT, respectively, as DFT32 and ADFT32 cores. Also, the hardware

for the 1024-point exact DFT and each of the 1024-point approximations resulting

from Algorithm 1, Algorithm 2, and Algorithm 3 are referred to as the DFT1024,

ADFT1024 1, ADFT1024 2, and ADFT1024 3 cores, respectively.

Fig. 7.3 shows the overall architecture of the DFT1024 with the DFT32 cores.

We focus on the design of the ADFT1024 1 core. Because this design can be easily

extended to the other cores, the description of the ADFT1024 2 (Algorithm 2) and

ADFT1024 3 (Algorithm 3) cores is omitted for brevity.

The core ADFT1024 1 processes an input signal block of 1024 time-domain sam-

ples in 32 clock cycles. Each signal block consists of 32 rows of adjacent time-domain

samples in 32 columns. The first ADFT32 block sequentially computes the 32-point

ADFT of each row, which are given by: x[k], x[32+k], x[2×32+k], . . . , x[31×32+k],

for k = 0, 1, . . . , 31. Intermediate frequency-domain values are passed to the trans-

pose buffer, which realizes the matrix transposition operation in digital VLSI hard-

ware, while operating in-step with the system clock. One complete matrix trans-
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Figure 7.3: Signal flow graph showing the VLSI architecture to be modified for the
proposed architecture based on the selected approximation. Algorithm 1: Replace-
ment of both 32-point DFTs with 32-point ADFT blocks. Algorithm 2: Replacement
of only row-wise 32-point DFT with 32-point ADFT blocks leaving column-wise
DFT exact. Algorithm 3: Replacement of column-wise 32-point FFT with 32-point
ADFT blocks leaving row-wise DFT exact.

pose operation is achieved every 32 clock cycles. The transpose buffer feeds the

second time-multiplexed ADFT32 after suitable twiddle factors have been applied,

which in turn, furnishes the desired 1024-point ADFT values. In order to mini-

mize the chances of overflow, the second time-multiplexed ADFT32 block in Fig. 7.3

uses a larger wordlength by one bit than the first time-multiplexed ADFT32 block.

This accommodates for the arithmetic operations that are carried on the first time-

multiplexed ADFT32 and the twiddle factors.

7.4.1 Transpose Buffer and Twiddle Factors

The transpose buffer shown in Fig. 7.4 consists of a mesh of 1024 delays and 32

parallel multiplexers, each of them possessing 32 inputs. It generates the transpose

of the first set of frequency bins. The transposition allows the column-wise DFT

computation.
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Figure 7.4: Schematic diagram of the transpose buffer.

Twiddle-factor multiplication consists of 961 complex multipliers, which are the

only multiplications present in ADFT1024 1, which results from Algorithm 1. Each

of the column bins (after the transpose buffer) undergoes a multiplication by ωm·n1024,

where 0 ≤ m ≤ 31 and 0 ≤ n ≤ 31. Therefore, the precision of the twiddle-factor

multipliers plays a critical role in the final area A, area-time AT , and area-time-

squared (AT 2) metrics. In this chapter, we have set the twiddle-factor precision level

to be equal to the system word size of the inputs to the ADFT1024 1 core. This choice

is a design parameter and the choice of lower precision levels in the twiddle factors

would result in improvements in the VLSI metrics for all three proposed algorithms.

In a sense, hardware designed with such conservative parameters can be thought of

as worst-case benchmark, with more coarsely quantified twiddle factors leading to

even better improvements in area, area-time, and area-time-squared metrics.

7.4.2 Circuit Complexity

ADFT1024 1 core

Each ADFT32 requires 130 adders/subtractors and no multipliers. The twiddle-factor

matrix Ω32 in (7.14) demands 2883 real multipliers. As shown in Fig. 7.3, the pro-
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Table 7.3: Circuit complexity for the proposed architectures and the 1024-point
DFT

Design Multipliers Adders

1024-point DFT 3, 039 3, 679

Algorithm 1 2, 883 3, 143

Algorithm 2 2, 961 3, 621

Algorithm 3 2, 961 3, 621

posed architecture for Algorithm 1 uses only two ADFT32 cores. Thus, ADFT1024 1

has an overall circuit complexity of 260 adders/subtractors and 2883 multipliers.

ADFT1024 2 core

Regarding ADFT1024 2, only the row-wise DFT block is substituted by the selected

ADFT block. The total number of multipliers is dictated by the column-wise DFT32

block and the twiddle factors. The twiddle factor matrix requires 2883 real mul-

tipliers. The DFT32 requires a total 78 real multipliers. The number of adders is

influenced by all the blocks. The DFT32 contributes 398 adders. The twiddle factor

matrix requires 2883 adders. The ADFT32 demands 340 adders. Thus, we have an

overall circuit complexity of 3621 adders and 2961 multipliers ADFT1024 2.

ADFT1024 3 core

The complexity for the hardware implementation for the Algorithm 3 follows the

same numbers of ADFT1024 2. The only change is in the placement of the elements

in the architectural level.

The circuit complexities for the proposed designs as well as DFT1024 are presented

in Table 7.3.
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Table 7.4: Key quantitative measurements of performance in digital 65 nm CMOS
VLSI for each algorithm

Performance
Metric

DFT1024
ADFT1024 1 ADFT1024 2 ADFT1024 3

Value Change Value Change Value Change
Area, A (mm2) 1.35 0.23 82.96% ↓ 0.58 57.04% ↓ 0.26 80.74% ↓
Critical Path Delay, T
(ns)

2 1.92 4% ↓ 1.86 7% ↓ 2 -

Frequency, Fmax

(GHz)
0.5 0.52 4.12% ↑ 0.54 7.53% ↑ 0.5 -

AT
(mm2ns)

2.7 0.44 83.64% ↓ 1.08 60.04% ↓ 0.52 80.74% ↓
AT 2

(mm2ns2)
5.4 0.85 84.30% ↓ 2.01 62.84% ↓ 1.04 80.74% ↓

Dynamic Power, Dp

(mW/GHz)
150.62 48.19 68.00% ↓ 71.75 52.36% ↓ 121.84 19.10% ↓

7.4.3 ASIC Synthesis and Place-Route Results: 65nm CMOS

The proposed architectures were implemented on MATLAB Simulink using Xil-

inx libraries and then mapped to 65-nm complementary metal-oxide semiconductor

(CMOS) technology cells (synthesis only). Each of the designs consists of three

main hardware components—first 32-point transform block, transpose buffer with

twiddle-factor multiplication block, and second 32-point transform block. The com-

plexity of each 32-point transform block core depends on its corresponding input

word length. In Table 7.4, we enlist the hardware implementation metrics for

ADFT1024 1, ADFT1024 2, and ADFT1024 3. Metrics for the DFT1024 core were in-

cluded as reference values.

7.4.4 Analysis of the Results

The results in Table 7.4 shows that all three 1024-point ADFT cores demands con-

siderably less hardware resources than the 1024-point exact DFT core. On the

other hand, the implementation of the transpose buffer with twiddle factor multi-

plication adds a fixed hardware complexity to the system for both the DFT and
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Figure 7.5: Plots for γk, which is used to measure the deviations from orthogonality
of (a) Algorithm 1, (b) Algorithm 2, and (c) Algorithm 3 from the ideal case of the
1024-point DFT matrix, with a cap of 40 dB for visualization purposes. The plots
show the output SIR due to spectral leakage among DFT bins due to various levels
of approximation.

the approximate architectures. As a result, the transpose buffer causes the highest

area consumption and a relatively high power consumption in comparison to that

of 32-point ADFT cores. Thus, it becomes the dominant factor in hardware com-

plexity for the designs of the three 1024-point approximate transforms, as shown in

Table 7.4.

The core ADFT1024 1 gives the best hardware utilization, whereas ADFT1024 2

gives the worst as can be seen in Table 7.4. Algorithm 3 gives the best error per-

formance, i.e., provides the most accurate approximation. Moreover, the hardware

resource consumption of its physical realization ADFT1024 3 is also close to that

of ADFT1024 1. The error performance of Algorithm 2 does not differ much from

that of Algorithm 1, which also provides a hardware realization ADFT1024 1 with

the lowest resource consumption. Therefore, we recommend either Algorithm 1 or

Algorithm 3 (i.e., its hardware realizations ADFT1024 1 and ADFT1024 3) as the best

designs.
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7.5 Applications in Wireless Modulation

In this section, we examine two real-world applications for the proposed algorithms

and their implemented architectures.

7.5.1 OFDM

OFDM Background

The N -point DFT realizes a filterbank with N fully-orthogonal frequency domain

responses. For the kth bin (frequency response), the maxima occurs at discrete

frequency points 2kπ/N with zeros at 2nπ/N where n 6= k, k = 0, 1, . . . , N −

1 [147,148]. The fact that these responses are orthogonal to each other allows high

spectral efficiency in wireless communications based on OFDM [149]. In OFDM,

each spectral bin is individually modulated using a high-order modulation, typically

64-point quadrature amplitude modulation (64QAM) consisting of a constellation

fitting a grid of size 8 × 8 in the real-imaginary (I-Q) planes of the N frequency

channels [150]. Orthogonality allows independent modulation of the channels (a

form of multiple access) without the spectra of modulated channels interfering with

each other. Thus, this property is important for high spectral efficiency via high-

order modulation and low bit-error rates when the signal-to-noise ratio (SNR) is

high (e.g., > 30 dB) [151].

Approximately Orthogonal Frequency Division Multiplexing (A-OFDM)

Although the proposed approximations are not orthogonal, they may be “orthog-

onal enough”. Thus, we proceed to quantify their deviations from orthogonality.

Let Hk(ω; T) for ω ∈ [−π, π] be the frequency response at the kth discrete frequency

point (bin) for the transform T. It is known that the DFT evaluates Hk(ω; T) over
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the frequencies ωn = 2πn/N for n = 0, 1, . . . , N − 1 [124]. It is also known that the

N -point DFT has the following property:

Hk(ω; FN)|ωn =





1, if n = k,

0, if n 6= k,

(7.17)

where k = 0, 1, . . . , N − 1 [124, 125]. In general, DFT approximations do not fol-

low (7.17). DFT approximation F̂N usually follows a relaxed condition, given by

Hk(ω; F̂N)|ωn =





α, if n = k,

εk, if n 6= k,

(7.18)

where k = 0, 1, . . . , N − 1, and α ≈ 1 and εk ≈ 0.

Let TN be an N -point transform. A possible way to evaluate how orthogonal a

transform TN is by computing

Mk(TN) =
‖α‖2

∑N−1
n=0
n6=k
‖εk‖2

, (7.19)

where k = 0, 1, . . . , N − 1. The expression in (7.19) measures the amount of energy

of the bin k that is leaked– or spread–to other bins other than k. It is a measure

of the interference of all the beams on the kth beam. Its value is related to the

signal-to-interference ratio (SIR) of the output signal after being transformed by T.

Because of (7.17), we have that for the DFT, Mk(FN)→∞ for k = 0, 1, . . . , N − 1.

For an arbitrary DFT approximation, this does not hold true.

Fig. 7.5 shows the values of γk = 10 log10(Mk(F̂N)) for the proposed three al-

gorithms. Notice that, for visualization purposes, the values of γk in Fig. 7.5 are

capped to a maximum of 40 dB.

The value ofγk works as an upper limit to the maximum reachable SIR that one

can obtain after computing the kth bin. Under orthogonality, there is no leakage
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Figure 7.6: Beamforming architecture of a 1024 ULA receiver using the proposed
architecture. The rewiring block performs multiplexing as shown in Fig. 7.3.

from and to the neighboring bins, and therefore γk →∞. This makes the bin output

take the input signal-to-noise plus interference ratio (SNIR) value, indicating both

perfectly orthogonal response and no loss of performance. Higher dB for γk values

quantify the computation accuracy of the kth bin of A-OFDM schemes, and serves

as a guide for the choice of A-OFDM design parameters. In general, the lower the

SNR of the input signal, the lower the possible depth of modulation (i.e., lower-order

QAM on the kth bin).

For the purpose of illustration, we assume SNRinput = 40 dB, which is reasonable

for a high-performance wireless system capable of 1024-point OFDM with 1024-

QAM per subcarrier using ideal DFTs [152–155]. The values of γk for the three

proposed ADFT algorithms in Fig. 7.5 show that the smallest SIR is of the order

of 7 dB, which is still acceptable for many applications [151] where the input SNR

of the system is relatively low. In particular, this regime is relevant for SNR-limited

wireless systems including emerging 5G and 6G wireless communications, which use

mm-wave and sub-THz channels that are expected to have low SNR when direct

line-of-sight may not be available [5]. In fact, for lower order modulations, such as
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64QAM, and quadrature phase shift keying (QPSK), the required minimum SNR

per subcarrier is approximately 27 dB, and 3 dB, respectively [156].

Therefore, the use of DFT approximations would allow a designer to assign

high-capacity (i.e., high spectral efficiency) modulations to the particular bins that

maintain the high input SNR (i.e., approximately 40 dB input SNR), while assign-

ing lower order modulations to bins with degraded SNR values. This results in a

trade-off in maximum system capacity depending on whether one uses the DFT, or

one of the three proposed ADFTs. Thus, use of the ADFT entails an engineering

compromise that trades OFDM system capacity for smaller chip area, battery life

(lower dynamic power), and speed (due to lower critical path delay).

7.5.2 Multi-Beam Beamforming

Electronically-steerable transmit and receive aperture arrays for RF spectrum sens-

ing, communications, and radar use the FFT for multi-beam beamforming. For

example, simultaneous receiver beams are imperative for high-capacity MIMO wire-

less communication systems.

Multiple independent RF beams can be generated by applying an N -point spatial

FFT at each time sample across a uniform linear array (ULA) of antennas [157,158].

For an N -element ULA with Nyquist (i.e., λ/2) spacing, the N beams are uniformly

spaced in the spatial frequency domain with an interval of 2π/N . The proposed

architecture can be used to replace the FFT for this purpose, thus generating N =

1024 beams from a 1024-element ULA as shown in Fig. 7.6. In the proposed system,

each ADFT bin corresponds to a unique direction in space. Ideally these bins should

be identical to the spatial DFT bins, but their magnitude could deviate because of

the approximation. The four worst bins for each of the three algorithms are shown
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in Fig. 7.7. The resulting errors are small enough to be acceptable in low-SNR

scenarios.

Realization of 1024-element ULAs for generating narrow beams in currently-

licensed frequency bands (upto the V band) may be challenging due to the large

sizes of the resulting apertures. However, due to ongoing research in the sub-THz

range [159–167], the W and G bands will soon be commercially available. At a

carrier frequency of 300 GHz, λ/2 = 0.5 mm and thus the size of a Nyquist-spaced

1024-element ULA would decrease to a reasonable value of 51.2 cm.

7.6 Conclusion

FFTs are used for reducing the computational costs of evaluating the DFT. Gen-

erally, they decrease complexity from O(N2) down to O(N logN). In this chapter,

we have showed that further savings can be accomplished by means of approximate

methods. The resulting 1024-point DFT approximations present a trade-off between

performance and hardware complexity without significant loss in terms of worst-side

lobe and SNR.

Our work shows that larger block-length DFT approximations can be obtained

from the smaller-size approximations derived using previously-described numerical

optimization methods. Our methodology can be directly applied to any DFT for

which the block length is a perfect square. Since the current DFT approximations in

the literature are restricted to the sizes {8, 16, 32} [132, 146, 168–170], approximate

algorithms can be derived for N ∈ {64, 256, 1024}. In this work, we focused on the

1024-point case. Assuming that a multiplierless DFT approximation of size
√
N

can always be found, our derivations suggests that we can obtain an N -point DFT

approximation that requires onlyN−2
√
N−1 multiplications; effectively making the
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Figure 7.7: The four worst bins for multi-beam beamforming: (a) exact DFT re-
sponse, (b) ADFT response, and (c) error for algorithm 1; (d) exact DFT response,
(e) ADFT response, and (f) error for algorithm 2; (g) exact DFT response, (h)
ADFT response, and (i) error for algorithm 3.
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complexity of the resulting N -point approximation O(N). The proposed algorithms

were synthesized to digital VLSI using a 65-nm CMOS library. Synthesis results

confirm the expected improvements in layout area and power consumption metrics

compared to a conventional 1024-point DFT implementation.

The choice of algorithm depends on the application and its tolerance for com-

putational error in the DFT block. Highly error tolerant applications can greatly

benefit from Algorithm 1 which has the lowest complexity. Algorithm 3 maybe

selected when Algorithm 1 does not furnish sufficient performance.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Phased antenna array systems are being used in mmWave applications to increase

the total physical aperture size and to obtain more degrees of freedom such as spa-

tial diversity and multi-user compatibility. Sub-THz massive MIMO and mmWave

MIMO systems may incorporate hundreds or perhaps thousands of antenna elements

to achieve highly directional beams. Antenna arrays can form multiple, highly di-

rectional beams using beamforming approaches where the directionality and the

sharpness of the beams increase with the number of antennas. Analog beamforming

used in phased array systems consumes less power but has a lower degree of free-

dom as compared to digital beamformers, which require a dedicated RF chain and

an ADC for each element of the array. The mixed-signal component of a phased ar-

ray system (i.e. ADC/DAC) creates a bottleneck as the SWaP and cost parameters

have a high dependency on this component.

In traditional realizations, a fully digital N -element phased array system can

achieve N independent digital beams and require N ADCs at IF or 2N ADCs at

baseband to sample I and Q components. Digital hardware in digital beamform-

ers often use DFT cores to generate multiple beams by performing a spatial DFT.

The complexity (which is determined by the number of multiplications in the DFT

matrix) can be reduced by following FFT computational algorithms, yet the low-

est complexity of an N -point DFT is bounded by N for exact implementations.

Therefore, mixed and digital domain hardware complexities are massive at higher

N values, leading to extensive SWaP and costs.

The earlier chapters discussed several mixed and digital domain algorithms that

can be used to reduce the ADC complexity as well as the possibility of approximating

the DFT matrix to reduce digital domain complexity.
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The well known Σ−∆ concept is widely used in ADCs to reduce the complexity

by shaping the quantization noise out of the signal band. The possibility of extending

the Σ−∆ architecture to the MD domain by extending the feedback topology to both

space and time for discrete-space-and-continuous-time was discussed in Chapter. 3.

The findings presented in this chapter show that it is possible to eliminate the

requirement for spatial oversampling, because of the sparsity in the MD spectrum.

This architecture also suggests employing a single N -port ADC to replace N ADCs

used in an N -element system such that the spatial correlation among received signals

can be taken into account, and the ADCs can be replaced with 1-bit quantizers. This

concept was analyzed theoretically and proposed for experimental verification.

The concept of N -port Σ − ∆ ADCs was extended for microwave focal plane

array (FPA) dish receivers in Chapter 4 to achieve ADC reduction. Realization of

this architecture replace conventional ADCs with 1-bit quantizers for temporally

wideband planar waves. Simulation results for focal plane ULAs have shown that

this concept is theoretically suitable for experimental verification.

The AMNA discussed in Chapter 5 uses the MD spectral properties discussed in

Chapter 2. The RoS of a planar wave impinging on a ULA or a URA at an angle of ψ

(as measured from the broadside of the array) takes the form of a line in the 2D or 3D

spectrum, respectively. The range of the RoS is bounded by a dual fan region for the

2D spectrum and a cone in the 3D spectrum with a half angle of π/4 for the full FOV

of −π
2
≤ ψ π

2
. Traditional use of ADCs assumes omni-directional antenna patterns,

even though these patterns are directional in practice. The novel approach proposed

in Chapter 5 involves exploiting the MD signal properties to linearly transform

the RoS such that the information captured by multiple antenna elements can be

accommodated in the same MD spectrum with little to no interference and that can

be sampled using a single ADC. Mathematical analysis of ULAs has shown that
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this approach can be used for single/dual polarized ULAs to achieve a k−1
k
× 100%

ADC complexity reduction, where k is the number of sub-arrays. Simulation results

have demonstrated that ADC complexity reductions of 50% for ULAs and 75% for

URAs can be achieved without losing degrees of freedom. Experimental verification

followed by CMOS realization of the analog component and FPGA realization of

required spatio-temporal filters for this concept can be conducted in future research.

Multiplexing algorithms can also be used to combine multiple RF channels to

reduce the ADC requirement. An FDM-based approach was presented in Chapter 6

to achieve an M -fold decrease in the number of ADCs required. Experimental

verification was performed for a four-element, 28-GHz phased array system for a case

where M = 4. Once the combined signal is digitized, Xilinx RFSoC 1285 FPGA was

used as the digital platform to implement polyphase filters that employ sharp FIR

filters to separate the frequency bands. A spatial FFT was used to generate four

beams having the highest degree of freedom, and analyzed using MATLAB. While

the proposed system achieved a factor of 4 in terms of ADC reduction, the received

spectrum was affected by the non-linearities of the system, and the SIR was about

15 dB. In future work, appropriate steps may be identified to avoid intermodulation

products and harmonics from aliasing into the signal spectrum, and a breakout

board to be used with Xilinx RFSoC may be developed.

Digital beamforming platforms use a FFT core to evaluate the spatial DFT. The

hardware complexity, which is often determined by the number of multiplications

in the DFT matrix can generally be reduced from O(N2) to O(N logN) using the

Cooley–Tukey algorithm. Some advanced approaches may be able to achieve even

lower complexities; however, the lowest achievable complexity for an N -point DFT is

bounded to be O(N). It should be noted that the implementation of the coefficients

of these matrices in digital hardware always requires an approximation because of
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the finite level of precision. Therefore, the DFT can be approximated further to

achieve a better reduction in hardware complexity at an allowable cost of precision.

Three implementation algorithms for realizing a 1024-point ADFT using Radix-32

approximate DFTs were presented in Chapter 7. The corresponding digital designs

were developed using a Xilinx System Generator for MATLAB Simulink and were

synthesized to digital very-large-scale-integration (VLSI) using the TSMC 65-nm

CMOS library. Hardware results have shown a reduction of approximately 80% in

the area and 68% reduction in dynamic power in comparison to its Cooley–Tukey

realization.
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and M. A. Hein, “Feasibility of dual-polarized antenna arrays for GNSS re-
ceivers at low elevations,” in 11th European Conference on Antennas and Prop-
agation, March 2017, pp. 857–861.

[40] W. H. Weedon and R. D. Nunes, “Low-cost wideband digital receiver/exciter
(DREX) technology enabling next-generation all-digital phased arrays,” in
2016 IEEE International Symposium on Phased Array Systems and Technol-
ogy (PAST), Oct 2016, pp. 1–5.

[41] A. Valdes-Garcia, A. Natarajan, D. Liu, M. Sanduleanu, X. Gu, M. Ferriss,
B. Parker, C. Baks, J. O. Plouchart, H. Ainspan, B. Sadhu, M. Islam, and
S. Reynolds, “A fully-integrated dual-polarization 16-element W-band phased-
array transceiver in SiGe BiCMOS,” in IEEE Radio Frequency Integrated Cir-
cuits Symposium, 2013, pp. 375–378.

[42] C. Fulton and W. J. Chappell, “Calibration of a digital phased array for po-
larimetric radar,” in 2010 IEEE MTT-S International Microwave Symposium,
May 2010, pp. 161–164.

[43] Y. Q. Wen, S. Gao, B. Z. Wang, and Q. Luo, “Dual-polarized and wide-
angle scanning microstrip phased array,” IEEE Transactions on Antennas and
Propagation, pp. 1–1, 2018.

[44] C. X. Mao, S. Gao, C. Tienda, T. Rommel, A. Patyuchenko, M. Younis,
L. Boccia, E. Arnieri, S. Glisic, U. Yodprasit, P. Penkala, M. Krstic, F. Qin,
O. Schrape, A. Koczor, G. Amendola, and V. Petrovic, “X/Ka-band dual-
polarized digital beamforming synthetic aperture radar,” IEEE Transactions
on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4400–4407, Nov
2017.

[45] S. B. Venkatakrishnan, E. A. Alwan, and J. L. Volakis, “Wideband RF self-
interference cancellation circuit for phased array simultaneous transmit and
receive systems,” IEEE Access, vol. 6, pp. 3425–3432, 2018.

128



[46] C.-X. Mao, S. Gao, and T. Rommel, “Low-profile aperture-shared X/Ka-band
dual-polarized antenna for DBF-SAR applications,” in 2017 International
Workshop on Antenna Technology: Small Antennas, Innovative Structures,
and Applications (iWAT), March 2017, pp. 104–107.

[47] J. Hansen, D. J. Jung, and K. Chang, “Dual-polarized, X-band, flat-panel
phased array,” in Proceedings of the 2012 IEEE International Symposium on
Antennas and Propagation, July 2012, pp. 1–2.

[48] P. Ahmadi, L. Belostotski, A. Madanayake, and J. W. Haslett, “0.96-to-
5.1GHz 4-element spatially analog IIR-enhanced delay-and-sum beamformer,”
in 2017 IEEE MTT-S International Microwave Symposium (IMS), June 2017,
pp. 1610–1613.

[49] A. Madanayake, V. Ariyarathna, N. Udayanga, L. Belostotski, S. K. Perera,
and R. J. Cintra, “Design of a low-complexity wideband analog true-time-delay
5-beam array in 65nm CMOS,” in 2017 IEEE 60th International Midwest
Symposium on Circuits and Systems (MWSCAS), Aug 2017, pp. 1204–1207.

[50] V. Ariyarathna, N. Udayanga, A. Madanayake, S. M. Perera, L. Belostotski,
and R. J. Cintra, “Design methodology of an analog 9-beam squint-free wide-
band IF multi-beamformer for mmW applications,” in Moratuwa Engineering
Research Conference, May 2017, pp. 236–240.

[51] C. Wijenayake, A. Madanayake, L. Belostotski, Y. Xu, and L. T. Bruton,
“Linear RF apertures using 2-D analog beam filters,” in IEEE International
Symposium on Circuits and Systems, May 2016, pp. 293–296.

[52] P. Ahmadi, M. H. Taghavi, L. Belostotski, and A. Madanayake, “6 GHz all-
pass-filter-based delay-and-sum beamformer in 130nm CMOS,” in 2014 IEEE
57th International Midwest Symposium on Circuits and Systems (MWSCAS),
Aug 2014, pp. 837–840.

[53] C. Wijenayake, A. Madanayake, L. Belostotski, Y. Xu, and L. T. Bruton, “All-
pass filter-based 2-D IIR filter-enhanced beamformers for AESA receivers,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 5,
pp. 1331–1342, May 2014.

[54] A. Madanayake, V. Ariyarathna, N. Akram, R. J. Cintra, and D. Coelho,
“Multi-beam radio frequency (RF) aperture arrays using multiplierless ap-
proximate fast Fourier transform (FFT),” University of Akron, United States,
Tech. Rep., 2017.

129



[55] A. Madanayake, R. J. Cintra, N. Akram, V. Ariyarathna, S. Mandal, V. A.
Coutinho, F. M. Bayer, D. Coelho, and T. S. Rappaport, “Fast radix-32 ap-
proximate dfts for 1024-beam digital rf beamforming,” IEEE Access, vol. 8,
pp. 96 613–96 627, 2020.

[56] R. W. H. Jr, “Mimo at millimeter wave,” Presentation, 2014. [Online].
Available: https://youtu.be/BQ45FuGpFQ0

[57] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and A. Ghosh,
“Millimeter wave beamforming for wireless backhaul and access in small cell
networks,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4391–
4403, 2013.

[58] Junyi Wang, Zhou Lan, Chang-woo Pyo, T. Baykas, Chin-sean Sum, M. A.
Rahman, Jing Gao, R. Funada, F. Kojima, H. Harada, and S. Kato, “Beam
codebook based beamforming protocol for multi-gbps millimeter-wave wpan
systems,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 8,
pp. 1390–1399, 2009.

[59] V. Ariyarathna, “Algorithms and circuits for analog-digital hybrid multibeam
arrays,” Ph.D. dissertation, Florida International University, 2019.

[60] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially
sparse precoding in millimeter wave MIMO systems,” IEEE Transactions on
Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.

[61] J. Xu, W. Xu, D. W. K. Ng, and A. L. Swindlehurst, “Secure communication
for spatially sparse millimeter-wave massive MIMO channels via hybrid pre-
coding,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 887–901,
2020.

[62] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel estimation
and hybrid precoding for millimeter wave cellular systems,” IEEE Journal of
Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–846, 2014.

[63] D. T. P. Viswanath, Fundamentals of Wireless Communication. Cambridge
University Printers, 2013.

[64] B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multiple-antenna chan-
nel hardening and its implications for rate feedback and scheduling,” IEEE
Transactions on Information Theory, vol. 50, no. 9, pp. 1893–1909, 2004.

130



[65] M. Alouzi and F. Chan, “Millimeter wave massive mimo with alamouti code
and imperfect channel state information,” in 2018 IEEE 5G World Forum
(5GWF), 2018, pp. 507–511.

[66] T. L. Marzetta, Fundamentals of massive MIMO. Cambridge University
Press, 2016.

[67] P. T. Kulkarni, M. H. Lee, and R. P. Paudel, “Performance analysis of dirty-
paper coding over mimo keyhole channels,” in 2006 International Conference
on Electrical and Computer Engineering, 2006, pp. 402–407.

[68] T. L. Marzetta, “How much training is required for multiuser mimo?” in 2006
Fortieth Asilomar Conference on Signals, Systems and Computers, 2006, pp.
359–363.

[69] ——, “Noncooperative cellular wireless with unlimited numbers of base station
antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11,
pp. 3590–3600, 2010.

[70] J. Hoydis, C. Hoek, T. Wild, and S. ten Brink, “Channel measurements for
large antenna arrays,” in 2012 International Symposium on Wireless Commu-
nication Systems (ISWCS), 2012, pp. 811–815.

[71] E. J. Black, “Holographic beam forming and mimo,” Pivotal Commware, 2017.

[72] E. Björnson, “Holographic beamforming versus massive
MIMO.” [Online]. Available: https://ma-mimo.ellintech.se/2018/03/16/
holographic-beamforming-versus-massive-mimo/

[73] ——, “The end of independent Rayleigh fading.” [Online]. Available: https://
ma-mimo.ellintech.se/2020/10/15/the-end-of-independent-rayleigh-fading/

[74] E. Bjornson, J. Hoydis, and L. Sanguinetti, Massive
MIMO Networks. now publishers Inc, 2017. [Online]. Avail-
able: https://www.ebook.de/de/product/31416100/emil bjornson jakob
hoydis luca sanguinetti massive mimo networks.html

[75] G. A. T. Warren L. Stutzman, Antenna Theory and Design. WILEY,
2012. [Online]. Available: https://www.ebook.de/de/product/16212802/
warren l stutzman gary a thiele antenna theory and design.html

131



[76] T. K. Gunaratne, “Beamforming of broadband bandpass signals using multi-
dimensional fir filters,” Ph.D. dissertation, University of Calgary, 2011.

[77] D. E. Dudgeon and R. M. Mersereau, Multidimensional Digital Signal Pro-
cessing (Prentice-hall Signal Processing Series). Prentice Hall, 1983.

[78] I. Montesinos-Ortego, J. L. Masa-Campos, M. Sierra-Perez, and J. L.
Fernandez-Jambrina, “Pyramidal adaptive antenna of plannar arrays for satel-
lite comunications,” in The Second European Conference on Antennas and
Propagation, EuCAP 2007, 2007, pp. 1–5.

[79] T. Li, F. Zhang, F. Zhang, Y. Yao, and L. Jiang, “Wideband and high-gain
uniform circular array with calibration element for smart antenna application,”
IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 230–233, 2016.

[80] L. C. Kretly, A. Cerqueira S, and A. Tavora AS, “A hexagonal antenna array
prototype for adaptive system application,” in The 5th International Sym-
posium on Wireless Personal Multimedia Communications, vol. 2, 2002, pp.
757–761 vol.2.

[81] W. Gautier, W. Gruener, R. Rieger, and S. Chartier, “Broadband multifunc-
tion AESA front-ends: New requirements and emerging technologies,” in 46th
European Microwave Conference, 2016, pp. 1481–1484.

[82] C. Wijenayake, A. Madanayake, and L. Bruton, “Broadband multiple cone-
beam 3-D IIR digital filters applied to planar dense aperture arrays,” IEEE
Transactions on Antennas and Propagation, vol. 60, no. 11, pp. 5136–5146,
Nov 2012.

[83] L. T. Bruton, “Three-dimensional cone filter banks,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, vol. 50, no. 2,
pp. 208–216, Feb 2003.

[84] R. J. Mailloux, Phased Array Antenna Handbook. Artech House Publishers,
2017. [Online]. Available: https://www.ebook.de/de/product/29930846/
robert j mailloux phased array antenna handbook.html

[85] C. A. Balanis, Antenna Theory. Hoboken, NJ: Wiley John + Sons,
2016. [Online]. Available: https://www.ebook.de/de/product/24340252/
constantine a balanis antenna theory.html

132



[86] H. Roger A. Horn, Topics in Matrix Analysis. Cambridge University Press,
2010. [Online]. Available: https://www.ebook.de/de/product/3303759/
roger a horn horn topics in matrix analysis.html

[87] M. T. Heideman, “Multiplicative complexity of linear and bilinear systems,”
in Multiplicative Complexity, Convolution, and the DFT. Springer, 1988, pp.
5–26.

[88] E. M. Deloraine, S. Van Mierlo, and B. Derjavitch, “Methode et systéme de
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