2,401 research outputs found

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    A High Frequency Wireless Power Transfer System for Electric Vehicle Charging Using Multi-layer Non-uniform Self-resonant Coil

    Get PDF
    Wireless EV (Electric Vehicle) charging is an emerging technology with rapid development in the past decade. Compared to wired EV chargers, wireless power transfer (WPT) enables safe and unobtrusive charging for EVs. This work proposes high frequency wireless charging using a self-resonant (SR) coil at several megahertz. A multi-layer self-resonant coil structure is proposed, allowing high quality factor coils to be fabricated from layers of inexpensive copper foil and dielectric film. Additionally, the self-resonant coil utilizes its interlayer capacitance for resonance, eliminating the external compensation capacitor and shrinking the overall volume of passive component to increase the power density. Comparing to other self-resonant coils in the literature, it exhibits the characteristics of achieving high quality factor and high inductance simultaneously. Prototype coils with 200 mm radius are fabricated and tested, achieving quality factor over 450 at 3 MHz. The fabricated air-core coil structure is low-cost and lightweight, with 200 mm radius, 3 mm thickness and only 2 oz copper traces. The power stages, including GaN (Gallium Nitride) transistor based inverter and SiC (Silicon Carbide) diode based rectifier, are designed with emphasis on reduction of PCB (Printed Circuit Board) layout parasitics. Experimental tests show 95.2% dc-dc efficiency with 6.6 kW power transferred across a 100 mm coil-to-coil distance. The power density is 52.5 kW/m2, without need for any external compensation components. This work validates the concept of high frequency compact WPT system for EV. Practical shielding design is proposed for the WPT system with self-resonant coils, considering the high frequency parallel resonance effect. Complete coil pads are fabricated and assembled, incorporating the ferrite cores, PTFE (Polytetrafluoroethylene) spacer, and aluminum plate. The system is validated with shielded SR coils, achieving 92.3% DC-DC efficiency and 7.1 kW/dm3 volumetric power density. This work demonstrates the first 6.6-kW WPT system using compact self-resonant coils with practical shielding implementation. The concept of proposed multi-layer self-resonant coil is extended to other possible structures. Different multi-layer self-resonant coil structures are compared and analyzed, giving design guidelines for their capabilities at different system operating frequencies

    Optimization and Control of Lumped Transmitting Coil-Based In-Motion Wireless Power Transfer Systems

    Get PDF
    Wireless inductive power transfer systems are the only viable option for transferring energy to a moving vehicle. In recent years, there has been a great deal of interest in in-motion vehicle charging. The dominant technology thus far for in motion charging is elongated tracks, creating a constant eld for the moving vehicle. This technology suers from high volt ampere ratings and lower efficiency of 70%. On the other hand, stationary charging systems can demonstrate efficiency up to 95%. This thesis proposes lumped coils, similar to stationary charging coils for in-motion electric vehicle charging application. This novel primary coil architecture introduces new challenges in optimization and control. Traditional design of wireless inductive power transfer systems require designer experience, use of time consuming 3D FEM algorithms and lacks the comprehensive nature required for these systems. This thesis proposes two new optimization algorithms for the design problem which are comprehensive, based on only analytical formulations and do not need designer experience. There are challenges in the control of power transfer as well. Higher efficiency comparable to stationary systems can only be realized with proper synchronization of primary voltage with the vehicle position. Vehicle position detection and communication introduce significant cost and convenience issues. This thesis proposes a novel control algorithm which eliminates the need for vehicle position sensing and yet transfers the required percentage of energy. Both the optimization and control algorithms are verified with hardware setup

    Challenges of Inductive Electric Vehicle Charging Systems in both Stationary and Dynamic Modes

    Get PDF
    Inductive power transfer as an emerging technology has become applicable in wide power ranges including Electric Vehicle, Electric Aircraft, wheelchair, cellphone, scooter and so on. Among them, inductive Electric Vehicle (EV) charging has gained great interest in the last decade due to many merits namely contactless technology, more convenience, full automotive charging process. However, inductive EV charging systems could bring about so many issues and concerns which are addressed in this dissertation. One of the critical challenges addressed in this dissertation is a virtual inertia based IPT controller to prevent the undesirable dynamics imposed by the EVs increasing number in the grid. Another adverse issue solved in this dissertation is detecting any metal object intrusions into the charging zone to the Inductive Power Transfer (IPT) systems before leading to heat generation on the metal or risk of fire. Moreover, in this dissertation, a new self-controlled multi-power level IPT controller is developed that enables EV charging level regulation in a wide range of power; suitable for different applications from golf-cart charging system (light duty EV) to truck (heavy duty EV). The proposed controller has many merits including easy to be implemented, cons-effective, and the least complexities compared to conventional PWM methods. Additionally, in this dissertation, the online estimation of IPT parameters using primary measurement including coupling factor, battery current and battery voltage is introduced; the developed method can find immediate applications for the development of adaptive controllers for static and dynamic inductive charging systems. Finally, the last objective of this research is physics-based design optimization techniques for the magnetic structures of inductive EV charging systems for dynamic application (getting charged while in motion). New configuration of IPT transmitting couplers with objective of high-power density, low power loss, low cost and less electromagnetic emission are designed and developed in the lab

    Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources

    Get PDF
    As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV generations and grid are investigated in this thesis. The coupling between the PV generation and integration bus is accomplished through a unidirectional converter. Precise dynamic and small-signal models for the grid-connected PV power system are developed and utilized to predict the system’s performance during the different operating conditions. An advanced intelligent maximum power point tracker based on fuzzy logic control is developed and designed using a mix between the analytical model and genetic algorithm optimization. The EV is connected to the integration bus through a bidirectional inductive wireless power transfer system (BIWPTS), which allows the EV to be charged and discharged wirelessly during the long-term parking, transient stops and movement. Accurate analytical and physics-based models for the BIWPTS are developed and utilized to forecast its performance, and novel practical limitations for the active and reactive power-flow during G2V and V2G operations are stated. A comparative and assessment analysis for the different compensation topologies in the symmetrical BIWPTS was performed based on analytical, simulation and experimental data. Also, a magnetic design optimization for the double-D power pad based on finite-element analysis is achieved. The nonlinearities in the BIWPTS due to the magnetic material and the high-frequency components are investigated rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-flow controller that manages the bidirectional power-flow between the EV and grid is developed, implemented and tested. In addition, the feasibility of deploying the quasi-dynamic wireless power transfer technology on the road to charge the EV during the transient stops at the traffic signals is proven

    A Design of Inductive Coupling Wireless Power Transfer System for Electric Vehicle Applications

    Get PDF
    This research focuses on the study of using an inductive-coupled Wireless Power Transfer (WPT) system for electric vehicle charging applications in Medium Voltage DC (MVDC) power networks. Implementing WPT in Electric Vehicles (EVs) can provide a convenient alternative charging option, versus static charging in a station that would take hours. Also, it can prevent the potential of electrocution hazards that might occur due to the usage of physical medium like wires in EV charging. Even though inductive coupling has been applied in some applications of WPT, it is still not efficient enough to transfer high power at the kilowatts level due to weak coupling between the transmitter and the receiver. Using optimally-specified resonant circuits along with inductive coupling can enhance the coupling and make the system more efficient for practical applications. This research aims to design and analyze the performance of a 5-KW WPT circuit. The optimal specification of a resonant circuit is studied and discussed. Theoretical calculations are performed to find the component values in the circuit to reach. The WPT system is firstly verifiedmby performing simulation tests in the MATLAB/SIMULINK environment and then on a low power hardware testbed

    Autonomous electrical current monitoring system for aircraft

    Get PDF
    Aircraft monitoring systems offer enhanced safety, reliability, reduced maintenance cost and improved overall flight efficiency. Advancements in wireless sensor networks (WSN) are enabling unprecedented data acquisition functionalities, but their applicability is restricted by power limitations, as batteries require replacement or recharging and wired power adds weight and detracts from the benefits of wireless technology. In this paper, an energy autonomous WSN is presented for monitoring the structural current in aircraft structures. A hybrid inductive/hall sensing concept is introduced demonstrating 0.5 A resolution, < 2% accuracy and frequency independence, for a 5 A – 100 A RMS, DC-800 Hz current and frequency range, with 35 mW active power consumption. An inductive energy harvesting power supply with magnetic flux funnelling, reactance compensation and supercapacitor storage is demonstrated to provide 0.16 mW of continuous power from the 65 μT RMS field of a 20 A RMS, 360 Hz structural current. A low-power sensor node platform with a custom multi-mode duty cycling network protocol is developed, offering cold starting network association and data acquisition/transmission functionality at 50 μW and 70 μW average power respectively. WSN level operation for 1 minute for every 8 minutes of energy harvesting is demonstrated. The proposed system offers a unique energy autonomous WSN platform for aircraft monitoring

    Improve the Flexibility of Power Distribution Network by Using Back-to-back Voltage Source Converter

    Get PDF
    Employing increasing distributed generations (DGs) into existing distribution networks is an inevitable trend of the development of modern electric power systems because of the benefits including the environmentally friendly generation, higher efficiency and improved flexibility and reliability. However, high DG penetration level could pose various issues among which the voltage violation and fault level increase are the most concerned. According to the current situation of UK distribution networks, voltage violation is likely to be the first constraint to be met when DG penetration level is increased to certain level. Therefore, compensators are considered to be implemented to regulate the voltage. The reactive power compensators that widely used in transmission systems appear less effective in distribution networks thus active power compensation is desired. Soft-open points (SOPs) are power-electronic devices used replacing the normally-open points which can control active power transfer between two feeders and/or provide reactive power compensation. The back-to-back voltage source converter (B2B-VSC) is preferred as the SOP because of its capability of restricting fault current despite that it has higher power loss and associated capital cost. Two types of controller are developed for the B2B-VSC-based SOP: one is based on the PI control theory and the other is based on the concept of synchronverters. For the former type, the controller design is introduced comprehensively including system modelling and parameters selection. The precise selection of the damping ratio for nonstandard second-order system is derived, and a technique of resetting integrator in output voltage controller loop to achieve fast and smooth islanding transition is proposed. For the latter type, modifications are made to adapt the synchronverter idea to the application of an SOP. Simulations and experiments are carried out to validate the controller designs and both the controllers are verified to be able to provide sufficient performance on voltage regulation, fault current restriction and independent load supply in island mode. In general, the controller based on PI control theory has better performance in fault condition thanks to the current control loop, and the controller based on synchronverter owns better reliability because it does not require additional detections and signal switches inside the controller. At last, the use of an SOP in a dynamic load dominated network after the loss of mains is further investigated. Torque-speed characteristic is used to analyse the influence of the VSC’s filter impedance on the stability margin of an induction motor. Though the filter impedance can significantly decrease the stability margin, the output impedance of the VSC can be mitigated by properly designing the output voltage controller. Simulation and experiment are carried out to validate the analyses and controller design. The results show that the VSC is capable of supplying an induction motor in island mode

    High Voltage DC-biased Oil Type Medium Frequency Transformer; A Green Solution for Series DC Wind Park Concept

    Get PDF
    The electric energy generated by remote offshore wind parks is transported to the consumers using high voltage submarine cables. On the generation site, such transmissions are realized today by collecting the energy produced by several wind turbines in a bulky and expensive transformer placed on a dedicated platform. An alternative solution has been proposed recently, which allows to reduce the installation and maintenance costs by eliminating such a platform. It is suggested to equip each wind turbine in the wind park by an individual DC/DC converter and connect them in series to reach the DC voltage level required for an efficient HVDC energy transportation to the shore. The DC/DC converter is supposed to be a Dual Active Bridge (DAB) converter, which can be made reasonably small to be placed on the wind turbine tower or even in its nacelle. The key element of the converter defining its size and mass is a special transformer, which operates at voltages comprising a high (switching) frequency component superimposed on a high DC offset voltage. DC insulation design of such a transformer and investigation of the effects of a high DC insulation level on the other electromagnetic properties of the transformer is the subject of the present research.In order to verify the concept a prototype of the transformer was built, and its evaluation presented. The unit has been manufactured for the rated power of 50 kW and rated voltages 0.4/5 kV including DC offset of 125 kV and square-shaped oscillations with the frequency of 5 kHz. The magnetic system was made of ferrite material and consisted of 10 shell-type core segments. The magnetic properties have been verified by measuring magnetization and losses at various frequencies in the range 1-10 kHz to cover the operational range of the DAB. The types and dimensions of the windings and their conductors were chosen to minimize the proximity and eddy current effects at higher frequencies. To reduce the size of the transformer and to allow for its efficient cooling, the active part was immersed in oil and cellulose-based materials (paper and pressboard) were used to build the high voltage insulation system. The principles for dimensioning the insulation of the transformer are discussed. The criteria used for selecting insulating distances were based on the consideration of the electric field strength obtained from FEM simulations and using the non-linear Maxwell-Wagner model accounting for local variations of the electric field caused by accumulation of interfacial charges induced by DC stresses. The properties of the materials needed for the calculations were obtained by measuring their dielectric constants and electric conductivities. The methodology used for the measurements conducted for conventional mineral oil and eco-friendly biodegradable transformer oils and, respectively, for oil-impregnated paper/pressboard, is presented. The methodologies used for obtaining parameters of the built transformer prototype needed for its integration in the power electric circuit of the DAB are introduced. A method developed for accurate calculations of the leakage inductance for the shell-type multi core transformers with circular windings is described. Two innovative methods for evaluations of parasitic capacitances based on high frequency equivalent circuits of the transformer are presented. The results of their verifications against performed Frequency Response Analysis measurements and FEM calculations as well as their accuracy are discussed.Thermal performance of the developed transformer prototype is analysed based on the results of computer simulations of heat transfer in its active part under rated load. Identified hot spots and solutions for their elimination are presented.Finally, the expected dimensions, weight, and efficiency of an actual DC/DC converter with the rated parameters corresponding to a 6 MW, 1.8 kV real wind turbine having a 250 kV offset DC voltage are estimated assuming that the developed transformer prototype is scalable. It is shown that the proposed solution allows for installing the full-scale converter having 2.2 Tons in weight and 1.8 m3 in volume on the bottom of the wind turbine’s tower

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells
    • …
    corecore