503 research outputs found

    Dynamic Server Allocation over Time Varying Channels with Switchover Delay

    Get PDF
    We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and show that it is throughput-optimal asymptotically in the frame length. The FBDC policy is applicable to a broad class of network control systems and provides a new framework for developing throughput-optimal network control policies using state-action frequencies. Furthermore, we develop simple Myopic policies that provably achieve more than 90% of the stability region. In the second part of the paper, we extend our results to systems with an arbitrary but finite number of queues.Comment: 38 Pages, 18 figures. arXiv admin note: substantial text overlap with arXiv:1008.234

    Queuing with future information

    Full text link
    We study an admissions control problem, where a queue with service rate 1p1-p receives incoming jobs at rate λ(1p,1)\lambda\in(1-p,1), and the decision maker is allowed to redirect away jobs up to a rate of pp, with the objective of minimizing the time-average queue length. We show that the amount of information about the future has a significant impact on system performance, in the heavy-traffic regime. When the future is unknown, the optimal average queue length diverges at rate log1/(1p)11λ\sim\log_{1/(1-p)}\frac{1}{1-\lambda}, as λ1\lambda\to 1. In sharp contrast, when all future arrival and service times are revealed beforehand, the optimal average queue length converges to a finite constant, (1p)/p(1-p)/p, as λ1\lambda\to1. We further show that the finite limit of (1p)/p(1-p)/p can be achieved using only a finite lookahead window starting from the current time frame, whose length scales as O(log11λ)\mathcal{O}(\log\frac{1}{1-\lambda}), as λ1\lambda\to1. This leads to the conjecture of an interesting duality between queuing delay and the amount of information about the future.Comment: Published in at http://dx.doi.org/10.1214/13-AAP973 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Progress Report : 1991 - 1994

    Get PDF

    Exact distributional analysis of online algorithms with lookahead

    Get PDF
    In online optimization, input data is revealed sequentially. Optimization problems in practice often exhibit this type of information disclosure as opposed to standard offline optimization where all information is known in advance. We analyze the performance of algorithms for online optimization with lookahead using a holistic distributional approach. To this end, we first introduce the performance measurement method of counting distribution functions. Then, we derive analytical expressions for the counting distribution functions of the objective value and the performance ratio in elementary cases of the online bin packing and the online traveling salesman problem. For bin packing, we also establish a relation between algorithm processing and the Catalan numbers. The paper shows that an exact analysis is strongly interconnected to the combinatorial structure of the problem and algorithm under consideration. Results further indicate that the value of lookahead heavily relies on the problem itself. The analysis also shows that exact distributional analysis could be used in order to discover key effects and identify related root causes in relatively simple problem settings. These insights can then be transferred to the analysis of more complex settings where the introduced performance measurement approach has to be used on an approximative basis (e.g., in a simulation-based optimization)

    Online Algorithms for Geographical Load Balancing

    Get PDF
    It has recently been proposed that Internet energy costs, both monetary and environmental, can be reduced by exploiting temporal variations and shifting processing to data centers located in regions where energy currently has low cost. Lightly loaded data centers can then turn off surplus servers. This paper studies online algorithms for determining the number of servers to leave on in each data center, and then uses these algorithms to study the environmental potential of geographical load balancing (GLB). A commonly suggested algorithm for this setting is “receding horizon control” (RHC), which computes the provisioning for the current time by optimizing over a window of predicted future loads. We show that RHC performs well in a homogeneous setting, in which all servers can serve all jobs equally well; however, we also prove that differences in propagation delays, servers, and electricity prices can cause RHC perform badly, So, we introduce variants of RHC that are guaranteed to perform as well in the face of such heterogeneity. These algorithms are then used to study the feasibility of powering a continent-wide set of data centers mostly by renewable sources, and to understand what portfolio of renewable energy is most effective

    EMM: Energy-Aware Mobility Management for Mobile Edge Computing in Ultra Dense Networks

    Full text link
    Merging mobile edge computing (MEC) functionality with the dense deployment of base stations (BSs) provides enormous benefits such as a real proximity, low latency access to computing resources. However, the envisioned integration creates many new challenges, among which mobility management (MM) is a critical one. Simply applying existing radio access oriented MM schemes leads to poor performance mainly due to the co-provisioning of radio access and computing services of the MEC-enabled BSs. In this paper, we develop a novel user-centric energy-aware mobility management (EMM) scheme, in order to optimize the delay due to both radio access and computation, under the long-term energy consumption constraint of the user. Based on Lyapunov optimization and multi-armed bandit theories, EMM works in an online fashion without future system state information, and effectively handles the imperfect system state information. Theoretical analysis explicitly takes radio handover and computation migration cost into consideration and proves a bounded deviation on both the delay performance and energy consumption compared to the oracle solution with exact and complete future system information. The proposed algorithm also effectively handles the scenario in which candidate BSs randomly switch on/off during the offloading process of a task. Simulations show that the proposed algorithms can achieve close-to-optimal delay performance while satisfying the user energy consumption constraint.Comment: 14 pages, 6 figures, an extended version of the paper submitted to IEEE JSA

    Move Big Data to the Cloud: an Online Cost-Minimizing Approach

    Get PDF
    published_or_final_versio

    Map-Based Driving Cycle Generation

    Get PDF
    corecore