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ABSTRACT OF THE DISSERTATION 

BIDIRECTIONAL ELECTRIC VEHICLES SERVICE INTEGRATION IN SMART 

POWER GRID WITH RENEWABLE ENERGY RESOURCES 

by 

Ahmed Abdelfatah Abdelaal Said Mohamed 

Florida International University, 2017 

Miami, Florida 

Professor Osama A. Mohammed, Major Professor 

 

As electric vehicles (EVs) become more popular, the utility companies are forced to 

increase power generations in the grid. However, these EVs are capable of providing power 

to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid 

(V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the 

same time. These services can provide more benefits when they are integrated with 

Photovoltaic (PV) generation. The proper modeling, design and control for the power 

conversion systems that provide the optimum integration among the EVs, PV generations 

and grid are investigated in this thesis. 

The coupling between the PV generation and integration bus is accomplished through 

a unidirectional converter. Precise dynamic and small-signal models for the grid-connected 

PV power system are developed and utilized to predict the system’s performance during 

the different operating conditions. An advanced intelligent maximum power point tracker 

based on fuzzy logic control is developed and designed using a mix between the analytical 

model and genetic algorithm optimization. 



viii 

The EV is connected to the integration bus through a bidirectional inductive wireless 

power transfer system (BIWPTS), which allows the EV to be charged and discharged 

wirelessly during the long-term parking, transient stops and movement. Accurate analytical 

and physics-based models for the BIWPTS are developed and utilized to forecast its 

performance, and novel practical limitations for the active and reactive power-flow during 

G2V and V2G operations are stated. A comparative and assessment analysis for the 

different compensation topologies in the symmetrical BIWPTS was performed based on 

analytical, simulation and experimental data. Also, a magnetic design optimization for the 

double-D power pad based on finite-element analysis is achieved. The nonlinearities in the 

BIWPTS due to the magnetic material and the high-frequency components are investigated 

rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-

flow controller that manages the bidirectional power-flow between the EV and grid is 

developed, implemented and tested. In addition, the feasibility of deploying the quasi-

dynamic wireless power transfer technology on the road to charge the EV during the 

transient stops at the traffic signals is proven. 
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 Problem Statement 

Volatile fuel prices, coupled with an increased emphasis on reducing greenhouse and 

carbon dioxide emissions, have fostered significant growth in the electric vehicles’ (EVs’) 

market over the last ten years. Even though EVs have not been widely adopted, in part 

because of technical limitations, social obstacles, and cost compared to conventional 

internal combustion engine (ICE) vehicles [1], based on moderate expectations, by 2020 

up to 35% of the total vehicles in the U.S. will be EVs, according to the Electric Power 

Research Institute (EPRI) [2]. With the large-scale introduction of EVs, the power grid will 

face a major challenge to satisfy the load demand. The increasing number of EVs will put 

an additional stress on the existing distribution system’s components, such as transformers 

and cables, and may perturb their operation, particularly during the peak demand periods.  

Several studies have been carried out to investigate the impact of EVs on the power 

system in terms of load capacity, power quality, economy and environment [1], [3]–[5]. 

The impact of EV charging on the grid load capacity was discussed in [6]–[12]. The studies 

concluded that the disorder charging will increase grid peak load, so it needed additional 

investment on generating electricity and transmission capacity. In terms of power quality, 

EVs’ charging behavior will bring the voltage out-of-limits of the distribution network, 

reduce the power quality, increase the line loss, reduce the life span of distribution 

transformers and increase the harmonics and current faults [3], [13]–[15]. In [16], a review 

for the impact of the EVs charging on the residential distribution systems was presented in 
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terms of electricity generation adequacy [11], [17]–[20], transformer aging [14], [21]–[23] 

and distribution system power quality [24]–[28]. According to the literature, numerous 

techniques are proposed to mitigate the impacts of EVs’ charging on the power grid. These 

techniques can be categorized into two groups [16]. In the first approach, the utilities 

indirectly manage EVs’ charging using the Time-of-Use pricing [29]–[35]. The low off-

peak electricity rates in a Time-of-Use pricing scenario stimulates EVs’ owners to charge 

their vehicles during the off-peak hours. This scheme significantly decreases the peak load 

demand and mitigates transformer overloading and heating concerns. In the other 

technique, the utilities directly control EVs’ charging rates and charging start time using 

smart charging algorithms [24], [7], [36]–[46]. 

Traditionally, these vehicles have been considered as nonlinear loads for the power 

grid, whose impacts on supply’s stability and quality have been well studied. However, as 

the penetration rate of EVs into the transportation increases, the idea of utilizing them not 

just as loads but also as energy storage systems (ESSs) is explored. This is a very promising 

technology since most the light-duty vehicles spend significant time not being operated 

and there may be opportunities to utilize their stored energy to support the power grid. This 

concept is known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V) service [1], [47]–

[50]. In this concept, an EV can operate in discharge (V2G) mode, as a source, to inject 

energy to the grid, or in charge (G2V) mode, as a load, to suck energy from the grid. This 

concept has attracted the attention of the grid operators and vehicles’ owners, as EVs are 

considered an indispensable component in both “living and mobility” and sustainable 

living in the near future [51]. In the V2G concept, EVs as ESSs can provide peak load 

shaving and act as a reserve resource against unexpected outages [52]. As the size of the 
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EV fleet increases, the bulk energy storage available can become considerable in size, 

which adds to flexibility of actions taken by the power system operator.  

The benefits of V2G technology can be maximized if it is being associated with 

renewable energy sources (RESs), such as solar and wind generations [53]–[55]. The 

intelligent integration between the EVs and RESs can provide an ideal solution for the 

issues due to both of them. The RES can be designed to supply the bulk power demand of 

EVs charging with minor support from the power grid. On the other hand, EVs (as ESSs) 

can be utilized to smoothen the power generation for the intermittent RESs and mitigate 

their bad impacts on the power grid, such as voltage and frequency instability issues [56]–

[61]. Unlike conventional loads, the energy in EVs is sizable enough to maintain all solar 

and most of the wind generation. Among all RESs, Photovoltaic (PV) power systems are 

expected to play a vital role in the future energy efficient and zero emission society. Several 

factors have been boosting this: improved generation efficiency of PV modules, flexibility 

of implementation and governmental subsidies [62]. However, PV power fluctuates 

depending on the environmental conditions, season, and geographic location, and causes 

problems, such as voltage fluctuation and large frequency deviation in an electric power 

system operation [63]. In order to mitigate these impacts, it is recommended that equipment 

with storage capability (such as EVs) should be controlled to compensate the variation in 

PV generation [60], [64]–[67]. The integration between EVs and PV generation is 

promising due to the massive similarities between them [68]–[71]. The most important 

match between them is that EVs will probably be connected to the grid in the same highly 

dispersed manner, at the same voltage levels, and in the same range as PV systems. For 

example, EVs at residential homes are similar to those typical residential PV systems in 
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parameter values [72]. Also, both PV and EV are integrated to the grid though power 

electronic interface with the potential to create intelligent nodes in the system. One vital 

difference is that the EV, as an ESS, is bidirectional and can act as either a source or a load, 

whereas the PV behaves as a source only. Another dissimilarity is that EVs have both 

power and energy limitations, but PV does not have an explicit energy limitation. Due to 

these common features between PV and V2G from the grid’s perspective, the grid-support 

functions requested for PV will be similar to those required for V2G. In fact, it is possible 

that codes and standards presently applied to the PV systems, such as IEEE-1547 and IEC-

62116, may apply to V2G systems with small modification [68]. Therefore, in this study, 

the integration between the EVs and PV systems is considered. 

As of now, the size, complexity and economics of utility-scale centralized energy 

storage control and management might not have been generally acknowledged and 

supported. Notwithstanding, with moderate assumptions, the required power and energy 

available in the EVs, even with today’s battery technologies, can become available in the 

very near future [73]. However, what distinguishes the energy stored in EVs from other 

conventional ESSs is their mobile nature. Like other ESSs, accessibility of these resources 

relies upon the availability of the primary source of energy (the batteries in this case). 

Although unlike other ESSs, accessibility of EVs’ energy depends likewise on the locations 

of the vehicles. This complicates matters further by adding another constraint to the 

problem. Traditionally, people have been looking at extracting the stored energy, either 

from locations where a relatively large number of vehicles exist (e.g., charging stations, 

parking lots) [65], [74], or from individual charging devices at residential units [69]. The 

common factor in both lies in the fact that the vehicles should be stationary (i.e., parked). 
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While this is a reasonable assumption in many cases, it undermines a great potential source 

of energy in the system: vehicles in motion. Furthermore, in order to inject energy back 

into the grid, it is necessary for the vehicle to be driven to the charging station/device, and 

parked for the duration of the power exchange [75]–[77]. Over those, the driver may need 

to change his normal route to get to the charging station. All these could inconvenience the 

driver(s) and hence reduce the tendency (or participation level) for participating in V2G 

services. Additionally, when the source of energy is needed immediately (e.g., fast 

reserves) the distances of the vehicles to the charging stations would serve as a restricting 

factor. Finally, for the vehicle to be able to transfer power to the grid, the driver (or an 

operator) needs to be physically present to set up an electrical connection between the 

vehicle and the station [78], [79]. This obstructs the implementation of supervisory level 

control schemes that are managed remotely. 

Wireless charging stations (based on inductive power transfer (IPT) technology) 

have been proposed as a mean for energy transfer without physical contacts [80]–[91]. 

Without the need for establishing an actual electrical connection, this technology enables 

transfer of energy from the power grid to the vehicle and possibly in the reverse direction 

through the usage of magnetic circuits operating at resonance. This power transfer can 

occur while the vehicle is in long-term parking (stationary), transient stops (quasi-dynamic) 

or moving even close to normal speed (dynamic) [92]–[97]. Utilizing this technology can 

turn the potential energy stored in the EVs’ batteries into an accessible source of energy 

distributed across the power grid [98]. In addition, a supervisory control scheme can be 

designed and implemented to remotely control these individual sources of energy in order 

to provide a considerable source of energy storage for the power grid [93]–[95]. Several 
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studies have been conducted, which show comparative analyses for the percentage of EVs 

interactivity between the conductive and inductive connections [77], [99], [100]. The 

studies emphasized that the conductive connection guarantees about 10% of EVs to interact 

successfully with the power grid, while the inductive connection provides about 65% [75], 

[100]–[102]. Thus, the bidirectional IPT technology is considered in this study to 

accomplish the integration between the EVs, PV generation and power grid, and achieve 

G2V and G2V services. 

 Research Objective 

The main objective of this dissertation is to provide a comprehensive study for 

wirelessly connected EVs to achieve G2V and V2G services with the large-scale 

penetration of PV generation. The system’s configuration under consideration is indicated 

in Figure 1.1.  In this structure, it is proposed that all the resources should be integrated 

through a common direct current (DC)-bus. The alternating current (AC) power grid 

connection is established using a bi-directional grid-tied converter, which is responsible 

for regulating the DC-link voltage. Each EV is coupled to the DC-bus through its own 

bidirectional inductive wireless power transfer system (BIWPTS) to facilitate charging 

(G2V) and discharging (V2G) operation. In the G2V mode, control of the BIWPTS can 

provide a mechanism to regulate multiple charging scenarios. In the V2G mode, EV’s 

energy can be injected back to the AC grid to provide support during peak loading periods 

or an outage. As an added benefit, the introduction of a localized DC-bus would help ease 

the integration of PV generation, which is accomplished through a unidirectional DC-DC 

converter, connected directly to the DC-bus. In addition, the surrounding DC loads can be 
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supplied using another unidirectional DC-DC converter. Through the inclusion of PV 

generation, the bulk load demand can reduce grid stress when EVs are in the G2V mode, 

while in the V2G mode, the EV’s battery array can aid in smoothening the PV generation.  
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Figure 1.1. DC-bus configuration for G2V and V2G services with wirelessly connected 

EVs and PV generation. 

 

This architecture is flexible and can be physically implemented in several positions, 

in which EVs are in long-term parking, such as charging stations, public and private 

parking lots and car parks, and short-term parking, such as bus stops and road traffic 

signals. Furthermore, the same configuration can be deployed in the powered roads to 

provide G2V and V2G services for the in-motion EVs, through the dynamic wireless 

charging. 

This study is crucial and provides valuable solutions for many issues that impede the 

penetration of EVs in transportation and RES in electric energy generation. The study 
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presents modeling, design and control analyses for the power interfaces among the EV, PV 

system and utility grid. These interfaces have the capability to provide the necessitate 

power-flow between the power grid and the other resources (EVs and PV panel) to achieve 

G2V and V2G services. For the PV power system, a unidirectional DC-DC converter is 

considered as the power interface to extract the maximum power from the PV generator, 

regardless of the environmental conditions, by implementing an intelligent maximum 

power point tracking (MPPT) algorithm. For the EV, the duel-side full-bridge BIWPTS is 

utilized to manage the two-way power-flow between the EV and DC-bus. Several aspects 

have been investigated, analyzing practical issues in the BIWPTS, including developing 

accurate analytical and physics-based models, performing effective design optimizations, 

developing and implementing new closed-loop controllers, and building prototypes and 

testing them. 

The outcomes of this study are useful for many organizations, such as utility 

companies, automotive companies and consumers. For the power grid, the results help to 

minimize the impact of EVs penetration, increase the penetration of PV generation, provide 

predictable energy resources, enhance the power grid stability and mitigate its power 

quality issues. For EVs manufacturers, it aids to reduce the battery size required by EVs, 

improve the operation of EVs through utilizing the energy sources available from other 

vehicles and make the vehicle become an energy source to provide energy services to the 

grid. Moreover, it is helpful for the consumers by reducing the EV’s price, providing 

flexible, reliable and automatic bidirectional interface. Also, it enables the vehicle’s owner 

to participate in V2G services, making the vehicle a micro-grid that can be used during 

power interruptions and storms. 
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 Original Contributions of the Dissertation 

The proper modeling, design and control for the power interfaces among the EVs, 

and PV generation, and the power grid through a common DC-bus, is investigated in this 

work. The main findings and contributions in this thesis are summarized as follows: 

- Developing analytical dynamic modeling and small signal analysis for a grid-connected 

PV power system, through a DC-bus. 

- Achieving design and optimization analysis for an intelligent maximum power point 

tracker in PV systems, based on fuzzy logic, genetic algorithm and analytical models. 

The proposed controller is implemented and verified by means of simulation and 

experimentally, using the DSPACE microcontroller board. 

- Developing accurate steady-state mathematical and computer-based models for the 

different topologies of a symmetrical BIWPTS in EV applications. The models were 

able to predict the systems’ performance and power-flow; and novel practical 

limitations and criteria for the active and reactive power-flow during G2V and V2G 

operations are stated.  

- Performing a comprehensive performance assessment analysis for the main 

configurations of the symmetrical BIWPTS, which aims to define the merits and 

demerits of each structure and the most appropriate one for G2V and V2G services. 

- Building experimental prototypes for the BIWPTS, including power electronic 

converters, compensation networks, power pads and power-flow controller, to verify 

the proposed theoretical analyses. 
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- Developing an accurate nonlinear physic-based co-simulation platform that links the 

model of the power electronic converters and controllers in Simulink, to the finite-

element model (FEM) of the electro-magnetic coupler. 

- Performing magnetic design multi-objective optimization for the power pads in the 

wireless interface, based on finite element analysis (FEA) and experimental tests. 

- Developing a new, autonomous, two-layer predictive power-flow controller to manage 

the bidirectional active power-flow between the EV and DC-bus. The controller is 

designed to be placed on the vehicle’s side, and is implemented, using a Field-

Programmable Gate Array (FPGA) board. 

- Developing a comprehensive simulation platform for a light-duty wirelessly connected 

EV, including the BIWPTS, Lithium (Li)-ion battery and traction system. The platform 

was utilized to study the feasibility of implementing the quasi-dynamic wireless 

charging systems at the traffic signals on the road, to charge the EVs during the transient 

stops at the intersections. 

 

 Dissertation Organization 

This dissertation is organized as follows: 

Chapter 1 introduces the integration between EVs, PV power system and the power 

grid, and identifies the G2V and G2V concept based on the wirelessly connected EVs. In 

addition, the new findings and contributions in this study are stated.  

Chapters 2 and 3 present modeling and control analysis for a grid-connected PV 

power system through a DC-bus. In chapter 2, a detailed mathematical nonlinear dynamic 

model for the PV power system is developed. Then, this dynamic model is linearized to 
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state the small-signal model for the same system, which is utilized to state the design 

considerations for the MPPT algorithm’s parameters. The developed models were verified 

by means of simulation and experimental tests. The optimum design for the fuzzy-based 

MPPT for the PV system is investigated in chapter 3. Two different design methodologies 

are studied in this chapter: the analytical and genetic algorithm (GA)-based method. The 

proposed design was implemented and tested by means of simulation and experimentally 

in comparison with the existing techniques in the literature. 

The following 3 chapters provide assessment analysis for the main topologies of the 

symmetrical BIWPTS for EV’s integration. Chapter 4 presents modeling analysis for the 

steady-state performance of BIWPTSs based on Fourier series analysis. The analysis is 

achieved for the three main compensation configurations of a symmetrical BIWPTS: LC-

series, LC-parallel and LCL-topology. Moreover, the steady-state equivalent circuit-based 

mathematical models for all topologies are developed. Finally, general formulas for the 

fundamental power-flow (active and reactive) between the EV and DC-bus are developed. 

Chapter 5 discusses design and implementation considerations for the entire 

BIWPTS’s components. It presents more details about the high frequency (HF) converter 

design and optimization, including component selections, driving circuits, snubber circuits, 

protection elements and the converter’s printed circuit board (PCB). Additionally, the 

hardware implementation of the phase-shift control based on the analog phase-locked loop 

(PLL) circuit is investigated and tested. Also, the chapter presents the details of design and 

building two symmetrical circular power pads with the compensation network to form the 

wireless coupler. The outcomes form the experimental prototype and the simulated model 

are presented.  
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Chapter 6 presents verification analysis for the developed theoretical models in 

chapter 4 by means of simulation and using the experimental prototype discussed in chapter 

5. Then, these models are utilized to assess the performance of the different topologies 

during the bidirectional operation, and present the merits and demerits of each structure. 

Also, it presents comparative analysis for the BIWPTS’s performance parameters (power, 

power factor and efficiency) among all topologies, under both full and light loading 

conditions. Finally, the sensitivity of the different topologies against the misalignment in 

the system, based on theoretical models and measurements, is investigated 

The next 3 chapters are investigate the nonlinear physics-based model and magnetic 

design for the symmetrical LCL BIWPTS. Chapter 7 presents a physics-based co-

simulation platform for LCL BIWPTS in EVs applications. The platform is established 

through the coupling between finite element and circuit analysis. In addition, a state-space 

dynamic mathematical model for the same system is developed and implemented in the 

MATLAB environment. A 1.2 kW LCL BIWPTS is analyzed under different dynamics by 

both models, and the results are compared and presented in this chapter. Finally, the effect 

of the nonlinearities and the magnetic material characteristics on the system’s performance 

is assessed in terms of error and harmonics analysis. 

Chapter 8 presents detailed analysis for the choice and design of the passive elements 

in a BIWPTS. A clear methodology for achieving the proper design for all the passive 

elements in a symmetrical LCL BIWPTS is discussed. A three dimensional finite element 

model (3D-FEM) for an 8 kW polarized double-D (DD) power pad is developed and 

optimized intuitively. Moreover, the choice of the power factor correction (PFC) capacitors 

and the impedance matching coils was investigated. The recommendations from the 
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proposed design methodology are considered to build an entire prototype for a BIWPTS to 

meet with WPT2 level and Z2 class in the J2954A standard. The system’s performance is 

evaluated based on experimental, simulation and analytical tests. 

In chapter 9, an automatic multi-objective optimization for the different design 

parameters of the DD power pad structure is performed. A detailed two dimensional finite 

element model (2D FEM) for the power pad, considering the separations among the turns, 

is developed and linked with an improved Tabu search (ITS) algorithm, for optimization 

purposes. The proposed design optimization results are evaluated based on the system’s 

coupling performance and cost, in comparison with three other designs that are presented 

in the literature.  

Chapter 10 presents a new two-layer predictive active power-flow control for the 

LCL BIWPTS in EVs applications. The design analysis for the proposed controller is 

presented in detail, based on an accurate power-flow analytical model, which is developed 

and verified in this chapter. The procedures for executing the two control layers and the 

link between them are presented and explained. In addition, a real time mutual inductance 

estimation technique that needs to be applied one step before implementing the proposed 

controller is discussed. Finally, the proposed controller is implemented and tested using 

the FPGA board, and its performance is compared with the classical proportional-integral 

(PI) controller. 

In chapter 11, the feasibility of implementing the quasi-dynamic wireless power 

transfer (QDWPT) system at the traffic signals is explored. A comprehensive modeling 

platform for a wirelessly connected EV, including the BIWPTS, EV’s battery, and traction 

system, is developed and investigated. The feasibility of implementing a QDWPT system 
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at traffic signals is investigated under three distinct wireless power transfer (WPT) 

scenarios: fixed power charging, variable power charging and fixed power charging and 

discharging, based on the maximum driving range, duration per cycle, and the additional 

distance gained for each consumed kWh. In addition, the effect of coil misalignment in the 

WPT system over the driving performance is investigated. 

Finally, the conclusions and recommendations for further research are presented in 

chapter 12. 
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 Introduction 

Considering the DC-bus configuration in Figure 1.1 for integrating the PV 

generations with the wirelessly connected EVs, this chapter is investigating the first source 

in the structure, which is the grid-connected PV power system. PV utilization is getting 

more attention due to the increased progress in power electronics and semiconductor 

technologies. A first step to analyze and study a PV power system is to develop an accurate 

model that has the ability to predict the system performance. It is also very useful for 

control and design purposes. Thus, in this chapter a detailed mathematical nonlinear 

dynamic model for grid-connected PV power system is developed. The dynamic model is 

used to simulate and predict the entire system performance under different dynamics, such 

as variation in environmental and load conditions. It is also helpful to evaluate the proposed 

control and maximum power point tracking performance under different irradiance and 

temperature conditions. Then, the developed dynamic model is linearized to state the small 

signal model for the same system. This small signal model is utilized to state some design 

considerations for MPPT algorithm’s parameters. The developed models were verified and 

tested by means of simulation and experimental tests. 

 The PV power system under consideration consists of a PV array connected to a 

DC bus through a unidirectional DC-DC converter, as shown in Figure 2.1. In this case, 

the DC-DC converter is responsible for boosting the array voltage to the DC bus voltage 

level.  Also, it is in charge of extracting the maximum power from the PV panel at different 
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environmental and load conditions. The DC bus is coupled to the power grid through a 

bidirectional three-phase grid-tie converter. This converter is taking charge of managing 

the power flow between the DC bus and the power grid, in addition to regulating the DC 

bus voltage to a certain level. 

 

MPPT and ControlPV array

DC 

bus

 

Figure 2.1. Block diagram of grid-connected PV power system. 

 

 Nonlinear Dynamic Model 

 In this section, the details of the non-linear dynamic equations for the PV power 

system are presented. The formulas are derived based on the electric circuit model of each 

component in the system. The individual equivalent circuits are lumped together in one 

circuit that represents the entire PV power system, as shown in Figure 2.2. The system 

contains a PV array, DC-DC Cuk converter and DC bus. The PV panel is represented by 

the single diode (four parameters) model equivalent circuit. The Cuk converter is modeled 

by its ideal passive components with neglecting the resistive losses. Since the DC bus 

voltage is kept fixed by the grid-tie converter, the DC bus is denoted in the model by a 

fixed DC source (Vdc) with a series resistance (Rdc) that emulates its resistive losses. The 

details for the dynamic equations of each component are presented in the following 

sections. 
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Figure 2.2. Equivalent circuit of a grid-connected PV power system through a DC-DC 

Cuk converter. 

 

2.2.1 PV Panel Dynamic Model 

Two advanced equivalent circuit PV models are proposed in the literature: single-

diode and double-diode model. The double diode model features high accuracy since it 

considers the carriers’ recombination. The first diode accounts for carriers diffusing across 

the P-N junction and recombining in the bulk or at surfaces. The second diode is sometimes 

attributed to carrier recombination by traps within the depletion region, or recombination 

at an unpassivated cell edge. Even though, this model is rarely used due to its complexity, 

high computational cost, and inability to be parameterized based solely on data sheet 

information [103]. Single-diode model is the most commonly used in PV systems’ studies, 

because it offers reasonable tradeoff between simplicity and accuracy. Also, it has the 

possibility to be parameterized based on the provided information on the manufacture 

datasheet [104]. A comparative analysis between the performance of the single and double 

diode models has been conducted in [105]. The single-diode model shows an average 

absolute error = 0.0085 and root-mean square (RMS) error = 1.67%. By using the two-

diode model, it introduced some singular solutions. After solving the issue by adding more 
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complexity to the analysis, it gave an average absolute error = 0.0080 and RMS error = 

1.35%. Both the errors are slightly reduced compared with the one-diode model results. 

Also, the study showed that, the reverse saturation current of the second diode is indeed 

extremely close to zero, whereas other parameters are comparable to their counterparts in 

the one-diode model. It was concluded that the one-diode model is good enough to 

represent the whole I–V characteristic accurately. Thus, in this work, the PV panel is 

modeled based on the single diode equivalent circuit model, as shown in Figure 2.2 and its 

I-V characteristic is presented in Equation (2-1). 

𝑖𝑝𝑣 = 𝐼𝑠𝑐 − 𝐼𝑟 (𝑒
𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠

𝑛𝑉𝑇 − 1) − (
𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠

𝑅𝑝
) ;  𝑉𝑇 =

𝑘 𝑇

𝑞
                        (2-1) 

where, ipv and vpv are the PV output current and voltage, respectively, Isc is the photon (short 

circuit) current, q is the charge of electron (C), k is Boltzmann constant (kg.m2/s2K), T is 

cell temperature (K), n is the diode ideality factor, 𝑅𝑠 is the series resistance, Rp is the 

parallel resistance, and 𝐼𝑟 is reverse saturation current. 

The series resistance (𝑅𝑠) stands for the lumped resistive losses in the current path 

through the semiconductor material, the metal grid, contacts and current collecting bus. 

The parallel resistance (Rp), represents the losses associated with a small leakage of current 

through a resistive path in parallel with the intrinsic device. These are due to crystal damage 

and impurities in and near the junction. Considering Rp allows the model to provide a logic 

behavior under the impact of shading on a string of cells connected in series. The effect of 

Rp on the PV array performance is less conspicuous compared to the series resistance, but 

it will become noticeable when a number of PV modules are connected in parallel for a 

larger system. The recombination in the depletion region of PV cells provides non-ohmic 
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current paths in parallel with the intrinsic PV cell. This is represented by a single diode 

with unknown diode ideality factor (n) [106]. This factor (n) ranges from 1 to 2, where 1 

ideality factor means ideal diode behavior. 

For the purposes of performing small signal analysis, it is better to express the PV 

panel output voltage in terms of its current. Thus, by rearranging Equation (2-1), a second 

formula for the PV panel I-V characteristic is obtained, as indicated in Equation (2-2). 

𝑣𝑝𝑣 = 𝑛𝑉𝑇ln [
𝐼𝑟+𝐼𝑠𝑐−𝑖𝑝𝑣−(

𝑣𝑝𝑣+𝑖𝑝𝑣𝑅𝑠

𝑅𝑝
)

𝐼𝑟
] − 𝑖𝑝𝑣𝑅𝑠                               (2-2) 

By applying the open circuit conditions on the PV panel (vpv=Voc and ipv=0), an 

expression for reverse saturation current in terms of the panel parameters can be obtained, 

as in Equation (2-3).  

𝐼𝑟 =
(𝑅𝑝𝐼𝑠𝑐+𝑉𝑜𝑐)

[𝑅𝑝(𝑒

𝑉𝑜𝑐
𝑛𝑉𝑇−1)]

                                                  (2-3) 

where, Voc is the open circuit voltage of the PV module. 

By inserting Equation (2-3) into Equation (2-2), a third accurate formula for the I-V 

characteristic of PV panel is given in Equation (2-4). 

𝑣𝑝𝑣 = 𝑛𝑉𝑇ln [1 + (𝑒
𝑉𝑜𝑐
𝑛𝑉𝑇 − 1) (

𝑅𝑝(𝐼𝑠𝑐−𝑖𝑝𝑣)+𝑖𝑝𝑣𝑅𝑠+𝑣𝑝𝑣

𝑅𝑝𝐼𝑠𝑐−𝑉𝑜𝑐
)] − 𝑖𝑝𝑣𝑅𝑠                   (2-4) 

By applying the approximation of (𝑒
−𝑉𝑜𝑐
𝑛𝑉𝑇 ≪ 1), a simple formula for PV output 

voltage is obtained in Equation (2-5). 

𝑣𝑝𝑣 = 𝑉𝑜𝑐 + 𝑛𝑉𝑇ln [
𝑅𝑝𝐼𝑠𝑐−𝑖𝑝𝑣(𝑅𝑝−𝑅𝑠)+𝑣𝑝𝑣

𝑅𝑝𝐼𝑠𝑐−𝑉𝑜𝑐
] − 𝑖𝑝𝑣𝑅𝑠                           (2-5) 
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2.2.2 DC-DC Converter with DC Bus Model 

DC-DC Cuk converter is selected in this work to boost up the PV panel voltage to 

the DC link level. It is also controlled to extract the maximum power form the PV panel 

regardless of the irradiance level and cell temperature. The circuit diagram of Cuk 

converter is shown in Figure 2.2. It consists of an input inductor (L1) and capacitor (C1), 

power electronic switch (SW) [metal-oxide semiconductor field-effect transistor 

(MOSFET) or insulated-gate bipolar transistor (IGBT)], which is controlled by the duty 

cycle (d), power semiconductor diode (Dc), and output filter capacitor (C2) and inductor 

(L2) to smooth the output voltage and current. Under the assumption that the inductor 

current is always positive, when the switch SW is ON, the diode is OFF and the capacitor 

C1 is discharged by the inductor L2 current. When the switch is OFF, the diode conducts 

the current of the inductors L1 and L2 whereas capacitor C1 is charged by the inductor L1 

current. The Cuk converter offers several advantages, such as providing capacitive 

isolation, which protects against switch failure, continuous input current, and almost ripple-

free output current, which is important for efficient systems. The passive components (L1, 

L2, C1 and C2), are designed based on the switching frequency, and the output voltage and 

current ripple.  

 Following the state-space representation theory, the dynamic performance of the 

Cuk converter and the DC bus is represented by four non-linear ordinary differential 

equations (ODEs) that describe the inductors’ current (iL1=ipv and iL2) and capacitors’ 

voltage (vC1 and vC2). The final set of nonlinear ODEs are stated in Equation (2-6). 
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𝑝𝑖𝑝𝑣 =
1

𝐿1
[𝑣𝑝𝑣 − (1 − 𝑑)𝑣𝑐1]

𝑝𝑣𝐶1 =
1

𝐶1
[𝑑 𝑖𝐿2 + (1 − 𝑑)𝑖𝑝𝑣]

𝑝𝑖𝐿2 =
1

𝐿2
(−𝑑 𝑣𝐶1 − 𝑣𝐶2)

𝑝𝑣𝐶2 =
1

𝐶2
(𝑖𝐿2 −

𝑣𝐶2

𝑅𝑑𝑐
+
𝑉𝑑𝑐

𝑅𝑑𝑐
)

                                          (2-6) 

where, the symbol 𝑝, represents the differential operator ( 𝑑
𝑑𝑡

). 

Equations (2-2) and (2-6) represent the non-linear state-space dynamic model for the 

entire PV power system. These equations are implemented and analyzed in MATLAB 

environment to simulate the PV system performance. Equation (2-6) is analyzed by means 

of the numerical integration technique (Runge-Kutta) and Equation (2-2) is solved by the 

iterative technique (Newton-Raphson). 

 

 Small Signal Analysis of PV Power System 

For proper converter control system design, it is necessary to model the system 

dynamic behavior. In particular, it is required to determine how the variations in the 

converter duty cycle affect the PV power and voltage. Unfortunately, understanding 

converter dynamic behavior is hampered by the nonlinear time-varying nature of the 

switching and pulse-width modulation process. These difficulties can be overcome through 

the use of waveform averaging and small-signal modeling techniques [107]. The dynamic 

model that is presented in section 2.2 is linearized to state the small signal model for the 

PV power system. 

 

2.3.1 PV Panel Small Signal Model 

The main function of MPPT in PV system is to keep the PV panel working at the 
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maximum power point (MPP) regardless of the irradiance level and temperature. Thus, in 

the PV systems that contain MPPT, it can be considered that the operating point is the 

MPP. When the PV panel is operating at MPP, the variation of the operating point around 

the MPP due to the fast control action (10-20 kHz) can be linearized using the small-signal 

analysis. This analysis can be performed by assuming small variations in the different 

dynamics that the PV panel is usually subjected to. The disturbance in PV panel output is 

mainly due to the variation of temperature, radiation and load conditions. Thus, the small 

variation in the PV output voltage (𝑣𝑝𝑣) will be affected by the small variation in PV current 

(𝑖̂𝑝𝑣), radiation level (�̂�), and cell temperature (�̂�) [108]. If these conditions slightly change 

around the operating point, it can be written as: 𝐺 = 𝐺𝑄 + �̂�, 𝑇 = 𝑇𝑄 + �̂� and 𝑖𝑝𝑣 = 𝐼𝑝𝑣𝑄 +

𝑖̂𝑝𝑣, where, G , 𝑇  and 𝑖𝑝𝑣 are the dynamic irradiance level, temperature and PV current, 

respectively, GQ, 𝑇𝑄 and 𝐼𝑝𝑣𝑄 are the average of these variables at the quiescent point (Q), 

and �̂�, �̂� and 𝑖̂𝑝𝑣 are their small variations. Thus, the small signal representation of the PV 

voltage at any operating point (e.g. MPP) is described in Equation (2-7). 

𝑣𝑝𝑣 = 𝐾𝑖𝑣𝑖̂𝑝𝑣 +𝐾𝑔𝑣�̂� + 𝐾𝑡𝑣�̂�                                     (2-7) 

where, 𝐾𝑖𝑣 is the variation of the PV voltage with respect to the variation of PV current, 

which represents the slope of I-V characteristic at the operating point; 𝐾𝑔𝑣 is the variation 

of the PV voltage with respect to the variation of the irradiance level; and 𝐾𝑡𝑣 is the 

variation of the PV voltage with respect to the variation of the cell temperature. 

These small signal coefficients (Kiv, Kgv and Ktv) can be evaluated using an explicit 

PV voltage equation as function of current, radiation and temperature. Small approximation 

needs to be applied to Equation (2-5) to put it in an explicit form. This form can be obtained 
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by neglecting the shunt resistance effect in Equation (2-5) by assuming very large 

resistance (Rp ≈ ∞). Typically, the PV power systems are operating at MPP due to the 

MPPT in the system. Thus, the small signal analysis of PV panel is typically applied at the 

MPP. In [109], the effect of Rp on the MPPT control performance is studied for a certain 

PV module. It shows that at high values of Rp (≥ 601.34Ω), its effect is negligible. Based 

on this study, we conduct a study for the effect of Rp on the I-V characteristics of the used 

PV module (BP 4175T PV array) in this work at different climatic conditions, as shown in 

Figure 2.3. It can be noticed that for high values of Rp (≥ 100Ω) its impact on the slope at 

MPP is negligible, even at different climatic conditions. Thus, its effect on the small signal 

analysis will be unnoticeable. The estimated Rp for the used PV module in the work is 2.8 

kΩ, as will be demonstrated in section 2-5, which is much larger than 100 Ω [109]. 

By applying this approximation on Equation (2-5), an explicit PV model that is 

appropriate for the small signal analysis is obtained in Equation (2-8). 

𝑣𝑝𝑣 = 𝑉𝑜𝑐 + 𝑛𝑉𝑇ln [1 −
𝑖𝑝𝑣

𝐼𝑠𝑐
] − 𝑖𝑝𝑣𝑅𝑠                                   (2-8) 

where, Voc, Isc and VT are function of the cell temperature and irradiance level as described 

in Equations (2-9), (2-10) and (2-11), respectively. 

𝑉𝑜𝑐(𝑇, 𝐺) = 𝑉𝑜𝑐𝑜[1 + 𝛽(𝑇 − 𝑇𝑜)] + 𝑉𝑇𝑜 ln (
𝐺

𝐺𝑜
)                                  (2-9)  

𝐼𝑠𝑐(𝑇, 𝐺) = 𝐼𝑠𝑐𝑜 (
𝐺

𝐺𝑜
) [1 + 𝛼(𝑇 − 𝑇𝑜)]                                         (2-10) 

𝑉𝑇(𝑇) = 𝑉𝑇𝑜 (
𝑇

𝑇𝑜
)                                                            (2-11) 
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Figure 2.3. Effect of Rp on I-V characteristics of PV module at different climatic 

conditions. 

 

By differentiating Equation (2-8) with respect to the PV current, an expression for 

the coefficient 𝐾𝑖𝑣 at Q-point, is obtained in Equation (2-12). 

𝐾𝑖𝑣𝑄 =
𝑑𝑣𝑝𝑣

𝑑𝑖𝑝𝑣
|
𝑄

= −

𝑛𝑉𝑇𝑄(1−𝑒
−
𝑉𝑜𝑐𝑄
𝑛𝑉𝑇𝑄)

[𝐼𝑠𝑐𝑄−𝐼𝑝𝑣𝑄
(1−𝑒

−
𝑉𝑜𝑐𝑄
𝑛𝑉𝑇𝑄)]

                                   (2-12) 

where, the subscript (Q) denotes the variables at the operating point (Q-point). 

For the radiation coefficient, 𝐾𝑔𝑣, Equation (2-8) is differentiated with respect to the 

radiation level (G) as given in Equation (2-13). 
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𝐾𝑔𝑣𝑄 =
𝑑𝑣𝑝𝑣

𝑑𝐺
|
𝑄
=

𝑑𝑣𝑂𝐶

𝑑𝐺
|
𝑄
+ 𝑛𝑉𝑇𝑄

𝑑

𝑑𝐺
[ln (1 −

𝑖𝑝𝑣

𝐼𝑠𝑐
)]|

𝑄
− 𝑅𝑠.

𝑑𝑖𝑝𝑣

𝑑𝐺
|
𝑄

             (2-13) 

Using Equations (2-9), (2-10) and (2-11), with the assumption of, 
𝑑𝑖𝑝𝑣

𝑑𝐺
|
𝑄
≈

𝑑𝑖𝑠𝑐

𝑑𝐺
|
𝑄

at 

MPP, the final formula for the radiation coefficient at Q-point is given in Equation (2-14). 

Similarly, the temperature coefficient at Q-point, 𝐾𝑡𝑣, is presented in Equation (2-15).  

𝐾𝑔𝑣𝑄 =
𝑑𝑣𝑝𝑣

𝑑𝐺
|
𝑄
=

𝑉𝑇𝑜

𝐺𝑄
− (

𝐼𝑠𝑐𝑜

𝐺𝑜
) [1 + 𝛼(𝑇𝑄 − 𝑇𝑜)] (

𝑛𝑉𝑇𝑄

𝐼𝑠𝑐𝑄
−𝑅𝑠)                  (2-14) 

𝐾𝑡𝑣𝑄 =
𝑑𝑣𝑝𝑣

𝑑𝑇
|
𝑄
= 𝛽𝑉𝑜𝑐𝑜 − (

𝛼𝐺𝑄𝐼𝑠𝑐𝑜

𝐺𝑜
) (𝑅𝑠 +

𝑛𝑉𝑇𝑄

𝐼𝑠𝑐𝑄
) +

𝑛𝑘

𝑞
ln (1 −

𝐼𝑝𝑣𝑄

𝐼𝑠𝑐𝑄
)           (2-15) 

where, the subscript (o) distinguishes the variables at standard test conditions (STC), which 

are available in the PV module manufacture datasheet. 

 

2.3.2 DC-DC Converter and DC Bus Small Signal Model 

The DC-DC converter and DC bus are modeled based on the state-space averaging 

technique in [107]. Each variable in Equation (2-6) is replaced by the superposition of the 

average value and the variations; 𝑓 = 𝐹𝑄 + 𝑓, where 𝑓 = {𝑖𝑝𝑣, 𝑣𝑝𝑣, 𝑣𝑐1, 𝑖𝐿2, 𝑣𝑐2, 𝐷}, FQ is 

the average value of the variable f at the Q-point and 𝑓 is the variation of f around the Q-

point. For example, 𝑖𝑝𝑣 = 𝐼𝑝𝑣𝑄 + 𝑖̂𝑝𝑣. In this analysis, the DC components and the second-

order small variation terms are neglected. Thus, final small signal representation of the DC-

DC Cuk converter with the DC bus is given in Equation (2-16). 
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𝑝𝑖̂𝑝𝑣 =
1

𝐿1
[�̂�𝑝𝑣 − (𝐷𝑄 − 1)𝑣𝑐1 + 𝑉𝑐1𝑄�̂�]

𝑝𝑣𝐶1 =
1

𝐶1
[𝐷𝑄 𝑖̂𝐿2 + (1 − 𝐷𝑄)𝑖̂𝑝𝑣 + (𝐼𝐿2𝑄 − 𝐼𝑝𝑣𝑄) �̂�]

𝑝𝑖̂𝐿2 =
1

𝐿2
(−𝐷𝑄 𝑣𝐶1 − 𝑣𝐶2−𝑉𝑐1𝑄�̂�)

𝑝𝑣𝐶2 =
1

𝐶2
(𝑖̂𝐿2 −

�̂�𝐶2

𝑅𝑑𝑐
)

                      (2-16) 

By mixing the PV array in Equations (2-7), (2-12), (2-14), and (2-15), with the Cuk 

converter and the DC bus models in Equation (2-16), the final small signal model for grid-

grid connected PV system is obtained. Based on these equations, the state-space 

representation for the system is given Equation (2-17). 

ẋ = A x + B u;     y = C x + D u                                        (2-17) 

where, x = [𝑖̂𝑝𝑣 𝑣𝐶1     𝑖̂𝐿2 𝑣𝐶2 ]
𝑇; u = [�̂� �̂� �̂� ]𝑇; and  y = [𝑖̂𝑝𝑣 𝑣𝑝𝑣 ]𝑇. 

A =

[
 
 
 
 
 
 
𝐾𝑖𝑣

𝐿1

𝐷𝑄−1

𝐿1
0 0

1−𝐷𝑄

𝐶1
0

𝐷𝑄

𝐶1
0

0
−𝐷𝑄

𝐿2
0

−1

𝐿2

0 0
1

𝐶2

−1

𝑅𝑑𝑐𝐶2]
 
 
 
 
 
 

;            B =

[
 
 
 
 
 
 

𝑉𝑐1𝑄

𝐿1

𝐾𝑔𝑣

𝐿1

𝐾𝑡𝑣

𝐿1
𝐼𝐿2𝑄−𝐼𝑝𝑣𝑄

𝐶1
0 0

−𝑉𝑐1𝑄

𝐿2
0 0

0 0 0 ]
 
 
 
 
 
 

 

C = [
1 0 0 0 0 0
𝐾𝑖𝑣 0 0 0 0 0

] ;        D = [
0 0 0
0 𝐾𝑔𝑣 𝐾𝑡𝑣

] 

 Small Signal Perturbation Analysis 

The maximum power point tracker in PV system is responsible for adjusting the duty 

cycle of the DC-DC converter to force the operating point to match with the MPP. Thus, 

the main effect of the controller in MPPT is applying a small variation in duty cycle. Thus, 

by considering fixed temperature and irradiance level, the effect of the small variation in 
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duty cycle on the PV output (voltage, current and power) at steady-state can be investigated 

by following the state-space averaging technique in [107]. By considering the variation in 

duty cycle only as an input in Equation (2-17), the state-space model can be rewritten as in 

Equation (2-18).  

ẋ = �̀� x + �̀� �̂�                                                     (2-18) 

where,              �̀� =

[
 
 
 
 
 
 
𝐾𝑖𝑣

𝐿1

𝐷𝑄−1

𝐿1
0 0

1−𝐷𝑄

𝐶1
0

𝐷𝑄

𝐶1
0

0
−𝐷𝑄

𝐿2
0

−1

𝐿2

0 0
1

𝐶2

−1

𝑅𝑑𝑐𝐶2]
 
 
 
 
 
 

;          �̀� =

[
 
 
 
 
 
 

𝑉𝑐1𝑄

𝐿1
𝐼𝐿2𝑄−𝐼𝑝𝑣𝑄

𝐶1
−𝑉𝑐1𝑄

𝐿2

0 ]
 
 
 
 
 
 

 

By applying the averaging technique in the model in Equation (2-18), the average 

small variation in state-space variables can be evaluated as in Equation (2-19). 

x = -𝑨−𝟏 B �̂�                                                 (2-19) 

By solving Equation (2-19), the average small variation of the PV current 〈𝑖̂𝑝𝑣〉 with 

respect to the perturbation in the duty cycle is stated in Equation (2-20).   

〈𝑖̂𝑝𝑣〉 = 𝐼𝑓〈�̂�〉                                                 (2-20) 

where, 𝐼𝑓 = −
𝐷𝑄𝑉𝑐1𝑄+𝑅𝑑𝑐 (1−𝐷𝑄)(𝐼𝑝𝑣𝑄

−𝐼𝐿2𝑄)

𝐾𝑖𝑣𝐷𝑄
2−𝑅𝑑𝑐(1−𝐷𝑄)

2 , 𝐷𝑄, 𝑉𝑐1𝑄, 𝐼𝐿2𝑄 and 𝐼𝑝𝑣𝑄 are the steady-state 

values of the duty-cycle, capacitor (𝐶1) voltage, inductor (𝐿2) current and PV current at the 

MPP, respectively. 

The average PV voltage perturbation is obtained by combining Equations (2-7) and 

(2-20), as in Equation (2-21). 
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〈𝑣𝑝𝑣〉 = 𝐾𝑖𝑣𝐼𝑓〈�̂�〉                                                (2-21) 

By applying the small-signal concept and neglecting the second order variation 

terms, the PV power small variation 〈�̂�𝑝𝑣〉 is deduced in Equation (2-22) [110]. 

〈�̂�𝑝𝑣〉 = 〈𝑣𝑝𝑣〉𝐼𝑝𝑣𝑄 + 𝑉𝑝𝑣𝑄
〈𝑖̂𝑝𝑣〉                                     (2-22) 

Thus, the perturbation in the PV power with respect to the perturbation in the duty 

cycle is obtained by inserting Equations (2-20) and (2-21) into Equation (2-22), as given 

in Equation (2-23). 

〈�̂�𝑝𝑣〉 = (𝐾𝑖𝑣𝐼𝑝𝑣𝑄 + 𝑉𝑝𝑣𝑄) 𝐼𝑓
〈�̂�〉                                (2-23) 

Equations (2-20), (2-21) and (2-23) represent the key design formulas that can be 

used to choose the proper perturbation size in the classical perturb and observe (P&O) 

algorithm. Equation (2-21) is useful when the control is based on the voltage observation, 

while Equation (2-20) is used for the current observation. These formulas are utilized in 

this work to achieve the proper design for MPPT algorithm based on fuzzy logic control, 

as will be discussed in detail in the next chapter. 

 

 PV Panel Parameters’ Estimation 

In order to solve the equivalent circuit model of the PV panel, the model parameters 

need to be known. The single diode model has four parameters that need to be estimated to 

match with the practical I-V characteristics [111]. These parameters are the series resistance 

(Rs), parallel resistance (Rp), diode ideality factor (n), and reverse saturation current (Ir). In 

this work, two different parameter estimation techniques are used and compared to extract 
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the PV module parameters. The first one is based on mathematical equations and the 

measurements of the I-V characteristic’s slope at open-circuit voltage and short-circuit 

current [112]. The second technique is performed by using GA optimization procedure. 

The details of these methodologies and results are discussed in this section. 

 

2.5.1 Analytical Parameter Estimation 

This methodology is mainly based on measuring the slope of the I-V characteristic 

of the PV module (given in the datasheet) and some analytical formulas. The first parameter 

(Ir) is estimated at STC by neglecting the parallel resistance effect in Equation (2-3), as 

given in Equation (2-24). Since, Ir, is a temperature-dependent parameter, its value at a 

given temperature (T) is updated using Equation (2-25) [113]. 

 𝐼𝑟𝑜 =
𝐼𝑠𝑐𝑜

(𝑒𝑉𝑜𝑐𝑜/𝑛𝑉𝑇−1)
                                                (2-24) 

𝐼𝑟|𝑇 = 𝐼𝑟|𝑇𝑜 . (
𝑇

𝑇𝑜
)

3

𝑛
. 𝑒

−𝐸𝑔

𝑛
(𝑉𝑇− 𝑉𝑇𝑜)                                  (2-25) 

where, Eg is the band gap energy; it is the energy that an electron must acquire to jump 

across the forbidden band to the conduction band, and it is equal 1.12 eV for Silicon.  

Until this point, the diode ideality factor is unknown and must be estimated. Ideal 

diode (n =1) is assumed in this stage until a more accurate value is estimated later by trial 

and error. The series resistance of the PV module has a large impact on the slope of the I-

V curves near the open-circuit voltage. Hence, the value of Rs is calculated by evaluating 

the slope (
𝑑𝑉

𝑑𝐼
) of the I-V curve at Voc, as indicated in Equation (2-26) [114].  
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𝑅𝑠 = −
𝑑𝑉

𝑑𝐼
|
𝑉𝑜𝑐
− (

𝑛𝑉𝑇

𝐼𝑟𝑒
(
𝑉𝑜𝑐
𝑛𝑉𝑇

)
)                                           (2-26) 

The parallel resistance of the PV module has a large impact on the slope of the I-V 

curves near the short circuit current. Thus, the value of Rp is calculated by evaluating the 

slope (
𝑑𝑉

𝑑𝐼
) of the I-V curve published on the datasheet at Isc and substituting in Equation 

(2-27) [114]. The last parameter is the diode ideality factor, which is estimated by trail and 

error such that its value attains the best match with the I-V curves on the datasheet. 

𝑅𝑝 =
−(

𝑑𝑉

𝑑𝐼
|
𝐼𝑠𝑐
+𝑅𝑠)

1+
𝐼𝑟
𝑛𝑉𝑇

 .(
𝑑𝑉

𝑑𝐼
|
𝐼𝑠𝑐
+𝑅𝑠).𝑒

(
𝑅𝑠.𝐼𝑠𝑐
𝑛𝑉𝑇

)
                                            (2-27) 

2.5.2 GA-Based Parameters Estimation 

GA is a stochastic search algorithm that emulates biological evolutionary theories to 

solve optimization problems. It enables parallel search from a population of points. Based 

on the literature, GA shows massive success in estimating the system parameters in many 

different applications due to the following reasons [115], [116]: 

- It enables parallel search from a population of points. Therefore, it has the ability to 

avoid being trapped in a local optimal solution, unlike traditional methods, which 

search from a single point. 

- It supports probabilistic selection rules, not deterministic ones. 

- It behaves well in the case of noisy or stochastic objective function. 

- It does not require explicit definitions. 

- It is very efficient in case of cheap cost function (which is our case). 



 

31 

 

Therefore, GA has been used in this study to extract the best combination of the 

parameters such that the error between the measured (from the datasheet) and the simulated 

I-V characteristics is minimized. 

 

2.5.3 Parameters Estimation Results 

The two techniques of parameters estimation are utilized to extract the parameters of 

the commercial BP 4175T PV module [117]. The electrical characteristics and 

specifications of this module at STC [Go=1000 W/m2 at the air mass (A.M) = 1.5 and To = 

25 oC] are given in Table 2.1. 

 

Table 2.1. BP 4175T PV Module Specifications at STC. 

Electrical characteristic Value 

Open circuit voltage (Voc) 43.6V 

Short circuit current (Isc) 5.45A 

Voltage at maximum power (Vmp@STC) 35.4V 

Current at maximum power (Imp@STC) 4.94A 

Maximum power (Pmax@STC) 175W 

Temperature coefficient of Isc (0.065 ± 0.015)%/ oC 

Temperature coefficient of Voc -(0.5 ± 0.05)%/ oC 

Module efficiency 14% 

 

The two techniques are implemented in MATLAB environment and applied for BP 

4175T PV module. The final extracted parameters from each technique are presented and 
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compared in Table 2.2. Moreover, the I-V characteristic of PV module is plotted at STC 

using the parameters estimated by each technique and compared with the measured I-V 

characteristic in Figure 2.4. It can be observed that GA technique shows more accurate 

results than the analytical one. GA-based parameters give 4.77% of current error, while the 

analytical technique presents 6.45%. The parameters that provide the least error (GA-

based) are considered in this work to model the performance of the PV module.  

 

Table 2.2. Extracted Parameters of BP 4175T PV Module. 

Method Rs (Ω) Rp (Ω) n Ir (A) Current Error (%) 

Analytical 0.0068 1000.8 1.6 1.45*10-6 6.45 

GA 0.00657 2.8*103 1.51 7.0685*10-7 4.77 
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Figure 2.4.  Comparison between I-V characteristic for BP 4175T PV module at STC from 

measurement and simulated using GA and analytical based parameters. 
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 Conclusion 

In this chapter detailed dynamic model for grid-connected PV power system is 

presented. Four ODEs are developed to represent the entire system’s dynamics including a 

PV generator, DC-DC Cuk converter and DC bus. Moreover, the dynamic model is 

linearized to develop a small-signal model for the same system. The small-signal model is 

utilized to investigate the effect of duty-cycle perturbation on the performance of the PV 

generator in terms of power, current and voltage. Final design formula for MPPT algorithm 

parameters are derived, which will be utilized to design the proposed MPPT algorithm in 

the next chapter. 
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 Introduction 

 When a PV array is directly connected to a load, the operating point will be at the 

intersection of their I-V curves. This point may be anywhere on the curve, and it is seldom 

to be at MPP of PV array, thus the PV array will not be able to produce its maximum power. 

Even if the system was designed to match the operating point with MPP, this operation is 

not guaranteed since the MPP changes as the module temperature and the solar irradiance 

change. This mismatch in the maximum power causes further over-sizing of the PV array 

and the whole system as a result. To mitigate this problem, a MPPT must be added to the 

system to follow up the MPP of PV panel regardless of changing climatic conditions and/or 

loads.  

MPPT consists of hardware (DC-DC converter) and software (MPPT algorithm) 

parts. Several MPPT algorithms were presented, experimentally tested and compared  in 

the literature [118], [119]. The most widely used in PV power applications is the Perturb 

and Observe (P&O) algorithm, due to the simplicity, ease of implementation, and not 

requiring previous knowledge for the system characteristics [120]. In this technique, the 

perturbation action can be applied directly [120], [121] or indirectly [122]. The direct 

perturbation algorithm is preferred, as it does not require PI controller, and provides higher 

energy utilization efficiency and less noise and oscillations [123]. The main drawbacks of 

P&O algorithm include its failure under fast variation in climatic conditions and the steady-

state swinging around the MPP [124]. Some solutions were presented in literature to deal 

with these issues. Variable perturbation size or adaptive techniques are proposed to 



 

35 

 

enhance the tracking response and minimize the steady-state mismatch [125]–[127]. Most 

of these techniques are based on analytical models and need deep knowledge about the 

system. Other nonlinear tracking techniques based on fuzzy logic (FL) are presented in 

[128]–[131]. These techniques suffer from complexity due to the lack of the design 

strategy, which is mostly done by experience.  

This work presents an optimum design for fuzzy-based MPPT controller to solve the 

classical P&O drawbacks. Two different design methodology are considered in this work: 

analytical method and GA-based methods. In both techniques, the small signal analysis 

that was presented in the previous chapter are utilized during the design. The proposed 

design was implemented and tested by means of simulation and experimentally. The 

system performance was studied at different environmental conditions and compared with 

the existed techniques in the literature. 

 

 MPPT Control Algorithm 

MPPT algorithm is the software part of the power conditioning component, which is 

responsible for calculating the converter duty-cycle to control the PV voltage and current. 

The main objective of MPPT algorithm is to extract the maximum power from the PV 

panel regardless of the fluctuations of environmental and/or load conditions. The entire 

system block diagram showing the MPPT control is depicted in Figure 3.1. The controller 

measures the output voltage and current of the PV panel, which are converted to digital 

signals using analogue to digital converters (ADCs). The digital measurements are passed 

to the MPPT algorithm to estimate the converter duty cycle that achieves the maximum 
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power operation. The duty cycle is translated to switching signal using a pulse-width 

modulation (PWM) generator. The output of the PWM generator is applied to the driver 

circuit. The driver circuit boosts the switching signal to the voltage and power level to drive 

the semiconductor switch of the DC-DC converter. 

 

DC-DC

converter

MPPT algorithm and duty 

cycle adjustment

ADC

Driver

Ipv Vpv

D

Pulses

Power 

conditioning 

components

PV 
array

DC bus

PWM generator

D

 

Figure 3.1.  Block diagram of grid-connected PV power system including MPPT control. 

 

3.2.1 Classical Direct P&O MPPT Algorithm 

In the direct P&O method, two measurements (𝑣𝑝𝑣 and 𝑖𝑝𝑣) are required  to calculate 

the PV power (𝑝𝑝𝑣). The duty cycle is perturbed with a fixed step size (𝐷𝑠𝑡𝑒𝑝) and the 

variation of power (Δ𝑝𝑝𝑣) and voltage or current (Δ𝑣𝑝𝑣 or Δ𝑖𝑝𝑣) are observed. If the power 

increases, the algorithm continues to perturb the system in the same direction; otherwise 

the system is perturbed in the opposite direction until it reaches the MPP. The voltage or 

current observation are utilized to define the direction of the power increase. The classical 
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direct P&O MPPT algorithm is indicated in Figure 3.2. At the MPP, the algorithm cannot 

stay at that point but keeps swinging around it, which causes steady-state error. Moreover, 

under the fast fluctuation of climatic conditions, the algorithm fails to track the MPP, since 

it cannot identify the reason of the power variation, either it is due to the normal control 

action or the radiation variation. Thus, wrong actions are taken in this situation and the 

tracking will be lost. This represents a serious problem, especially in inclement weather 

conditions [120]. 

 

Begin P&O

Algorithm

Measure: 

Vpv(k), Ipv(k)

Ppv(k) = Vpv(k) x Ipv(k)

ΔPpv= Ppv(k) – Ppv(k-1)

ΔVpv= Vpv(k) – Vpv(k-1) or

ΔIpv= Ipv(k) – Ipv(k-1)

ΔPpv > 0

ΔVpv > 0 or

ΔIpv > 0

Update History

V(k-1) = V(k)

Ppv(k-1) = Ppv(k) 

NO YES

YES YES

NO
NO
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 D

Increase 

D

Increase 

D

Decrease

 D

ΔVpv > 0 or

ΔIpv > 0

 

Figure 3.2.  Flow-chart of the classical direct P&O MPPT algorithm. 
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3.2.2 Proposed Fuzzy Direct MPPT Algorithm 

An effective solution for mitigating the problems of the classical P&O algorithm is 

to apply the nonlinear fuzzy logic for successful tracking [123]. The FL-based MPPT 

provides an adaptive variation of the duty-cycle based on the location of the operating point 

with respect to the MPP. This helps to minimize the steady-state error and the malfunction 

problem during the fast variations of climatic conditions. The main limitation of the fuzzy 

logic control (FLC) is the requirement of high-speed microprocessor ability with large 

memory size [123]. In addition, the design of FLC system parameters shows tradeoff 

between complexity and accuracy [132]. The contributions in this work appear in the 

design strategy of the fuzzy inference system (FIS).  

The proposed design aims to deal with the abovementioned drawbacks of the 

classical MPPT algorithm without losing the simplicity of the control. The proposed FIS 

is indicated in Figure 3.3. It consists of two inputs (Δ𝑝𝑝𝑣 and Δ𝑣𝑝𝑣) and one output (𝐷𝑠𝑡𝑒𝑝). 

The universe of discourse of each input is described by three membership functions 

[Negative (N), Zero (Z) and Positive (P)]. The proposed FIS design outlines to achieve 

both simplicity and efficiency are summarized as follows: 

- A minimum number of membership functions for each input variable was considered 

(three functions; N, Z, and P). 

- Linear shapes of membership functions were used (Triangle and Trapezoidal). 

- The linear Z and S shapes were assigned to N (red) and P (blue) membership functions, 

respectively, to define the limits of the universe of discourse. 

- A trapezoidal function was allocated to Z-membership function (green), which is 

responsible for minimizing the swinging around MPP and improving the steady-state 
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tracking performance. Using the trapezoidal shape increases the region at which Z-

membership function equals unity around the MPP. Thus, the controller will not take 

action in this region, which is desirable since the system is working already at the MPP. 
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Figure 3.3.  Block diagram of the proposed fuzzy logic system tracking algorithm. 

 

- The fuzzy rules were set to achieve the tracking in all possible modes of operation as 

follows:  

1. The blue rules are set to achieve the tracking through the I-V characteristic of the 

PV panel during the starting and variation of the load conditions, while the climatic 

conditions are fixed. 

2. The red rules are designed for tracking during the variation of climatic conditions 

(radiation and temperature). 
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3. The green rules are for keeping the system working at the MPP when there are no 

variations. 

- Based on the inputs and the rules table, the output of the fuzzy system was calculated 

by the Takagi-Sugeno (T-S) formula, which requires the least computation effort among 

all other FIS [133]. 

- Moreover, in order to keep the control efficient enough, the locations and the boundaries 

of the input membership functions and T-S function coefficients are assigned using the 

developed small-signal model and GA optimization procedure. The details of the 

parameters’ generation procedure are presented in the next section. 

 

 Design Methodologies of Fuzzy-MPPT Controller  

One of the major drawbacks of FLC is the lack of the design strategies. Most of fuzzy 

system parameters are determined intuitively based on the designer and/or the operator 

experience [134]. In this section, general design considerations for any MPPT controller 

are deduced. In our particular case, the Cuk converter is used, however, these 

considerations can be extended to any other converter while the dynamic model is 

developed and linearized, as was presented in chapter (2). For the proposed fuzzy-MPPT 

controller, the most effective parameters on the tracking performance are the locations and 

the boundaries of the input membership functions (𝑎∆𝑣, 𝑏∆𝑣, 𝑎∆𝑝 and 𝑏∆𝑝), and the 

coefficient of T-S function (𝐷𝑠𝑡𝑒𝑝). Thus, for accurate design parameters, two different 

approaches are proposed to choose these parameters. The first one is pure analytical based 

on the small-signal model presented in chapter (2). The other one depends on the same the 

small-signal model with a combination of a stochastic searching technique based on GA. 
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3.3.1 Analytical Fuzzy Logic Design Strategy 

This design technique is based on formulas in Equations (2-21) and (2-23), in which 

the FL design parameters (𝑎∆𝑣, 𝑏∆𝑣, 𝑎∆𝑝, 𝑏∆𝑝 and 𝐷𝑠𝑡𝑒𝑝), are estimated as following: 

- Assume maximum (∆𝑃𝑚𝑎𝑥) and minimum (∆𝑃𝑚𝑖𝑛) PV power perturbation such that, 

𝑎∆𝑝 = ∆𝑃𝑚𝑎𝑥 and 𝑏∆𝑝 = ∆𝑃𝑚𝑖𝑛. 

- Evaluate the corresponding variation of duty cycle 𝐷𝑠𝑡𝑒𝑝𝑚𝑎𝑥 and 𝐷𝑠𝑡𝑒𝑝𝑚𝑖𝑛, respectively 

based on Equation (2-23). 

- Assign, 𝐷𝑠𝑡𝑒𝑝 = 𝐷𝑠𝑡𝑒𝑝𝑚𝑖𝑛, since the smaller step size provides more accuracy. 

- Estimate the maximum (∆𝑉𝑚𝑎𝑥) and the minimum (∆𝑉𝑚𝑖𝑛) voltage perturbation using 

Equation (2-21). 

- Assign, 𝑎∆𝑣 = ∆𝑉𝑚𝑎𝑥 and 𝑏∆𝑣 = ∆𝑉𝑚𝑖𝑛. 

Based on the intuitive assumption that, ∆𝑃𝑚𝑎𝑥= 0.1 W and ∆𝑃𝑚𝑖𝑛 = 0.02 W, the 

design parameters are estimated and presented in Table 3.1. 

 

 

Table 3.1. Results of Design Parameters from Analytical Design Method. 

Parameter Value Parameter Value 

𝑫𝒔𝒕𝒆𝒑 0.0015 𝒂∆𝑷 0.1 

𝒂∆𝑽 0.01 𝒃∆𝑷 0.02 

𝒃∆𝑽 0.002   
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3.3.2 Genetic Algorithm-Based Design Optimization 

The second proposed strategy for generating the FL design parameters is based on 

combination between analytical and artificial intelligent techniques. GA is used in this 

work to optimize the proposed FL system design parameters and reduce time consumption 

comparatively to the trial and error method. GA is a random search methodology based on 

population genetics, and is used for optimization purposes. Based on the literature, using 

GA for tuning FL system parameters exhibited huge success in many different applications 

[115], [116]. Such an optimal FLC could provide ideal control performance and achieve 

the desired MPPT performance. GA was used to select the optimum combination of the FL 

system design parameters (𝑎∆𝑣, 𝑏∆𝑣, 𝑎∆𝑝, 𝑏∆𝑝 and 𝐷𝑠𝑡𝑒𝑝) based on the optimization 

procedure described in Figure 3.4.  

GA generates an initial random population within the given ranges of variables. 

Then, it calls and runs the PV power dynamic simulation to calculate the integral absolute 

PV power error, as given in Equation (3-1), which represents the fitness function (F). The 

optimization constraints are defined in Equation (3-2). 

𝐹 = 𝑀𝑖𝑛. {∫ |𝑝𝑝𝑣_𝑡ℎ(𝑡) − 𝑝𝑝𝑣_𝑎𝑐𝑡(𝑡)|
𝑡𝑓
𝑡𝑜

𝑑𝑡}                                   (3-1) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 =

{
 
 

 
 
𝑎∆𝑣𝑚𝑖𝑛 < 𝑎∆𝑣 < 𝑎∆𝑣𝑚𝑎𝑥    

𝑏∆𝑣𝑚𝑖𝑛 < 𝑏∆𝑣 < 𝑏∆𝑣𝑚𝑎𝑥    

𝑎∆𝑝𝑚𝑖𝑛 < 𝑎∆𝑝 < 𝑎∆𝑝𝑚𝑎𝑥   

𝑏∆𝑝𝑚𝑖𝑛 < 𝑏∆𝑝 < 𝑏∆𝑝𝑚𝑎𝑥   

𝐷𝑠𝑡𝑒𝑝 < 𝐷𝑠𝑡𝑒𝑝 < 𝐷𝑠𝑡𝑒𝑝𝑚𝑎𝑥

                                    (3-2) 

where, 𝑝𝑝𝑣_𝑡ℎ is the theoretical maximum power (MP) that can be extracted at certain 

irradiance, and 𝑝𝑝𝑣_𝑎𝑐𝑡 is the actual PV power extracted by the proposed MPPT. 
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Figure 3.4. Flowchart of GA optimization procedure. 

 

The objective of GA optimization is to minimize the cost function by accurately 

choosing the design parameters of the FL system. GA setup for the proposed design 

optimization procedure is presented in Table 3.2. 

The selection of optimization constrains in Equation (3-2) (lower and upper 

boundaries of the optimization variables) are typically assigned by experience. However, 

these boundaries can be better configured using the developed formulas (2-21) and (2-23). 

The step size (𝐷𝑠𝑡𝑒𝑝) when ∆𝑝𝑈𝑝𝑝𝑒𝑟 = 0.3 𝑊 is ∆𝑑@0.3𝑊 = 3.87𝑥10−4, and the change of 
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the voltage is ∆𝑣@0.3𝑊 = 0.0195. Thus, the upper boundaries of 𝐷𝑠𝑡𝑒𝑝, and ∆𝑣 are 

calculated as in Equation (3-3). 

∆𝑑𝑈𝑝𝑝𝑒𝑟 = 5. ∆𝑑@0.3𝑊 ≈ 0.002

∆𝑣𝑈𝑝𝑝𝑒𝑟 = 5. ∆𝑣@0.3𝑊 ≈ 0.1     
                                           (3-3) 

These values are used to set the upper boundaries for the GA optimization variables 

𝑎∆𝑣, 𝑎∆𝑝 and 𝐷𝑠𝑡𝑒𝑝. The lower boundaries of the variables are set to be very close to zero 

for considering the maximum range of the design optimization. The optimization upper 

boundaries of 𝑏∆𝑣 and 𝑏∆𝑝 are heuristically set, as indicated in Table 3.2.  

 

Table 3.2. GA Setup for the Design Optimization Algorithm. 

Parameter Value 

Bounds 

Variable [𝐷𝑠𝑡𝑒𝑝, 𝑏∆𝑣, 𝑎∆𝑣, 𝑏∆𝑝,  𝑎∆𝑝] 

Lower [0.00001,    0,    0,    0,    0] 

Upper [0.002, 0.01, 0.1, 0.05, 0.3] 

Populations 20 

Mutation Uniform 80% 

Crossover Single point 

Iterations 20 

Number of running 5 

 

In order to avoid the infeasible optimization solutions, the parameters a∆v and a∆p 

should always be greater than or equal to b∆v and b∆p, respectively. A large penalty factor 
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is appended to the cost function if the solution does not satisfy these criteria, as indicated 

in Figure 3.4. This penalty factor helps to guide the next iterations to the feasible region 

after evaluating the fitness, as indicated in the results presented in Figure 3.5. The fitness 

function shows smooth descending progress without any infeasible solution. The final 

optimum FL system design parameters using GA optimization are presented in Table 3.3. 

 

Figure 3.5. Progression of the GA Fitness function. 

Table 3.3. Results of Design Parameters from GA Design Method. 

Parameter Value Parameter Value 

𝑫𝒔𝒕𝒆𝒑 9.7353 x 10-4 𝒂∆𝑷 0.08417 

𝒂∆𝑽 0.00779 𝒃∆𝑷 0.01271 

𝒃∆𝑽 3.1832 x 10-4   
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 Hardware Implementation of Fuzzy-MPPT Controller  

The system described in Figure 3.1 was simulated and experimentally tested under 

fast variations of climatic conditions. The simulations were performed in Simulink 

MATLAB and compared with the mathematical model presented in chapter (2). The 

experimental test setup is shown in Figure 3.6. It consists of a commercial BP 4175T PV 

array connected to a DC bus through a DC-DC Cuk converter and its control. The PV array 

was emulated by XR375-15.9 Programmable DC MAGNA power supply. The proposed 

FL MPPT algorithm was implemented using the commercial microcontroller DSpace 

1104. The DC-DC converter is built using HGTG30N60C3D IGBT power switch and 

FFPF15S60S power diode. The commercial SKHI 22A H4 R gate driver was considered 

to drive the IGBT. Hall effect LEM voltage and current sensors are utilized to measure the 

PV voltage and current. The nominal values for the chosen system’s components are given 

in Table 3.4. The converter switching frequency is 10 kHz and the perturbation rate is 50 

variations/sec. 

 

XR375-15.9 Programmable 

DC MAGNA Power Supply
DC supply in parallel 

with resistive load
DC-DC Cuk Converter PCB

DSPACE 1104

PV Panel

MPPT

DC Bus

Sensors 

Board

Gate 

Driver

LEM Sensors

SKHI 22A R Driver

 

Figure 3.6. Experimental setup of PV power system. 
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Table 3.4. Specifications of Hardware Components of the DC-DC Converter. 

Component Model/Rating 

Power IGBT HGTG30N60C3D, 600 V, 63 A 

Power Diode FFPF15S60S, 600 V, 15 A 

Gate Driver Hybrid Dual SKHI 22 A / B H4 (R) 

Current Sensor LA25-NP 713194 

Voltage Sensor LV25-P 712100 

 

 

 Experimental and Simulation Results and Discussion  

The PV power system with the FL MPPT is evaluated in this section. Several tests 

were applied to the system for verification purposes. The first category of tests are made 

to validate the proposed design analysis. The second class of measurements are achieved 

to verify the robustness of the proposed FL MPPT under different environmental 

conditions. Finally, comparative analysis is realized between the performance of the 

proposed MPPT and the most common techniques in the literature. 

   

3.5.1 Assessment of the Proposed FL Design Strategies 

The effect of the two design techniques presented in section 3.3 on the MPPT 

performance is indicated in this section. The FL system is analyzed and compared using 

the parameters resulting from the analytical and GA-based procedure. The comparison 

results are described in Figure 3.7. It shows the PV variables (𝑝𝑝𝑣, 𝑖𝑝𝑣 and 𝑣𝑝𝑣) under 
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certain irradiance profile during 4.5 sec in which two step changes were applied: from 1 to 

0.6 kW/m2 , and then turns back to 1 kW/m2. Figure 3.7(a) presents the PV power using 

the two combinations of design parameters (analytical and GA-based) and compared with 

the theoretical MP, which is supposed to be generated from the PV panel. Both design 

techniques exhibit successful tracking performance but the analytical one shows slower 

transient response, as indicated in Figure 3.7(c). By evaluating the Mean Absolute Power 

Error (MAPE) for both combinations, GA-based provides better accuracy with 2.36% than 

the analytical one, which shows 3.15%. Thus, the parameters from GA optimization are 

considered for the rest of the results. 

 

 

Figure 3.7. Simulation results for the proposed FL system designs. (a) PV power. (b) PV 

current. (c) PV voltage. 
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3.5.2 Experimental and Simulation Results of Fuzzy MPPT 

In this section, a comparison between the theoretical, experimental and simulation 

results are presented to evaluate the dynamic and steady-state performance of the proposed 

FL MPPT controller. The entire system performance is analyzed by simulation and 

compared with the experimental results. A pulse irradiance profile is applied for 10 sec, 

which shows a step change from 1 to 0.6 kW/m2 and turns back to 1 kW/m2. 

The PV variables are indicated in Figure 3.8 (𝑝𝑝𝑣, 𝑣𝑝𝑣 and 𝑖𝑝𝑣). The figure shows 

how the control successfully tracked the MPP regardless of the irradiance variation. 

Generally speaking, the figures show very good correlation between the experimental, 

simulation and theoretical results. Larger ripples in the simulation results than the 

experimental can be noticed. This is due to using digital low-pass filters after the voltage 

and current transducers to minimize the noise and disturbances due to the PV emulator. 

These filters help the MPPT control algorithm to work properly, however, they smooth the 

normal ripple due to the swinging around the MPP. That is why these oscillations appear 

in the experimental results during the whole operating period, as shown in Figure 3.8, 

unlike the simulation results, which show oscillations during the transient region only. 

Also, another reason for the experimental oscillations is the low acquisition resolution of 

the experimental tests (5 kHz) compared with the simulation (0.5 MHz). The slow dynamic 

performance of the PV emulator can be observed during the irradiance step down and up 

transient response of the experimental results in Figure 3.8. 
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Figure 3.8. Experimental and simulation results for FL-MPPT control. (a) PV power. (b) 

PV power zoomed. (c) PV current.  (d) PV voltage. 

 

The effectiveness of the proposed FL controller under the fast temperature variation 

is investigated in Figure 3.9. Typically, the variation of the temperature is slow compared 

to the radiation variation. However, a dramatic temperature variation is assumed in this test 

to confirm the robustness of the proposed controller. The temperature stepped from 25 oC 

to 50 oC, then returned back to 25 oC. As it can be noticed, increasing the temperature 

slightly increases the PV current and significantly decreases the PV voltage, which results 

in a small reduction of the PV power. The effect of the temperature on the PV power is 

small compared with the radiation impact. The proposed MPPT shows robust tracking 
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performance under the fast temperature variation with good agreement between 

experimental, simulated and theoretical results. 

 

 

 

Figure 3.9. Experimental and simulation results for FL-MPPT controller under fast 

temperature variation. (a) PV power. (b) PV current. (c) PV voltage. 
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the proposed FL-MPPT and INC using the same irradiance profile used in Figure 3.8. The 

proposed technique shows faster transient response and less steady-state error. Also, loss-

tracking is noticed in INC performance during the low irradiance level, which results in 

less tracking efficiency.   

 

 

 

Figure 3.10. Comparison between the proposed fuzzy-MPPT and INC algorithm. (a) PV 

power. (b) PV current. (c) PV voltage. 
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around the MPP during the whole operating period, unlike the proposed algorithm, in 

which the error appears only during the transient. Also, longer transient can be noticed with 

P&O during the step variation of irradiance due to the wrong control actions. The MAPE 

has been evaluated for the three algorithms, as presented in Table 3.5. The proposed 

algorithm shows the least power error among all techniques. The conventioal P&O 

algorithm is implemented experimentally and the results are presented in Figure 3.12. Good 

agreement is noticed between simulation and experimental results. 

 

 

 

Figure 3.11. Comparison between the proposed fuzzy-MPPT and P&O algorithm. (a) PV 

power. (b) PV current. (c) PV voltage. 
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Table 3.5. MAPE for the Proposed FL-MPPT, P&O and INC Algorithms. 

Variable P&O INC Fuzzy-MPPT 

MAPE % 7.1951 13.5513 2.3605 

 

 

 

Figure 3.12. Experimental and simulation results for P&O algorithm. (a) PV power. (b) PV 

power zoomed. (c) PV current.  (d) PV voltage. 
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DC-DC Cuk converter and DC bus) with a non-linear equation representing the PV panel. 

General MPPT control design considerations were developed based on the small signal 

analysis. Then, proper FL-MPPT control design was performed by means of combining 

GA and the analytical design formulas. This technique is used for determining the location 

and the boundaries of the FL membership functions. The proposed intelligent MPPT 

control algorithm was simulated and experimentally tested under fast variation of 

irradiance and temperature conditions, and compared with the P&O and INC algorithms. 

The proposed control shows faster transient response, less steady state error and robust 

tracking performance. In all the tests, a comparative analysis was conducted between the 

simulation, experimental and theoretical results. The results show very good agreement 

between all of them. 
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 Introduction 

The Smart grids are converting the traditional power system into more efficient and 

reliable networks. Using EVs as active elements to serve the power grid is a promising 

service in smart grid applications, which is knowing as V2G service [136]. This kind of 

application requires a flexible, automatic, safe and reliable interface between the EVs and 

the power grid. The inductive wireless power technology is an ideal choice for these 

services as [92], [137]: 1) the vehicle does not need to be parked in a certain location for a 

long time, 2) avoiding the manual plug provides safe operation in the presence of water, 

rain or dust, 3) it is reliable during the environmental disaster such as hurricanes, storms 

and earthquakes, and 4) it is automatic and does not need the driver intervention. This 

wireless interface needs to be bidirectional to allow two-way power flow between the EV 

and power grid. 

According to the literature, the BIWPTS has been proposed in [51], [138]. These 

systems have been produced for aircraft application, in which the leakage inductance of a 

transformer forms a resonant circuit with a series capacitor to allow the bidirectional power 

transfer while operating as a voltage source. Such a system would not be appropriate for 

V2G applications, where a fleet of EVs needs to be supplied at the same time [139]. A 

dual-side full-bridge BIWPTS for charging and discharging EVs was proposed in [137], 

[140]. Several analytical models and assessment analyses for IPT systems can be found in 

the literature. Most of these analyses were developed for unidirectional IPT systems, such 
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as in [82], [86], [89], [141]. These studies cannot be simply applied for bidirectional 

operation, since in this case the system is designed such that each side should be able to 

work as a source and a load at the same time. Moreover, in most of these models, only the 

fundamental frequency component was considered, which leads to inaccurate analysis 

especially in the topologies where both the voltage and the current waveforms are non-

sinusoidal. For BIWPTS, steady-state mathematical models were presented in [75], [101], 

[142], a dynamic analytical model was developed in [143], and a physics-based model was 

proposed in [144], [145]. In these models, the harmonics components were considered, 

however, they were developed for LCL topology only and no assessment analysis was 

presented. Simple mathematical models for LC-series and LCL topologies were presented 

in [146]. In this study, only the fundamental frequency component was considered, and 

brief sensitivity analysis was performed. Up to the author knowledge, a comprehensive 

modeling and evaluation analysis for the different compensation topologies in BIWPTS 

has not been presented yet. 

This chapter presents modeling analysis for the steady-state performance of BIWPTS 

in EVs implementations based on Fourier series analysis considering the harmonic contents 

in the system’s performance. The analysis is presented for the three main compensation 

configurations of a symmetrical BIWPTS: LC-series, LC-parallel and LCL-topology. 

Moreover, the steady-state equivalent circuit-based mathematical models for all topologies 

are developed. These models were used to precisely determine the system’s response 

during V2G and G2V operations based on Fourier series. Generalized fundamental power 

flow formulas (active and reactive), to evaluate the power flow performance in the different 

topologies, are developed. 
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 V2G Scheme Description 

The description of G2V and V2G concepts including the wireless power interface are 

depicted in Figure 1.1. The figure demonstrates a DC-bus integration arrangement, in 

which all the elements are connected together through a common DC-link. Typically, the 

integration between EVs and the power grid can be achieved through a DC or an AC-bus. 

The DC-bus configuration offers more benefits than the AC-bus structure, whether the EV 

was connected by wires or wirelessly, or both of them (which is the typical case in 

commercial EVs that support wireless chargers nowadays) [147]. In this sense, two block 

diagrams are prepared to indicate the wired and wireless connection of an EV to a DC and 

an AC-bus. In Figure 4.1, which shows the DC-bus connection, the EV carries a wireless 

power pad, high-frequency inverter (for wireless) and DC-DC converter (for wired). Also, 

during the installation of the primary side of the wireless system (which is still the 

responsibility of the automotive company), the company does not need to worry about the 

grid-tie inverter, since it will work directly with the available DC-bus. 
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Inside EV

DC Bus
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inverter
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inverter

Grid-tie 

inverter

EV’s 

Battery

Wireless connection

EV’s Battery

Wired connection

Inside EV

 

Figure 4.1. Wired and wireless connected EV through a DC-bus. 
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On the AC-bus connection, which is shown in Figure 4.2, the EV carries the same 

devices as those that are in the DC-bus connection, in addition to a grid-tie inverter for the 

wired connection, which means more EV’s weight and cost, and less utilization efficiency. 

Moreover, during the installation for the primary side of the wireless system, the company 

will be responsible for installing a second grid-tie inverter for the wireless option. This 

means more cost and effort for the automotive companies, which will be reflected in the 

price of EV. 
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Figure 4.2. Wired and wireless connected EV though an AC-bus. 

 

 

Based on this discussion, we can conclude that the DC-bus architecture provides 

more benefits for EVs manufactures and users, in both the wired and wireless connection. 

It needs less components inside the EV in the wired connection and on the road for the 

wireless integration. This results in less EV weight and cost, more utilization efficiency, 
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and EV manufacturing companies can get rid of installing the grid-tie converter. Also, it is 

more convenient for integrating RESs and energy storage systems [148]. 

 

4.2.1 Dual H-Bridge BIWPT System 

Typically, the dual H-bridge BIWPTS consists of two sides: primary (grid or ground) 

and secondary (vehicle). The former is connected to the DC-bus and is implemented on the 

road underneath the vehicle. The latter is coupled to the EV battery and is placed inside the 

vehicle. Each side consists of a HF H-bridge inverter, controller, compensation circuit and 

the wireless pad, as shown in Figure 4.3. The two sides are weakly coupled by magnetic 

induction through a large air gap (100-200 mm), according to the Society of Automotive 

Engineers (SAE) J2954A standard [149]. During G2V (charging) operation, the power 

flows from the DC-bus to charge the EVs. The DC power is converted to HF AC (81.38-

90 kHz) by the primary inverter of the wireless entity to supply the primary circuit. The 

primary power is transferred by magnetic induction to the secondary circuit through the 

air-gap with the same frequency. Then, the secondary power is converted to DC by the 

secondary converter to supply the EV battery. The compensation capacitors are essential 

to resonate with the wireless coupler coils and provide reactive power compensation and 

unity power factor (UPF) operation in the primary and secondary sides. These capacitors 

result in minimizing the required VA from the supply and maximizing the utilization 

efficiency [150]. In the discharging mode (V2G), the power is transferred from the EVs 

and the DC-bus through the same path. 
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Figure 4.3. Schematic circuit diagram of the dual-side full-bridge BIWPTS. 

 

 

4.2.2 Bidirectional Power-Flow Control 

The bidirectional power-flow operation between the EVs and DC-bus is managed by 

the two HF H-bridge inverters in the system. These inverters are driven by two 

synchronized controllers, as indicated in Figure 4.3. In this work, both the primary and 

secondary controllers are utilizing the phase-shift technique. In this technique, the system’s 

currents and power are managed by adjusting both the magnitude and phase of the two 

inverters’ voltage. This voltage control is achieved by changing the phase-shift between 

legs’ voltage for the same inverter and the two inverters’ voltage. The primary controller 

generates the phase-shift between the two primary inverter’s legs (α). This parameter (α) 

is used to adjust the magnitude of the primary inverter output voltage based on the reference 

signal, which is typically the rated current that the primary circuit can support [see Figure 
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4.4(a)] [137]. The secondary controller produces the phase-shift between the secondary 

inverter’s legs (β), and the phase shift between the primary and secondary inverters’ output 

voltage (δ). Typically, the secondary control parameters (β and δ) are adjusted to achieve 

the required power flow magnitude and direction, respectively [Figure 4.4(b)] [139]. The 

phase-shift parameters, from both the controllers (α, β and δ), are then translated to low-

level switching signals based on the pulse-phase modulation (PPM) technique, as indicated 

in Figure 4.4. These signals are boosted up using the driver circuits to drive the eight 

switches of the two HF inverters. By applying these switching signals, the inverter voltage 

magnitude and phase are adjusted to achieve the required power-flow in the system. The 

variation of the inverter voltages in terms of the phase-shift control parameters is described 

in Figure 4.5. 
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Figure 4.4. Phase-shift control of the HF inverters. (a) Primary controller. (b) Secondary 

controller. 
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Figure 4.5. Legs and total inverter output voltages in terms of the phase-shift control 

parameters. 

 

 

4.2.1 Compensation Network 

The large air-gap between the two power pads in the IPT system decreases the system 

magnetizing reactance and increases the leakage reactance. Therefore, large magnetizing 

current will be drawn from the supply in terms of reactive power. Compensation PFC 

capacitors are typically used in BIWPTS to provide reactive power restitution and improve 

the operating power factor in the primary and secondary circuits. Improving the power 

factor (PF) leads to higher utilization efficiency and power transfer capability [151]. These 
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capacitors can be connected either in series or in parallel based on the applications. In 

BIWPTS, each side may act as a supply or a load at the same time, thus the two sides 

should be treated equally. Therefore, in this study it is assumed that, the BIWPTS under 

consideration is symmetrical. Therefore, there is no a specific side that needs to be designed 

to work as a source or a load. Both sides should be able to supply and collect the power at 

the same time. 

Based on this assumption, there are four compensation topologies for symmetrical 

BIWPTS in the literature: LC-series, LC-parallel, LCL-topology and CLCL-topology, as 

indicated in Figure 4.6. In LC-series structure, the capacitors (Cp and Cs) are connected in 

series with the pad coils (Lpc and Lsc) [Figure 4.6(a)], and in parallel for LC-parallel 

structure [Figure 4.6(b)]. In LCL-topology, L-filters (Lpi and Lsi) are added between the 

inverters and the resonance tank in LC-parallel topology, as shown in Figure 4.6(c).  
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Figure 4.6. Different compensation topologies in BIWPTS. (a) LC-series. (b) LC-parallel. 

(c) LCL-topology. 
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In CLCL structure, shown in Figure 4.6(d), DC blocking capacitors (Cpi and Csi) are 

inserted in series with the filter inductances, in order to remove the DC current component. 

The best design for these capacitors is such that the equivalent reactance of the capacitors 

and the filters’ inductance in each side is equal to the filter reactance in LCL-topology. In 

this case, the mathematical model and the performance of CLCL-topology is equivalent to 

that of LCL architecture, as was discussed in [142]. Hence, in this work, the authors 

decided to focus on the three main topologies: LC-series, LC-parallel and LCL-topology. 

 

 

 Steady-State Circuit representation of BIWPTS’s Components 

BIWPTS in EV applications consists of three main elements: EV’s battery, HF 

inverters and the wireless coupler, which includes the power pads and the compensation 

capacitors. As indicated in Figure 1.1, a grid-tie converter is used in the framework to keep 

the DC-bus voltage level fixed and to manage the power-flow between the EV and the grid. 

Hence, the DC-link is represented mathematically as a fixed DC voltage source (Vdc). Also, 

due to the huge difference between the dynamics of the charging circuit and Li-ion battery, 

which is commonly used in EVs, the battery side is ideally represented as a second fixed 

DC voltage source (Vb). The steady-state mathematical model for each component in the 

system based on its equivalent circuit (EC), including HF inverters, power pads and 

compensation network, are presented in this section. In addition, the mathematical link 

between these components is stated to predict the entire system’s performance. 
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4.3.1 HF H-bridge Inverter Model  

Two HF inverters are used in the system, to supply the wireless coupler with 

controlled square waves at the resonant frequency, as depicted in Figure 4.3. Both inverters 

generate periodic square or quasi-square wave voltages (Vpi and Vsi). The steady-state 

inverter output voltages are represented, in terms of the system design and control 

parameters (α, 𝛽, and δ), based on Fourier series analysis, as given in Equation (4-1) [75]. 

Only odd harmonics appear in the equations due to the symmetry around the origin. 

𝑉𝑝𝑖 =
4

𝜋
𝑉𝑑𝑐 ∑

1

𝑛
∞
𝑛=1,3,… cos (𝑛𝜔𝑠𝑡 −

𝑛𝛼

2
) sin (

𝑛𝛼

2
)        

𝑉𝑠𝑖 =
4

𝜋
𝑉𝑏 ∑

1

𝑛
∞
𝑛=1,3,… cos (𝑛𝜔𝑠𝑡 −

𝑛𝛼

2
+ 𝑛𝛿) sin (

𝑛𝛽

2
)
                   (4-1) 

where, n is the number of harmonics, α is the PPM parameter of the primary inverter, 𝛽 

and δ are the PPM parameters of the secondary inverter, and ωs is the switching frequency 

for both primary and secondary circuits, which is equal to the resonant frequency ωr.  

The resonant frequency is chosen based on the self-inductance of the coupler coils to 

be independent on the mutual inductance and the misalignment between the two sides 

during the operation, as given in Equation (4-2). 

𝜔𝑠 = 𝜔𝑟 = 1 √𝐿𝑝𝑐𝐶𝑝⁄ = 1 √𝐿𝑠𝑐𝐶𝑠⁄                                      (4-2) 

where, the subscript ‘p’ stands for the primary side and ‘s’ for the secondary circuit, Lpc 

and Lsc are the pad self-inductances, and Cp and Cs are the compensation capacitors. 

 

4.3.2 Magnetic Coupler Model 

 Typically, for high power applications (e.g. EVs), the power pads consists of copper 

coils and magnetic ferrite martials. The magnetic coupling between the primary and 



 

67 

 

secondary power pads is demonstrated in this work by the T-model representation of the 

mutual coupling. In this representation, the effect of the magnetic material losses and 

nonlinearities are neglected, and only the resistive losses of the coils are considered. These 

are accepted assumptions for inductive power transfer systems, due to the following 

reasons [147]: 

- Typically, the magnetic material used in the design of the IPT system is a composition 

of different soft ferrites. The most popular combinations are manganese and zinc 

(MnZn) magnetic material. This compound exhibits good magnetic properties and has 

a rather high intrinsic electric resistivity. These materials can be used up to very high 

frequencies without laminating (up to 10 MHz) [152]. As an example that is considered 

in this work, the industrial type ferrite N87, which has very soft behavior and near-

insulating character, makes it ideal for uses in 10 kHz-10 MHz range of frequencies in 

the design of high-power applications. This kind of material shows low hysteresis and 

eddy current losses [152]. 

- The operating frequency of IPT systems for EV applications is less than 100 kHz (81.38-

90 kHz) [149], which is relatively low compared with the maximum operating 

frequency that this material can handle (10 MHz). Thus, this relatively low-frequency 

range leads to insignificant magnetic losses. 

- The magnetic losses mainly depend on the volume of the magnetic core. The core that 

is typically used in IPT systems is small compared with the entire volume of the system. 

In contrast with the conventional transformer, the core is huge and it introduces large 

magnetic losses, which cannot be neglected. This small core results in negligible 

magnetic losses compared with the other losses in the system. 



 

68 

 

VscM

Cs

Ipc Isc

RpcLpc-M Lsc-M Rsc

Vpc

+

-

+

-

 

Figure 4.7. T-model representation of wireless coupler. 

 

 

The mutual inductance is described in terms of the circuit parameters and the 

coupling factor (k), as given in Equation (4-3). 

𝑀 = 𝑘√𝐿𝑝𝑐𝐿𝑠𝑐                                               (4-3) 

Although the analysis are achieved for symmetrical BIWPTS, in which the two sides 

are identical, the two sides are represented in the mathematical model by different 

parameters to present the general unsymmetrical case. The T-model equivalent circuit, as 

a recognized model, is used to represent the mutual inductance in the system and represent 

the system with one equivalent circuit instead of two isolated circuits with mutual 

inductance. In the T-model representation, although the direct correlation with turns-ratio 

is missing, its effect on the system is included in the model parameters (Lpc, Lpc and M) 

[153]. These parameters are considered as constant in the model and were measured using 

the RLC meter. Thus, general turns ratio (other than one) was internally considered in the 

model by using different symbols for each side. A different number of turns will be 

reflected on the values of self and mutual inductances of the wireless coupler. The T-model 
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representation is a general structure that can be used to represent unsymmetrical coils with 

mutual coupling. It has been used in the literature for unsymmetrical IPT system, such as 

in [154]. 

 

 Steady-State Mathematical Model of Different Topologies of BIWPTS 

In the steady-state equivalent circuit, the two HF inverters are represented as two 

controlled AC voltage sources with output voltages given in Equation (4-1). The DC-bus 

and the EV’s battery are represented by two fixed DC sources (Vdc and Vb, respectively). 

These sources are linked with the coupler model equivalent circuit and the compensation 

elements to develop the whole steady-state equivalent circuit model. This circuit is deduced 

for the three main compensation topologies: LC-series, LC-parallel and LCL topology. 

Using electric circuits’ analysis, the equivalent circuit of each topology is analyzed and 

two π-models are developed to investigate the system’s currents in terms of the inverter 

voltages. The first model is shown in Figure 4.7, which represents inverters’ currents (Ipi 

and Isi) in terms of their voltages (Vpi and Vsi). The admittance matrix of this model is stated 

mathematically in Equation (4-4). 

Vpi

Vsi

ZbIpi Isi

Zp Zs

Zp_eq Zs_eq
 

Figure 4.8. π-model of BIWPTS for inverter’s currents in terms of inverter’s voltages. 
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[
𝐼𝑝𝑖
𝐼𝑠𝑖
] = [

(𝑍𝑝+𝑍𝑏)

𝑍𝑝𝑍𝑏
−1 𝑍𝑏⁄

−1 𝑍𝑏⁄
(𝑍𝑠+𝑍𝑏)

𝑍𝑠𝑍𝑏

] [
𝑉𝑝𝑖
𝑉𝑠𝑖
]                                      (4-4) 

where, Zp, Zb and Zs are the model parameters which are different for each configuration, 

as is explained in detail in the next sections. 

The second π-model demonstrates the pad currents (Ipc and Isc) as functions of Vpi 

and Vsi, as indicated in Figure 4.8 and represented mathematically in Equation (4-5).  

 

Vpi Vsi

λYpsIpc Isc

 

Figure 4.9. π-model of BIWPTS for coil’s currents in terms of inverter’s voltages. 

 

 

[
𝐼𝑝𝑐
𝐼𝑠𝑐
] = 𝜆 [

𝑌𝑝𝑝 𝑌𝑝𝑠
𝑌𝑠𝑝 𝑌𝑠𝑠

] [
𝑉𝑝𝑖
𝑉𝑠𝑖
]                                          (4-5) 

where, λ, Ypp, Yss, Yps and Ysp are the model parameters which are different in each structure. 

This model is based on the harmonic contents, and all the presented parameters and 

variables need to be solved at each harmonic component and added together. By knowing 

the admittance matrix models, the system steady-state response can be evaluated and many 
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variables can be calculated, such as the active and reactive power, the charging and 

discharging efficiency, and primary and secondary PF. Also, the equivalent impedance can 

be easily obtained from the π-model in Figure 4.7, by applying Thevenin’s theory, as given 

in Equation (4-6). This impedance model is very useful for tuning and evaluating the 

compensation capacitors [102]. 

𝑍𝑝_𝑒𝑞 = 𝑍𝑝𝑍𝑏 (𝑍𝑝 + 𝑍𝑏)⁄

𝑍𝑠_𝑒𝑞 = 𝑍𝑠𝑍𝑏 (𝑍𝑠 + 𝑍𝑏)⁄
                                     (4-6) 

 

4.4.1 LC-Series Compensation Network 

In this arrangement, the capacitor is connected in series with the pad on both the 

primary and secondary sides. The steady-state equivalent circuit is shown in Figure 4.9.  

The inverter and pad currents are the same and are represented by the first model given in 

Equation (4-4). The π-model parameters for this configuration are described in Equation 

(4-7). 
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Figure 4.10. BIWPTS equivalent circuits using T-model mutual coupling for LC-series 

topology. 



 

72 

 

𝑍𝑏 = (𝜔𝑠
4𝑀2𝐶𝑝𝐶𝑠 − 𝑍𝑝1𝑍𝑠1) (𝑗𝜔𝑠

3𝑀𝐶𝑝𝐶𝑠)⁄                    

𝑍𝑝 = (𝑍𝑝1𝑍𝑠1 − 𝜔𝑠
4𝑀2𝐶𝑝𝐶𝑠) [𝑗𝜔𝑟𝐶𝑝(𝜔𝑠

2𝑀𝐶𝑠 + 𝑍𝑠1 )]⁄

𝑍𝑠 = (𝑍𝑝1𝑍𝑠1 − 𝜔𝑠
4𝑀2𝐶𝑝𝐶𝑠) [𝑗𝜔𝑟𝐶𝑠(𝜔𝑠

2𝑀𝐶𝑝 + 𝑍𝑝1 )]⁄

                       (4-7)              

where,                              𝑍𝑝1 = 1 − 𝜔𝑠
2𝐿𝑝𝑐𝐶𝑝 + 𝑗𝜔𝑠𝐶𝑝𝑅𝑝𝑖,  

                                          𝑍𝑠1 = 1 − 𝜔𝑠
2𝐿𝑠𝑐𝐶𝑠 + 𝑗𝜔𝑠𝐶𝑠𝑅𝑠𝑖. 

By knowing the currents, the voltage across the coils can be estimated using Equation 

(4-8). 

𝑉𝑝𝑐 = 𝑉𝑝𝑖 +
𝑗

𝜔𝑠𝐶𝑝
𝐼𝑝𝑖

𝑉𝑠𝑐 = 𝑉𝑠𝑖 +
𝑗

𝜔𝑠𝐶𝑠
𝐼𝑠𝑖

                                              (4-8) 

 

4.4.2 LC-Parallel Compensation Network 

In this structure, the PFC capacitors are attached in parallel with the power pads. The 

steady-state equivalent circuit is given in Figure 4.10. In this case, the inverter and pad 

currents are different. They are described by the two admittance-matrix model parameters 

given in Equations (4-9) and (4-10). 

 

Vpi
VsiM

Cs
Cp

Ipi Isi

Ipc Isc

RpcLpc-M Lsc-M Rsc

Vsc
Vpc

+

-

+

-

 

Figure 4.11. BIWPTS equivalent circuits using T-model mutual coupling for LC-parallel 

topology. 
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𝑍𝑏 = [𝜔𝑠
2𝑀2 + (𝑗𝜔𝑠𝐿𝑠𝑐 + 𝑅𝑠𝑐)(𝑗𝜔𝑠𝐿𝑝𝑐 + 𝑅𝑝𝑐)] (𝑗𝜔𝑠𝑀) ⁄

𝑍𝑝 =  (𝑗𝜔𝑠𝑀𝑍𝑏) [𝑗𝜔𝑠(𝐿𝑠𝑐 −𝑀) + 𝑅𝑠𝑐 − 𝜔𝑠
2𝑀𝐶𝑝𝑍𝑏]⁄      

𝑍𝑠 = ( 𝑗𝜔𝑠𝑀𝑍𝑏) [𝑗𝜔𝑠(𝐿𝑝𝑐 −𝑀) + 𝑅𝑝𝑐 − 𝜔𝑠
2𝑀𝐶𝑠𝑍𝑏]⁄      

                   (4-9)   

𝑌𝑝𝑝 =
−𝑗𝜔𝑠𝑀𝑉𝑠𝑖+ (𝑗𝜔𝑠𝐿𝑠𝑐+ 𝑅𝑠𝑐)

 𝜔𝑠2𝑀2 + (𝑗𝜔𝑠𝐿𝑠𝑐+ 𝑅𝑠𝑐)(𝑗𝜔𝑠𝐿𝑝𝑐+ 𝑅𝑝𝑐)

𝑌𝑠𝑠 =
−𝑗𝜔𝑠𝑀𝑉𝑝𝑖+ (𝑗𝜔𝑠𝐿𝑝𝑐+ 𝑅𝑝𝑐)𝑉𝑠𝑖

 𝜔𝑠2𝑀2 + (𝑗𝜔𝑠𝐿𝑠𝑐+ 𝑅𝑠𝑐)(𝑗𝜔𝑠𝐿𝑝𝑐+ 𝑅𝑝𝑐)

                              (4-10) 

  where, 𝜆 = 1, 𝑌𝑠𝑝 = 𝑌𝑝𝑠 = 0. 

In this case, the coil voltages are the same as the inverter voltages. The direct 

connection of the voltage source inverters leads to very large (
𝑑𝑣

𝑑𝑡
) across the capacitors, 

which results in large current spikes to be drawn from the inverter. These spikes are very 

damaging for the inverter and lead to poor system’s performance. Thus, L-filters need to 

be added to each inverter output to block the HF harmonics in the currents and remove the 

current spikes. This modification leads to the LCL-compensation network, which is 

analyzed in the next section. 

 

4.4.3 LCL Compensation Network 

In this configuration, a second coil is inserted in series to each inverter output in the 

LC-parallel topology (Figure 4.11). This filter converts the voltage-source inverter into a 

current source supply, which is desirable for EV’s battery operation. The filter inductance 

is chosen to reduce the harmonics in the inverter current and allow a certain amount of 

active and reactive power transfer. The admittance matrix model parameters for LCL-entity 

are given in Equations (4-11) and (4-12). 
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Figure 4.12. BIWPTS equivalent circuits using T-model mutual coupling for LCL 

topology. 

 

𝑍𝑏 = (𝑍𝑝𝑚𝑍𝑠𝑚) (𝑗𝑀𝜔𝑠)⁄ + 𝑍𝑝𝑚𝑍𝑠2 + 𝑍𝑠𝑚𝑍𝑝2          

𝑍𝑝 = (𝑍𝑝𝑚𝑍𝑏) (𝑍𝑏(𝜔𝑠
2 𝑀𝐶𝑝 + 𝑍𝑝2)) − 𝑍𝑠𝑚 − 𝑍𝑝𝑚⁄

𝑍𝑠 = (𝑍𝑠𝑚𝑍𝑏) (𝑍𝑏(𝜔𝑠
2 𝑀𝐶𝑠 + 𝑍𝑠2)) − 𝑍𝑝𝑚 − 𝑍𝑠𝑚⁄   

                         (4-11) 

where,                        𝑍𝑝2 = 1 − 𝜔𝑠
2𝐿𝑝𝑖𝐶𝑝 + 𝑗𝜔𝑠𝐶𝑝𝑅𝑝𝑖, 

                                  𝑍𝑠2 = 1 − 𝜔𝑠
2 𝐿𝑠𝑖𝐶𝑠 + 𝑗𝜔𝑠𝐶𝑠𝑅𝑠𝑖 ,       

                                  𝑍𝑝𝑚 = 𝑍𝑝1[𝑗𝜔𝑠(𝐿𝑝𝑐 −𝑀) + 𝑅𝑝𝑐] + 𝑗𝜔𝑠𝐿𝑝𝑖 + 𝑅𝑝𝑖, 

                                  𝑍𝑠𝑚 = 𝑍𝑠1[𝑗𝜔𝑠(𝐿𝑠𝑐 −𝑀) + 𝑅𝑠𝑐] + 𝑗𝜔𝑠𝐿𝑠𝑖 + 𝑅𝑠𝑖 .    

𝜆 = 1 [𝑍𝑏(𝜔𝑠
2𝑀2 + 𝑍𝑠𝑐 + 𝑍𝑝𝑐)]                       ⁄

𝑌𝑝𝑝 = 𝑍𝑠𝑐[𝑍𝑏 − (1 − 𝑍𝑏 𝑍𝑝⁄ )𝑍𝑝𝑖] − 𝑗𝜔𝑠𝑀𝑍𝑠𝑖

𝑌𝑝𝑠 = 𝑍𝑝𝑖𝑍𝑠𝑐 + 𝑗𝜔𝑠𝑀[𝑍𝑠𝑖(1 + 𝑍𝑏 𝑍𝑝⁄ ) − 𝑍𝑏]

𝑌𝑠𝑝 = 𝑍𝑠𝑖𝑍𝑝𝑐 + 𝑗𝜔𝑠𝑀[𝑍𝑝𝑖(1 + 𝑍𝑏 𝑍𝑝⁄ ) − 𝑍𝑏]

𝑌𝑠𝑠 = 𝑍𝑝𝑐[𝑍𝑏 − (1 − 𝑍𝑏 𝑍𝑝⁄ )𝑍𝑠𝑖] − 𝑗𝜔𝑠𝑀𝑍𝑝𝑖

                              (4-12) 

where,                                   𝑍𝑝𝑐 = 𝑅𝑝𝑐 + 𝑗𝜔𝑠𝐿𝑝𝑐, 
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                                              𝑍𝑠𝑐 = 𝑅𝑠𝑐 + 𝑗𝜔𝑠𝐿𝑠𝑐, 

                                               𝑍𝑝𝑖 = 𝑅𝑝𝑖 + 𝑗𝜔𝑠𝐿𝑝𝑖, 

                                               𝑍𝑠𝑖 = 𝑅𝑠𝑖 + 𝑗𝜔𝑠𝐿𝑠𝑖. 

In this case, the coil’s voltage is different from the inverter’s voltage, due to the 

voltage drop on the filter. By knowing the inverter current, the voltage across the coils can 

be estimated using Equation (4-13). 

𝑉𝑝𝑐 = 𝑉𝑝𝑖 − 𝑗𝜔𝑠𝐿𝑝𝑖𝐼𝑝𝑖
𝑉𝑠𝑐 = 𝑉𝑠𝑖 − 𝑗𝜔𝑠𝐿𝑠𝑖𝐼𝑠𝑖

                                              (4-13) 

In this topology, the compensation capacitors are designed based only on the 

resonance frequency and the coupler self-inductances, as given in Equation (4-2). The filter 

parameters (Lpi, Lsi, Rpi and Rsi) are assigned based on the power transfer capabilities. Even 

though, the BIWPTS performance is very sensitive to the variation of the filter inductances 

with respect to the coupler inductances, as indicated in Figure 4.12. The figure shows the 

fundamental equivalent impedance seen from the primary side (Zp-eq) with respect to the 

operating frequency at different filter designs. In this study, the system is designed to 

resonate at 40 kHz. As it can be noticed, the resonance frequency matches the design 

frequency only when the filter and the coil inductances are equal (Lpi = Lpc) and by 

assuming a symmetrical system (Lsi = Lsc). In this case, the system exhibits zero impedance 

angle which means UPF operation. Any deviation of Lpi from Lpc results in resonance 

frequency deviation. In this sense, the operating frequency needs to be adjusted to make 

the system work at resonance.  For more clear analysis, the effect of the variation of Lpi 
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and Lpc on the system impedance is investigated in Figure 4.13. As it can be observed, the 

resonance always occurs at the operating frequency (40 kHz) when Lpi = Lpc. Thus, in order 

to keep the operating frequency of BIWPTS the same as the resonant design frequency, the 

filter inductances should match with the pad inductances (i.e 𝐿𝑝𝑖 = 𝐿𝑝𝑐 and 𝐿𝑠𝑖 = 𝐿𝑠𝑐 ) 

[76], [102]. In addition, this synthesis allows the system to behave as a current source 

topology, supplying a fixed current regardless of the loading conditions [137]. This 

characteristic is very desirable for EV charging operation, in which the battery is charged 

at the constant current mode. 

 

 

 

Figure 4.13. Effect of filters inductances on the fundamental impedance frequency 

response for LCL-parallel design. (a) Impedance magnitude. (b) Impedance phase angle. 
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Figure 4.14. Effect of system inductances on the fundamental impedance frequency 

response for LCL-parallel design (40 kHz). (a) Impedance magnitude. (b) Impedance phase 

angle. 
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Figure 4.15. Effect of system resistances on the fundamental impedance frequency 

response for LCL-parallel design. (a) Impedance magnitude. (b) Impedance phase angle. 
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reactive (Qp_1) power. Harmonic components in Equation (4-1) are neglected and formulas 

for the fundamental component of Vpi (Vpi-1) and Vsi (Vsi-1) are obtained in Equation (4-14). 

The π-model in Equation (4-4) is solved for Ipi in terms of Vpi and Vsi for each system’s 

topology. Then, a simple formula for the fundamental component of Ipi (Ipi-1) is obtained, 

by neglecting the higher order harmonics’ components and the resistive losses, and applying 

the resonance condition given in Equation (4-2). This formula is the same for all topologies, 

as given in Equation (4-15). By substituting Equations (4-14) and (4-15) in the basic power-

flow formulas in Equation (4-16), the final mathematical model for the fundamental 

primary active and reactive power is described in Equation (4-17). 

𝑉𝑝𝑖_1 = (
4

𝜋
)𝑉𝑑𝑐 cos (𝜔𝑠𝑡 −

𝛼

2
) sin (

𝛼

2
)      

𝑉𝑠𝑖_1 = (
4

𝜋
)𝑉𝑏 cos (𝜔𝑠𝑡 −

𝛼

2
+ 𝛿) sin (

𝛽

2
)
                                 (4-14) 

𝐼𝑝𝑖_1 =
𝑗𝑀 𝛾

𝜔𝑠 𝐿𝑝 𝐿𝑠
𝑉𝑠𝑖_1                                               (4-15) 

𝑃𝑝_1 = 𝑅𝑒𝑎𝑙(𝑉𝑝𝑖_1 𝐼𝑝𝑖_1
∗) 

𝑄𝑝_1 = 𝐼𝑚𝑎𝑔(𝑉𝑝𝑖_1 𝐼𝑝𝑖_1
∗)

                                         (4-16) 

𝑃𝑝_1 = −(
8

𝜋2
)

𝑀𝛾

𝜔𝑠𝐿𝑝𝐿𝑠
𝑉𝑑𝑐𝑉𝑏 sin (

𝛼

2
) sin (

β

2
) sin (δ)

𝑄𝑝_1 = −(
8

𝜋2
)

𝑀𝛾

𝜔𝑠𝐿𝑝𝐿𝑠
𝑉𝑑𝑐𝑉𝑏 sin (

𝛼

2
) sin (

β

2
) cos(𝛿)

                      (4-17) 

where, γ is a real value which is a function of the system parameters and is defined for each 

composition in Table 4.1, Lp and Ls are the primary and secondary inductances, which are 

accurately defined in the same table for each structure. 
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Table 4.1. γ-Parameter for Different Topologies. 

Configuration Inductances γ- equation 

LC-series Lp=Lpc; Ls=Lsc −𝐿𝑝𝑐𝐿𝑠𝑐 𝑀2⁄  = − 1 𝑘2⁄  

LC-parallel Lp=Lpc; Ls=Lsc 𝐿𝑝𝑐𝐿𝑠𝑐 (𝐿𝑝𝑐𝐿𝑠𝑐 −𝑀
2)⁄ =1 (1 − 𝑘2)⁄ ≈ 1 

LCL-topology 
Lp=Lpi; Ls=Lsi 1 

 

 

As it can be noticed in Equation (4-17), the power-flow in BIWPTS depends on the 

DC voltage level on both sides and the system design parameters (resonant frequency, coil 

inductances and mutual coupling between coils). After the design stage, these parameters 

become fixed except the mutual inductance, which varies based on the vehicle position. 

Also, the power-flow is a function of the control parameters of the primary and secondary 

inverters (α, β and δ). Typically, the angle δ is kept fixed at ±90o to minimize the reactive 

power-flow and achieve UPF operation. The sign of δ is decided to control the power-flow 

direction to charge or discharge the EV and switch between the various modes of operation 

(G2V and V2G). When δ is negative, the power flows from the primary to the secondary 

for charging the EV (G2V). However, when δ is positive, the power transfer occurs from 

the secondary to the primary for supplying the grid (V2G). This δ sign notation is 

applicable for LC-parallel and LCL structures, but for the LC-series, the opposite notation 

is the correct, due to the negative sign in γ-equation (see Table 4.1).  

The power-flow magnitude can be controlled by varying either the primary side 

voltage magnitude Vpi (using α) or the secondary side voltage magnitude Vsi (using 𝛽) while 
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keeping the relative phase angle (δ) at ±90o. However, controlling Vpi to regulate the 

amount of power delivery to a particular secondary is not possible in multiple secondary 

systems as it affects the power delivered to other EVs. In single secondary IPT systems, 

the power-flow can be controlled through the modulation of either Vpi or Vsi but the former 

is preferable, as IPT systems are usually designed for a given primary current. Moreover, 

the modulation of Vpi changes the primary current and, hence, the induced voltage in the 

secondary. Consequently, low primary currents at light loads will result in a very high 

quality factor, Q, (the ratio between the effective AC output voltage and induced voltage) 

for a given secondary output voltage. Such an operation with high and variable Q is 

undesirable as the system becomes too sensitive. Therefore Vsi of the secondary side 

converter is modulated to control both forward and reverse power flow while using Vpi to 

maintain a constant primary coil current [137]. Thus, the parameter β is used to control the 

value of the power-flow, which ranges from 0 to maximum when β changes from 0 to 180o, 

respectively. The relative power-flow value between different configurations can be 

observed from the γ parameter equations in Table 4.1. For the same design parameters, in 

LC-parallel and LCL assembly, the power are almost equal, since γ is almost the same and 

very close to unity. However, for LC-series arrangement, γ is inversely proportional to the 

square of the coupling factor. When the coupling factor changes from 0.3 to 0.1 (which is 

the typical range in the IPT system), 𝛾 varies from 11.11 (≈ 10) to 100, respectively. 

Therefore, the power of the LC series network ranges from 10 to 100 times the power of 

the other two structures as well. This indicates that LC-series structure is very sensitive to 

the coupling factor and the misalignment, which is one of the main limitations of this 

topology. 
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 Conclusion 

In this chapter, a comprehensive steady-state performance analysis for various 

configurations of the bidirectional inductive power transfer system in EVs applications is 

presented. The analysis was based on theoretical harmonics representation for each 

topology, using Fourier series analysis. For each topology, two different π-models are 

developed, which represent the system’s currents in terms of the inverter’s voltages. The 

developed models provide information for inverter currents, inverter voltages, coil currents 

and coil voltages on both system’s sides. It also provides a simple derivation for the 

system’s equivalent impedance, which is very useful to evaluate the design parameters. In 

addition, the analytical models are utilized to derive simple generic formulas for 

fundamental active and reactive power-flow in terms of the design and control parameters. 

The utilization of these models to evaluate the different compensation configurations and 

compare them is demonstrated in chapter (6). 
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 Introduction 

The dual H-bridge BIWPTS under consideration consists of four main components; 

HF H-bridge converters, power pads, compensation network and controllers, as depicted 

in Figure 4.3. Building such a kind of system for EVs’ applications presents huge 

challenges. All the system’s components require robust and reliable design to be able to 

handle the high-power and high-frequency operation. The semiconductor switches need to 

be carefully chosen to support the high-voltage and current stresses during the resonance 

operation. The power pads must be designed to provide maximum coupling performance 

and less sensitivity for the misalignment in the system. This chapter discusses design 

considerations for the entire BIWPTS’s component. It presents more details about the HF 

converter design and optimization. An effective design strategy for the HF H-bridge 

resonant converter is investigated. The driving and power component selections and design 

issues are discussed in detail. The driver and the inverter circuits were implemented 

together in one PCB. The PCB layout was optimized for reducing the electromagnetic 

interference (EMI). Moreover, two snubber circuits are developed and added to the inverter 

PCB to minimize the output voltage ringing phenomenon. Also, the proposed structure 

includes voltage and current protection for both the DC and AC sides. Additionally, the 

hardware implementation of phase-shift control based on the analog PLL circuit is 

investigated and tested. In addition, two symmetrical circular power pads are built to form 

the wireless coupler. The practical design considerations for the power pad and the 
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compensation network are discussed as well. All the components are linked together and 

tested during both the charging and discharging operation. 

 

 

 HF H-Bridge Converter and Driver 

One of the most critical components in IPT system is the HF inverter. Many inverter 

topologies were proposed in the literature for the power supply design [87]. The most 

popular one is the voltage-source H-bridge converter (VSHBC) structure. VSHBC is a 

bidirectional topology, which has the capability to operate in both inverting and rectifying 

modes. It provides flexible management for the power-flow in the system. Design aspects 

of the HF inverter for induction heating applications are evaluated in [155], [156]. These 

works presented some design notes without going into detail about the inverter circuit 

design such as component selection, driver circuit, PCB layout, etc., especially under the 

hard switching activities. Typically, VSHBC consists of four semiconductor power 

switches. Power MOSFETs are still preferred for automotive manufactures due to the 

positive temperature coefficient and their ability to handle high switching frequency, as 

well as considerations related to the breakdown voltage, cost and reliability requirements. 

The entire inverter design process is investigated in this section. 

 

5.2.1 Component Selection 

All the inverter’s components are selected based on the power handling and 

switching requirements of the inverter. Also, the cost and the size are considered during 
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the selection process. IXFB110N60P3 Si power MOSFET is chosen for this design. It 

supports up to the absolute maximum 600V and 110A with 56 mΩ ON resistance [157]. It 

provides very wide safe operating area in terms of voltage and current capability, as shown 

in Figure 5.1. To drive the gates of the four switches of VSHBC, two FAN7391 IC drivers 

are used. They are monolithic high and low-side gate drive IC, which can drive high-speed 

MOSFETs that operate up to 600V. They have high current capabilities up to 4.5 A [158]. 

Surface mounted ceramic capacitors and the hyper-fast diodes are selected for the driver 

circuit design to handle the HF operation and the size limitations. 

 

 

Figure 5.1. Forward-bias safe operating area of IXFB110N60P3 Si power MOSFET [157]. 
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5.2.2 Driver’s Circuits Design 

The FAN7391 IC driver is attached to the Bootstrap circuit to drive the power 

MOSFETs. Two driving circuits are built to drive the entire VSHBC. Each circuit is 

managing one converter’s leg (two MOSFETs). The components of the driving circuit for 

one leg are shown in Figure 5.2, and the design steps are indicated below [159]. The details 

of sizing each component in the circuit are discussed in this section.  
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Figure 5.2. Bootstrap driving circuit components using FAN7391 IC driver. 

 

5.2.2.1 Sizing the Bootstrap Capacitor (CBOOT) 

CBOOT is designed based on the maximum allowable voltage drop (∆𝑉𝐵𝑂𝑂𝑇), which 

depends on the minimum gate-drive voltage for the upper-side switch. Considering the 

minimum gate-source voltage (𝑉𝐺𝑆𝑀𝐼𝑁), ∆𝑉𝐵𝑂𝑂𝑇 is calculated using Equation (5-1). 
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∆𝑉𝐵𝑂𝑂𝑇 = 𝑉𝐷𝐷 − 𝑉𝐹 − 𝑉𝐺𝑆𝑀𝐼𝑁                                      (5-1) 

where, 𝑉𝐷𝐷 is the supply voltage of the gate driver and 𝑉𝐹 is the bootstrap diode forward 

voltage-drop.  

The bootstrap capacitance is estimated using Equation (5-2). 

 𝐶𝐵𝑂𝑂𝑇 = 
𝑄𝑇𝑂𝑇𝐴𝐿

∆𝑉𝐵𝑂𝑂𝑇
 

𝑄𝑇𝑂𝑇𝐴𝐿 = 𝑄𝐺𝐴𝑇𝐸 + (𝐼𝐿𝐾𝐶𝐴𝑃 + 𝐼𝐿𝐾𝐺𝑆 + 𝐼𝑄𝐵𝑆  +  𝐼𝐿𝐾 + 𝐼𝐿𝐾𝐷𝐼𝑂𝐷𝐸)𝑡𝑂𝑁 + 𝑄𝐿𝑆𝑄𝐺𝐴𝑇𝐸
     (5-2) 

where, 𝑄𝑇𝑂𝑇𝐴𝐿 is the total charge supplied by the capacitor, 𝑄𝐺𝐴𝑇𝐸 is the total maximum 

gate-charge of the MOSFET switch, 𝐼𝐿𝐾𝐺𝑆 is the switch gate-source leakage current, 

𝐼𝐿𝐾𝐶𝐴𝑃 is the bootstrap capacitor leakage current, 𝐼𝑄𝐵𝑆 is the bootstrap circuit quiescent 

current of the driver, 𝐼𝐿𝐾 is the bootstrap circuit leakage current and 𝑄𝐿𝑆 is the charge 

required by the internal level shifter, which is usually 3nC for all high voltage gate drivers. 

 

5.2.2.2 Sizing the Turn-on Gate Resistance (Rg(on)) 

This parameter is very critical and can be determined based on the required output 

voltage rate of variation (𝑑𝑉𝑜𝑢𝑡/𝑑𝑡), as indicated in Equation (5-3). 

𝑅𝑔(𝑜𝑛) = 𝑅𝑇𝑜𝑡𝑎𝑙 − 𝑅𝑅𝐷𝑉(𝑜𝑛)                             

𝑅𝑅𝐷𝑉(𝑜𝑛) = 
𝑉𝐷𝐷

𝐼𝑆𝑂𝑈𝑅𝐶𝐸
, 𝑅𝑇𝑜𝑡𝑎𝑙 =

(𝑉𝐷𝐷−𝑉𝐺𝑆(𝑡ℎ))

(𝐶𝑔𝑑(𝑜𝑓𝑓)∗
𝑑𝑉𝑜𝑢𝑡
𝑑𝑡

)

                            (5-3) 

where, 𝐼𝑆𝑂𝑈𝑅𝐶𝐸 is the source-driver current, 𝑉𝐺𝑆(𝑡ℎ) is the gate-drive voltage of the switch, 

𝑅𝐷𝑅𝑉(𝑜𝑛) is the equivalent ON resistance of the gate-driver, and 𝐶𝑔𝑑(𝑜𝑓𝑓) is the miller effect 

capacitor of the switch. 
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5.2.2.3 Sizing the Turn-off Gate Resistance (Rg(off)) 

This element is calculated at the worst case scenario, i.e. when the drain of the 

MOSFET is in turn-off state, as given in Equation (5-4). 

𝑅𝑔(𝑜𝑓𝑓) ≤ 
𝑉𝑔𝑠(𝑡ℎ)

𝐶𝑔𝑑∗
𝑑𝑉𝑜𝑢𝑡
𝑑𝑡

− 𝑅𝐷𝑅𝑉(𝑜𝑓𝑓)

𝑅𝐷𝑅𝑉(𝑜𝑓𝑓) = 
𝑉𝐷𝐷

𝐼𝑆𝐼𝑁𝐾
                           

                                    (5-4) 

5.2.3 Snubber Circuits Design 

During the HF operation with hard switching activities, a snubber RC circuit is 

required to minimize the ringing caused by the recovery-induced oscillations and the 

conducted EMI due to the stray inductances and capacitances. Two RC snubber circuits are 

designed and added to the inverter circuit, as depicted in Figure 5.2. By knowing the 

parasitic capacitance (Cp) from the MOSFET data sheet, the snubber capacitance (Csnubber) 

will be within the range of (0.5-2) Cp [160]. The ringing frequency (Fp) is measured and 

used in Equation (5-5) to estimate the snubber resistance (Rsnubber). This resistance needs to 

be carefully designed to handle the high power flow through it. The wattage of Rsnubber is 

calculated based on the switching frequency (Fsw) and the snubber voltage (Vsnubber), as 

given in Equation (5-6). 

𝑅𝑠𝑛𝑢𝑏𝑏𝑒𝑟 =
1

4𝜋𝐹𝑝𝐶𝑝
                                                  (5-5) 

𝑃𝑠𝑛𝑢𝑏𝑏𝑒𝑟 =
1

2
𝐶𝑠𝑛𝑢𝑏𝑏𝑒𝑟𝑉𝑠𝑛𝑢𝑏𝑏𝑒𝑟

2𝐹𝑠𝑤                                   (5-6) 
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5.2.4 VSHBC PCB Layout Design 

In the proposed design, all the inverter’s components and circuits are implemented 

in one PCB, including the power switches, snubber, driver and protection elements. This 

design helps to minimize the inverter size and weight, and the EMI effect. The details of a 

double-layer converter PCB are presented in this section. 

PCB layout design is a critical stage in the inverter circuit planning process. It is 

important to maximize the power transfer capability for all the stages and minimize the 

switching losses. Moreover, it can significantly reduce the magnitude and the duration of 

the ringing on the inverter outputs. In the proposed design, the components are arranged in 

a way to minimize the tracks’ length and avoid creating loops and junctions between the 

top and bottom layers. The components of each inverter’s leg are equally distributed to 

achieve symmetrical square output voltage waveforms. The power tracks are assigned to 

be straight, short and continuous to minimize the conducted and radiated EMI in the circuit. 

The node length between the negative terminal of the input capacitor and the source pin of 

the MOSFET is diminished to reduce the parasitic elements’ effect. Also, ceramic input 

capacitors are considered to provide low equivalent series inductance (ESL). A comparison 

between the optimized PCB layout and an arbitrary (non-optimized) one is presented in 

Figures 5.3 and 5.4, respectively. 

Two protection schemes are implemented in this design: over-current and over-voltage 

protection. The former is achieved by using current-limiting fuses in the DC power input 

ports. The latter is performed by using a varistor in series with a current-limiting fuse across 

the AC output terminals. 
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Figure 5.3. Layout of the optimized design converter’s PCB. 

 

 

 

Figure 5.4. Layouts of an arbitrary design converter’s PCB. 
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 Phase-shift Control and Modulation 

In HF applications, like IPT, it is difficult to use the conventional modulation 

techniques to generate the switching signals of the power MOSFETs. Typically, other 

modulation techniques, in which the switching frequency is the same as the power 

frequency, are considered [161]–[166]. The most commonly used approach in IPT systems 

is the pulse-phase modulation (phase-shift) technique [102], [162], [165]. In this procedure, 

the switching signals have a fixed 50% duty cycle at the resonant frequency, as indicated in 

Figure 5.5. The inverter output voltage is controlled by adjusting the phase-shift between 

the switching signals of the two legs (α). The figure also shows the dead-time periods (td) 

that need to be introduced between the switching of two MOSFETs in the same leg. 

 

S11

S13

Vout

α

Ts

Time

Vdc

Vdc

S12

td

S14

td

 

Figure 5.5. Switching signals and output voltage of VSHBC under phase-shift control. 
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An analog circuit is designed and implemented in this work to achieve the phase-shift 

control algorithm. The circuit is able to supply the switching signals for driving two 

synchronized inverters at the same time. It is able to provide variable modulation parameters 

(α and 𝛽) for each inverter. Also, it supplies the phase-shift between the two inverters’ 

output voltages (δ). By varying these parameters, the power flow magnitude and direction 

can be controlled, as was indicated in chapter (4). Moreover, the circuit includes four 

adjustable dead-time circuits, to assign the dead-time between the switches in the same leg. 

Each dead-time circuit is simply variable RC branch with AND gate, as shown in Figure 

5.6.  

 

signal

 

Figure 5.6. Hardware implementation of adjustable dead-time circuit. 

 

 

A logic block diagram for the phase-shift analogue circuit is depicted in Figure 5.7. It 

consists of four dead-time, two NOT circuits and one PLL circuit. The NOT gates are used 

to generate 180o phase shift between two trains of pulses. The PLL circuit is used to provide 

the 90o phase-shift (δ-parameter). It is designed to lock with frequency ranges from 0-40 

kHz. The cascaded NOT gates, shown in Figure 5.7, are used for isolation purpose. The 
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schematic diagram that shows the physical connections and components of the phase-shift 

circuit is described in Figure 5.8; and the implemented PCB of the same circuit is depicted 

in Figure 5.9. 
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Figure 5.7. Logic block diagram of phase-shift control circuit. 
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Figure 5.8. Phase-shift circuit schematic diagram. 
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Figure 5.9. The hardware of phase-shift circuit’s PCB. 

 

 

 

 Electromagnetic Power Pads 

Magnetic power pad is the most important component in an IPT system, since it 

dominates the design of the power electronics, maximum power, efficiency, and power 

transfer distance. Each IPT system contains two power pads. The first one in placed in the 

ground and is called the primary, ground or transmitter pad. The second pad exists in the 

vehicle and is called the secondary, vehicle, pick-up or receiver pad. The two pads can be 

symmetrical or unsymmetrical. Although, the symmetrical pads provide better coupling 

performance, the international standard SAE J2954A recommends smaller size for the 

vehicle pad due to space limitations inside the vehicle [149]. The primary pad generates 

the HF AC magnetic flux that is linked to the secondary pad. Secondary coil, capturing the 
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applied field, induces voltage that is then converted to a regulated DC voltage to charge 

the EV’s battery. Typically, the design of magnetic pads targets high coupling factors, 

smaller size and cost, confining the magnetic field between pads without having 

considerable fringe/stray magnetic and electric fields, and achieving inductance values that 

requires reasonable DC-bus voltage [167]. The typical design of power pads in EVs’ 

applications contains copper coils, ferrite magnetic material and aluminum shield. The 

copper coils are responsible for transmitting and picking up the magnetic field between the 

two system’s sides. Each pad may contain one or more coils that are electrically and 

magnetically connected. Litz wire is preferred for the coils in order to minimize the internal 

resistance, skin effect losses, and increase the quality factor. 

Magnetic materials are typically used in order to shape and direct the magnetic field, 

and maximize the coupling performance. They also help to minimize the leakage flux in 

the system and decrease the reluctance of the magnetic field path. All these effects lead to 

maximizing the magnetic coupling coefficient k, which is the most important factor in an 

IPT system. An IPT system with a higher coupling coefficient means a system that can 

transfer power more efficiently than others. There may, however, be a cost penalty, as 

magnetic materials such as ferrite are expensive and fragile. In circumstances where a large 

lateral tolerance to misalignment is needed, the cost may be excessive [84]. Aluminum 

shield is used in the system to minimize the stray field around the power pads to comply 

with the standard limits defined by the International Commission on Non-Ionizing 

Radiation Protection (ICNIRP) guidelines [168].  

Several studies for different planar pad configurations for EV charging, such as 

circular, DD, bi-polar, double-DQ (DDQ) and tri-polar are presented in the literature [84], 
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[85], [169]. In this prototype, the circular design is considered. Two symmetrical power 

pads are built. Each pad consists of one stranded copper coil of radius 200 mm, attached to 

seven ferrite rods with a pole shoe. Each rod consists of three standard ferrite cores 

(I93x28x16) of N87 magnetic material from EPCOS, as indicated in Figure 5.10. More 

details about the design process and how to optimize this design are presented in chapters 

(8) and (9).  

 

 

 

 

Figure 5.10. Circular power pad with ferrite core. 

 

 

 

 Compensation Capacitors 

As discussed in chapter (4), the compensation capacitor plays a very important role 

in the operation of the IPT system. It is responsible for creating the resonance in the system. 
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The design of these capacitors is challenge, since they must be able to handle the high-

voltage and current stresses. The theoretical value of the capacitance is estimated based on 

the self-inductance of the power pad and the resonant frequency using Equation (4-2). 

Typically, this calculated value is close to the required one but not exactly the same. This 

deviation is due to errors in measurements and parameters’ estimation. Thus, the estimated 

capacitance must be corrected to achieve the desired resonance performance. In addition, 

the resonance network is affected by the parasitic elements of the wires and HF converter’s 

components. Thus, in this work, the value of the compensation capacitor is decided through 

two steps. The first step is to calculate the capacitance value using Equation (4-2), and find 

a capacitor or a combination of capacitors that match or are near this value. The second 

step is achieved by connecting one side of the system (HF inverter, power pad and the 

compensation network) and operating it at the resonant frequency. Then, the value of the 

capacitor is modified, such that the system hits the resonance by showing pure resistive 

performance (the inverter’s current and voltage are in phase). Even in the symmetrical 

system, small differences are expected between the two sides. Thus, these steps must be 

repeated for the other side as well. Metallized Film Capacitors are typically used in IPT 

system applications, since they provide high operating voltage (700 VRMS), current (800 

ARMS) and power (400 KVA). They also support HF operation, up to 700 kHz, and show 

good conduction cooling [170]. 

 

 Design Verification and Results 

For design verification purposes, two different designs of PCB for VSHBC were 

developed, built, tested and compared. A snubber circuit is developed and included in the 
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optimum inverter design and tested. The final shape and dimensions of the proposed 

inverter, including drivers, protections, snubber circuits and cooling, are indicated in Figure 

5.11 [171]. The details of the used components and the estimated design parameters are 

presented in Table 5.1. The proposed inverter performance is studied at different 

modulation and operating conditions. The different components are linked together to form 

a LCL BIWPTS. The entire system is tested and compared with a Simulink model results. 
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Figure 5.11. The hardware implementation of VSHBC’s PCB. 
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Table 5.1. Final Converter Design Parameters. 

Component Value Commercial name Type 

Power MOSFET 600V, 110A IXFB110N60P3 Si Power MOSFET 

IC Driver 4.5 A FAN7391 High & Low side  

Diodes (Dboot & Dst) 8 A, 600 V VS-ETX0806-M3 Hyper fast 

Rboot 9 Ω ------ (5-10 Ω ), 1-2 W 

Cboot 470 nF ------ Ceramic 

Rg-on 10 Ω ------ 1-2 W 

Rg-off 33 Ω ------ 1-2 W 

R 2.2 k Ω ------ 1-2 W 

C 8 μF ------ Ceramic,  > 10 Cboot 

Csnubber 100nF, 630V R0614 MMKP 

 

 

 

5.6.1 Evaluating the Phase-shift Circuit Performance 

The main objective of the phase-shift circuit is to generate the switching signals (0-

5V) of the inverters with the necessary dead-times. Two tests are performed: in the first, 

the inverter supplies the full capacity with a phase-shift parameter (α) of 180o, while in the 

second test, the phase-shift parameter is adjusted to 90o to reduce the RMS inverter’s output 

voltage. The switching signals for the 4 MOSFETs of one inverter during the first test are 

depicted in Figure 5.12. As it can be noticed, the phase-shift between S11 and S13 is 180o. 

Also, there is dead-time between the switches in the same leg (S11, S12 and S13, S14), 

which is clarified in Figure 5.13. The assigned time in this case is 250 μsec at each 
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transition. The switching signals during the reduced inverter’s output voltage are described 

in Figure 5.14. As it can be observed, the phase phase-shift between S11 and S13 is 90o. 

 

 

Figure 5.12. Measured switching signals (0-5V) of one inverter (4 MOSFETs) during full 

inverter voltage. (a) S11. (b) S12. (c) S13. (d) S14. 

 
 

 

Figure 5.13. Measured switching signals of one leg (2 MOSFETs) during full inverter 

voltage showing the dead-time. (a) S11 and S12. (b) Left dead-time. (c) Right dead-time. 
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Figure 5.14. Measured switching signals (0-5V) of one inverter (4 MOSFETs) during 

reduced inverter voltage: (a) S11. (b) S12. (c) S13. (d) S14. 

 

 

5.6.2 Evaluating the Driving Circuits Performance 

The next step, after generating the switching signals, is to boost them to the voltage 

and the power levels of the power MOSFETs. This is achieved using the bootstrap circuit 

with FAN7391 integrated circuit (IC) gate drivers. The driving circuits receive the signals 

with 0-5V level and generate 0-15V, which represent the gate-voltage level of the 

IXFB110N60P3 Si power MOSFET. Also, the driving circuits provide the required 

currents to drive the gate of the MOSFETs. The gate signals (output of drivers), during the 

full and the reduced output inverter voltage tests, are presented in Figure 5.15 and 5.16, 

respectively. 
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Figure 5.15. Measured gate signals (0-15V) of one inverter (4 MOSFETs) during full 

inverter voltage. (a) S11. (b) S12. (c) S13. (d) S14. 

 

 

Figure 5.16. Measured gate signals (0-15V) of one inverter (4 MOSFETs) during reduced 

inverter voltage. (a) S11. (b) S12. (c) S13. (d) S14. 
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5.6.3 The Converter’s PCB Layout Performance Assessment 

The effect of the PCB layout design optimization on the ringing of the inverter output 

voltage is shown in Figure 5.17. As it can be noticed, the ringing amplitude is reduced and 

also the voltage reaches to the steady-state faster in the optimized design compared with 

the non-optimized one. The voltage profile of the optimum design is improved during both 

the rising and falling edges. The effect of the snubber circuit design on the inverter 

performance is indicated in Figure 5.18. It can be observed that, the snubber circuit cleaned 

the ringing in the inverter’s output without affecting the rise or the fall time. 

 

 

Figure 5.17. Measured ringing effect of the optimized and non-optimized PCB designs. 

 

 

Figure 5.18. Measured output inverter voltage with and without snubber circuit. 
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Transient performance analysis is conducted for a step variation of the output voltage 

of each inverter design: the non-optimized, optimized without snubber and the optimized 

with snubber. The unit step output voltage response for each case is described in Figure 

5.19. The performance evaluation parameters, such as settling time, rise time, overshoot and 

undershoot are estimated and compared for all cases in Table 5.2. It can be noticed the 

improvement of the inverter performance by following the proposed design, which leads to 

less transient oscillations amplitude and time. 

 

 

Figure 5.19. Measured unit-step response of inverter output voltage. 

 

Table 5.2. Performance Parameters during Step Response. 

Parameters Non-opt.  

without Snubber 

Opt. without Snubber Opt. with Snubber 

Rise time (μsec) 0.15 0.1336 0.1437 

Settling time (μsec) 6.71 6.52 0.8 

Overshoot (%) 285 274 55.2 

Undershoot (%) 64 64 0 

Peak (pu) 3.86 3.736 1.55 

Peak time (μsec) 0.3 0.28 0.32 
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5.6.4 The VSHBC’s Circuit Performance Assessment 

The output voltage of each inverter’s leg (Va and Vb) and the final AC output voltage 

(Vab) are measured during the full and reduced output tests and investigated in Figure 5.20 

and 5.21. As it can be noticed, each leg generates train of pulses with an amplitude equal 

to the DC input level and a specific phase-shift based on the PPM parameters. The AC 

output voltage represents the subtraction of the two legs’ voltages (Vab= Va - Vb). In Figure 

5.20, the phase-shift is 180o, thus the AC output voltage is full-square waveforms, as given 

in Figure 5.20(c). In Figure 5.21, the phase-shift is 90o, therefore the inverter generates 

quasi-square waveforms [see Figure 5.21(c)]. In this case, a zero voltage level appears in 

the voltage profile to reduce the RMS voltage values, which is useful for power-flow 

control in IPT systems. 

 

 

Figure 5.20. Measured inverter output voltage during full output test: (a) Voltage of the 

first leg. (b) Voltage of the second leg. (c) AC inverter voltage. 
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Figure 5.21. Measured inverter output voltage during reduced output test: (a) Voltage of 

the first leg. (b) Voltage of the second leg. (c) AC inverter voltage. 
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results are indicated in Figure 5.22(a) and (b), respectively. As it can be noticed, a clean 

full square wave is generated from the inverter with different operating frequency. Also, 

the inverter is tested at 40 kHz with 90o phase shift between the inverter legs, as shown in 

Figure 5.22(c). 
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Figure 5.22. Measured inverter output voltage at different frequencies. (a) Full-square 

voltage at 20kHz. (b) Full-square voltage at 40kHz. (c) Quasi-square voltage at 40kHz. 

 

5.6.5 The Entire BIWPTS’s Performance 
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the common case in EV situation. The design parameters of the LCL BIWPTS are indicated 

in Table 5.3. 

 

 

Figure 5.23. Experimental setup of LCL BIWPTS. 

 

 

Figure 5.24. Simulink model of LCL BIWPTS. 
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Table 5.3. Design Parameters of LCL BIWPTS. 

Parameter Value Parameter Value Parameter Value 

Lpi 26 µH Lsi 25.5 µH Cp 0.64 µF 

Rpi 32 mΩ Rsi 31 mΩ Cs 0.66 µF 

Lpc 25 µH Lsc 24 µH k 0.25 

Rpc 30 mΩ Rsc 29 mΩ f 40 kHz 

Core 
Ferrite 

I93/28/16 

MOSFET 
Si Power 

IXFB110N60P3 

Wires 
Stranded copper 

H07V-K 

Capacitor Ceramic Driver FAN7391 Sensors Hall effect 

Battery Li-ion Polymer (PL-1055275-14STM) Air-gap 150 mm 

 

 

5.6.5.1 Full Supply Capacity Test 

In this section, the system is analyzed during the full operation of supply capacity. In 

this mode, the phase-shift between the two inverters’ legs (α and 𝛽) are set to 180o, to 

provide the maximum available power on the supply. The BIWPTS is tested during G2V 

(charging) mode of operation, as given in Figure 5.25. In this test, the phase-shift between 

the two inverters’ voltages (δ) is set to -90o, to allow the power transfer from the DC-bus 

to the EV’s battery. The figure shows the voltage and current waveforms in the primary 

and secondary circuits. Figure 5.25(a) and (b) describe the primary and secondary 

inverters’ variables, respectively. It can be noticed that, the two inverters generate full 

square voltages with 90o phase-shift (Vsi lags Vpi). Also, it can be observed that, Vpi and Ipi 

are almost in phase, however Vsi and Isi are anti-phase, which means that the system is 
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hitting the resonance and the primary and secondary power-flow are in opposite direction 

(one side is transmitting the energy and the other side is receiving it). The primary and 

secondary coils’ currents and voltages are described in Figure 5.25(c) and (d), respectively. 

The inverters’ currents (Ipi and Isi) are not pure sinusoidal, but the coils’ currents (Ipc and 

Isc) are almost pure sinusoidal, due to the filtering effect of the circuit impedance. Good 

agreement can be observed between the simulation and experimental results. 

 

 

Figure 5.25. Experimental and simulated BIWPTS’s performance under full supply voltage 

for G2V operation (α = β =180o, δ = -90o, Vdc=60 V). (a) Primary inverter variables. (b) 

Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil variables. 
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The BIWPTS is analyzed during V2G (discharging) operation. In order to achieve 

this mode, the secondary inverter’s voltage is set to lead the primary one by 90o phase-shift 

(δ=90o). The parameters α and 𝛽 are kept fixed at 180o for supplying the full system 

capacity. The discharging operation results are presented in Figure 5.26. As it can be 

noticed, the secondary voltage leads the primary one by 90o, which allows the power to 

flow from the EV to the DC-bus. In this case, Vpi and Ipi are anti-phase and Vsi and Isi are 

in-phase, which means that the system is still working at UPF but with the reverse power 

flow direction. 

 

Figure 5.26. Experimental and simulated BIWPTS’s performance under full supply voltage 

for V2G operation (α = β =180o, δ = 90o, Vdc=60 V). (a) Primary inverter variables. (b) 

Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil variables. 
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5.6.5.2 Reduced Supply Capacity Test 

To verify the power level adjustment capability, the system is analyzed during the 

charging (G2V) operation with quasi-square voltage waveform. This situation is achieved 

by setting the phase-shift between the inverter’s legs as α=𝛽=90o, and δ=-90o. The system 

performance under these conditions is described in Figure 5.27. As it can be observed, Vpi 

and Vsi waveforms exhibit the zero level, which causes the reduction of the transferred 

currents and power, in consequence. 

 

Figure 5.27. Experimental and simulated BIWPTS performance under reduced supply 

voltage for G2V operation (α = β =90o, δ = -90o, Vdc=60 V). (a) Primary inverter variables. 

(b) Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil variables. 
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For a more clear comparison between the simulation and experimental results, the 

normalized root mean square error (NRMSE) is evaluated, based on Equation (5-7), for the 

presented cases and the results are indicated in Table 5.4.  Most of the predicted variables 

show less than 5% errors. The error in Ipi and Isi estimation is a little high due to the 

existence of a DC-current offset in the measurements, which results from the very small 

asymmetry in the inverter outputs. 

𝑁𝑀𝑆𝐸 = √∑ (𝑓(𝑡𝑖) − 𝑔(𝑡𝑖))
2𝑚

𝑖=1 ∑ (𝑓(𝑡𝑖))
2𝑚

𝑖=1⁄                          (5-7) 

where, f(xi) and g(xi) are the value of the variable at sampling index (i), which are calculated 

from experimental and simulation, respectively. 

 

Table 5.4. NRMSE between Simulation and Experimental Results. 

Mode Ipi Isi Ipc Isc Vpi Vsi Vpc Vsc 

Full G2V 8.5 9 0.57 0.73 1.3 1.3 0.36 0.32 

Full V2G 3.9 4.9 0.75 0.61 1.8 1.4 0.23 0.24 

Reduced G2V 11.7 10 2 0.66 1 1.3 0.67 0.07 

 

 

5.6.5.3 Practical Considerations during Testing the BIWPTS  

The experimental tests and measurements of the BIWPTS are challenge and need to 

be done carefully. Some practical issues are examined during testing the LCL BIWPTS 

prototype, which are concluded below: 
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- The HF inverters’ switches and driver circuits need to be well designed to supply 

symmetrical voltage waveform. Any small asymmetry in the voltage generates a large 

DC current component, due to the very small DC impedance at resonance. This 

asymmetry may be due to a small difference in dead-time of the inverter switches. This 

problem does not exist, if there is a series capacitor in the system, such as LC-series or 

CLCL compensation topology, since the series capacitor behaves as a high-pass filter.  

- The polarities of the power pad coils must be well defined and connected correctly with 

the inverters’ outputs, to provide the proper power-flow direction, based on the assigned 

phase-shift between the two inverters’ voltages (δ). 

- There is another design problem related to the compensation network elements due to 

the errors in parameters’ estimation and the parasitic elements of both converters and 

power pads. This problem was addressed in the prototype by initially evaluating the 

compensation elements based on the resonant frequency and the estimated pads’ self-

inductances, as given in Equation (4-2). Then, these parameters were corrected by trial 

and error, until the system shows pure resistive behavior and hits the resonant condition. 

- The measuring sensors need to be carefully chosen with wide bandwidth to handle the 

HF signals. 

 

 Conclusion 

This chapter presented an effective design and implementation considerations for the 

different components of the bidirectional inductive wireless power transfer system in EVs 

applications. The design of HF voltage-source H-bridge converter is investigated in detail. 
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The details of the proposed design are presented including the parameters’ estimation, 

components’ selection and PCB layout design. Moreover, two protection schemes were 

introduced to the inverter circuit. Snubber circuits were designed for minimizing the 

ringing effect. All the inverter components were embedded in one PCB using the 

commercially available standard size (9"x6"), which results in size and weight reduction. 

The proposed inverter design performance was tested under different operating and control 

conditions. In addition, the analog implementation of the phase-shift control technique was 

performed and tested. The circuit was able to supply the switching activities for two 

synchronized inverters with the associated dead-times at different modulation conditions. 

Practical design considerations for the magnetic power pads and the compensation 

capacitors are addressed. Finally, two identical inverters were built and used in a LCL 

bidirectional inductive wireless power transfer system, to achieve the two-way power-flow 

operation between the EV and the power-grid. The entire system performance was 

analyzed under different modes of operation (G2V and V2G), by simulation and 

experimentally for verification purposes. The tests show very good correlation between the 

simulation and the experimental results.  
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 Introduction 

In a BIWPTS, the pads are loosely coupled with a large leakage inductance. A 

compensation network is usually used to reduce the Volt-Ampere (VA) rating in the coil 

and power supply. In early inductive charging designs, the compensation is set on primary 

or secondary side only [172]. In the current IPT technology, where the coupling coefficient 

is reduced to less than 0.3 for EV wireless charging, compensation at both the primary and 

secondary side is recommended, to have a more flexible and advanced characteristic [82]. 

The simplest way to compensate the system inductance, is to add a capacitor at each side. 

For a symmetrical BIWPTS, there are four basic compensation topologies, which are LC-

series, LC-parallel, LCL, and CLCL topology, as was discussed in chapter (4). Based on 

the analytical models that were presented in chapter (4), an assessment analysis for the 

steady-state performance of different topologies in BIWPTS for EV implementations is 

investigated in this chapter. The analysis is presented for the three main compensation 

configurations: LC-series, LC-parallel and LCL-topology. The study presents evident 

criteria to pick among the different BIWPTS structures in the diverse applications. The 

proposed analyses are verified using simulation and experimental tests. The results 

demonstrate the ability of the proposed models to provide accurate estimation for 

BIWPTS’s performance under various operating and control conditions. Also, the 

evaluation analysis shows that LCL-topology is more appropriate for the bidirectional 
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operation in EV, due to the simple design and control requirements and being less sensitive 

to the misalignment. 

The contributions in this work are summarized as follows: 1) verifying the developed 

theoretical models in chapter (4) by means of simulation and experimental tests, 2) utilizing 

these models to assess the performance of the different topologies during the bidirectional 

operation and present the merits and demerits of each structure, 3) achieving comparative 

analysis for the BIWPTS’s performance parameters (power, power factor and efficiency) 

among all topologies, under both full and light loading conditions, and 4) evaluating the 

sensitivity of the different topologies against the misalignment in the system based on 

theoretical models and measurements. 

 

 Assessment Criteria of Compensation Topologies in BIWPTS. 

In unidirectional IPT systems, the primary side is connected to the grid and represents 

the source of energy. The secondary side is coupled to the EV’s battery and behaves as a 

load. Thus, in these systems, there is a specific source side and load side. In this case, the 

choice of the compensation topology in the secondary side depends on various factors, such 

as the output type (voltage/current) and the load. The choice of primary topology, on the 

other hand, depends on other factors, such as the type of inverter used. In bidirectional 

applications, the BIWPTS will be utilized to charge (G2V) and discharge (V2G) the EV’s 

battery. During G2V operation, the primary side represents the source of energy, while the 

secondary side acts as a load. In V2G service, the primary side behaves as a load, while the 

secondary side supplies the required energy. Thus, in this case, there is neither a specific 

source side nor load side. Hence, from the author’s point of view, the two sides need to be 
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treated equally. In addition, different considerations during the choice of the compensation 

topology need to be taken into account. Due to these reasons, it is assumed that the 

bidirectional system under consideration is symmetrical, in which the compensation 

topologies in both sides are identical. 

In general, as was reported in many works in the literature, the choice of the 

compensation topology plays a very important role in the performance of IPT system. 

Regardless of the mode of operation (V2G or G2V), the compensation topology in the 

system helps to reduce the VA rating of power electronics converters, achieve UPF 

operation (zero-phase-angle) condition, achieve soft switching [zero-voltage switching 

(ZVS) or zero-current switching (ZCS)] in the power converters, enhance the power 

transfer capability and increase the system efficiency [82], [89]. 

In BIWPTS, the compensation topologies need to be evaluated based on the 

following requirements [139], [86], [82], [89], [146]: 

- Providing two-way power-flow operation. The compensation topology needs to be 

tested during both G2V and V2G operation. It should be able to facilitate a bidirectional 

and controlled power-flow. In this case, the topology, which needs less complex 

controllers, is preferred. 

- Minimizing VA rating of power converters. In this case, two HF converters are adopted 

in the system. Thus, the compensation structure on both sides needs to compensate the 

reactive power requirements, such that the converters carry the active power only. 

- Maximizing power transfer capability by compensating the inductive reactance. 
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- Enhancing the system efficiency. The ability of the compensation network to achieve 

soft-switching and minimize the reactive power flow through the converters and feeder 

leads to higher system efficiency. 

- Offering more stability and less insensitivity to the variation of system parameters and 

loading conditions. The resonant network must be able to realize constant current, 

constant voltage or constant power under parameters’ variation (especially the mutual 

inductance) and different loading conditions. 

 

 Performance Evaluation for Different Topologies. 

The proposed mathematical models in chapter (4) are implemented and solved in 

MATLAB environment. These models are based on the harmonic components and all the 

parameters and variables are solved at each harmonic component and added together. The 

results from these models were compared with Simulink models for the different 

compensation configurations (Figure 4.3 and 5.24), for verification purposes. For fair 

comparison and assessment among the various structures, the same design parameters, 

given in Table 5.3, are considered in all of them and only the compensation topology varies. 

The framework is designed to resonate at 40 kHz with 150 mm air-gap length between the 

primary and secondary coils, which is the typical case in EV situation. The DC voltage 

levels that are used in the Simulink models are Vdc=240 V and Vb=200 V. In addition, 

power-flow assessment analysis for all topologies is presented for the same power-flow 

level (1.5 kW). Each configuration is analyzed during both G2V and V2G operation, 

considering the full and light loading conditions.  
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6.3.1 Assessment of LC-Series Topology. 

As it was mentioned before, the power-flow direction and the operation mode (either 

V2G or G2V) is controlled by adjusting the sign of δ, while the power-flow magnitude is 

controlled by adjusting α and/or β. Figure 6.1 describes the system performance with LC-

series topology under full charging (G2V) operation, which means that the inverters 

transmit the full supply capacity. This mode is achieved by setting (α=β=180o and δ=90o). 

The primary and secondary side variables are indicated in Figure 6.1(a) and 6.1(b), 

respectively. The theoretical waveforms are plotted for the first 150 harmonics and they 

show very good matching with the Simulink model results. As it can be noticed, the inverter 

output voltages are full-square waves with amplitudes equal to the DC voltages.  

 Also, it can be seen from the figure that, Vpi and Ipi are in-phase, but Vsi and Isi are 

anti-phase, which means that both the primary and secondary circuits are working almost 

at UPF and the system is hitting the resonant frequency. Moreover, there is a phase-shift 

between the primary and secondary voltages (Vpi lags Vsi by 90o), which allows the power 

to flow from the grid to charge the EV. In addition, both inverters’ and coils’ currents are 

equal and sinusoidal, with no DC current components due to the series capacitors, which 

behave as high-pass filters. It is worth mentioning that the series resonance tank magnifies 

the pad and capacitor voltages (Vpc and Vcp) much higher than the inverter voltages due to 

the capacitive reactance, as was indicated in Equation (4-8). It can be seen in Figure 6.1(c) 

and 6.1(d) that the peak of the coil voltage (Vpc) is almost equal to the peak of the capacitor 

voltage (Vcp), and both are almost five times the peak of the inverter voltage (Vpi).    
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Figure 6.1. LC-series topology performance under full supply capacity for G2V operation 

(α=β=180o, δ=90o, Vdc=240 V and Vb=200 V). (a) Primary inverter variables. (b) Secondary 

inverter variables. (c) Primary pad voltage. (d) Primary capacitor voltage. 

 

 

Figure 6.2 describes the G2V operation with reduced power level, by adjusting α and 

β to be 90o instead of 180o. A zero-voltage level appears in the inverter voltages to reduce 

the RMS voltages, currents, and accordingly the power. The V2G operation under reduced 

power level is depicted in Figure 6.3. In this case, the secondary voltage lag the primary 

one by 90o, which allows the power to flow from the EV to the power grid. Also, Vpi and 

Ipi are anti-phase and Vsi and Isi are in-phase, which means that the system is still working 

at UPF, but with the reverse power flow direction. 
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Figure 6.2. LC-series topology performance under reduced supply capacity for charging 

operation (G2V) (α=β=90o, δ=90o, Vdc=240 V and Vb=200 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. (c) Primary pad voltage. 

 

 

Figure 6.3 LC-series topology performance under reduced supply capacity for discharging 

operation (V2G) (α=β=90o, δ=-90o, Vdc=240 V and Vb=200 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. 
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From the presented results, it can be observed that in LC-series topology, huge 

voltages appear across the power pads, which lead to large current-flow to achieve the 

desired power-transfer. The inverter currents are sinusoidal, which facilitates the 

implementation of soft-switching activities, such as ZVS or ZCS. In addition, the same 

sinusoidal currents are passing in the wireless pad, which results in minimum radio 

frequency interference on the nearby devices. However, LC-series structure exhibits 

several limitations in EVs applications, as follows: 

- The large pad current must be carried by the inverter. Therefore, the inverter needs to 

be designed to handle this current, which is a challenge, especially in high-power and 

HF applications. 

- The wireless pad design requires many turns of winding with thick conductors to handle 

the high-voltage and current operation. 

- The compensation capacitors must be capable of supporting these high-voltages and 

currents. 

- The system experiences significant conduction (in power converters, passive elements 

and feeders) and dielectric (capacitors) losses. 

- Current controllers are necessary in this configuration to limit the pad currents in both 

the system’s sides to match with the rated values. 

- The high voltage on the pad may become very pronounced if the secondary circuit was 

left open. 

- It is very sensitive to misalignment. 

 Typically, this topology is used in low-power applications, and when the inverter 

is located near the coupler, in order to minimize the feeder losses and voltage-drop. 
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6.3.2 Assessment of LC-Parallel Topology 

BIWPTS with LC-parallel configuration is analyzed in this section during G2V 

operation using the theoretical and Simulink models, as given in Figure 6.4. In this 

configuration, the capacitor is connected in parallel with the pad to supply the required 

reactive power. In this case, the inverter provides only the real component that is required 

to handle the system losses in the two circuits and the load requirements. The square-wave 

voltages generated by the VSHBCs are rich in HF harmonics, as well as the desired 

fundamental frequency. The direct connection of such source to a parallel resonant circuit 

would cause excessive currents to flow at all higher harmonics of the drive frequency.  

This is because the capacitor tank in the parallel resonant circuit would present a 

progressively lower capacitive reactance to increasing frequencies. This results in large 

current spikes at the switching transitions as the inverter tries to rapidly charge and 

discharge the capacitor on rising and falling edges of the square-wave, as can be seen in 

Figure 6.4(a), 6.4 (b) and 6.4 (c). These spikes are potentially very damaging to the VSHBC 

and lead to large reactive power to be derived from the supply associated with poor PF 

operation. The inclusion of L-filter between the inverter and capacitor negates this 

problem, as is demonstrated in the next section. The pad current is almost sinusoidal and 

does not show these spikes, which are absorbed by the parallel capacitor. In this test, the 

theoretical model is solved for the first 150 harmonics orders and exhibits good correlation 

with the Simulink model. 
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Figure 6.4. LC-parallel topology performance under reduced supply capacity for G2V 

operation (α=β=90o, δ=-90o, Vdc=240 V and Vb=200 V). (a) Primary inverter variables. (b) 

Secondary inverter variables. (c) Zoomed primary inverter current. (d) Primary pad current. 

 

6.3.3 Assessment of LCL Topology. 

The LCL structure is an improved version of LC-parallel topology by adding an 

impedance matching coil between the inverter and parallel resonant tank. This topology is 

investigated during G2V operation using the proposed theoretical (for the first 15 

harmonics) and Simulink models in this section. LCL-based BIWPTS’s performance for 

full supply capacity operation is described in Figure 6.5. The figure shows all the primary 
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(Vpi, Ipi, Vpc and Ipc) and secondary (Vsi, Isi, Vsc and Isc) variables. As can be seen, the inverter 

currents are limited to reasonable values and the spikes disappear after adding the L-filters. 

Also, the coil currents become pure sinusoidal, leading to lower electromagnetic 

interference. The inverter current is very small compared with the coil current, since it 

represents only the active current component, while the reactive part is supplied from the 

parallel capacitor. The peak inverter and capacitor voltages are almost equal to the DC 

voltage levels, as the parallel resonance does not magnify the voltage like the series one. 

 

 

Figure 6.5. LCL-topology performance under reduced supply capacity for charging 

operation (G2V) (α=β=180o, δ=-90o, Vdc=240 V and Vb=200 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. (c) Primary coil variables. (c) Secondary coil 

variables. 
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6.3.4 Power-Flow Assessment for Different Configuration. 

Performance evaluation parameters (power, efficiency and PF) for the three different 

configurations during G2V operation are analyzed in this section. For fair comparative 

analysis, the DC voltage levels (Vdc and Vb) for the three systems are adjusted, such that 

they provide the same rated power (1.5 kW). These voltages are varied with a fixed ratio 

for all topologies in order to deliver the same current distribution. Each configuration is 

investigated at full and light (half) loading conditions. The full loading condition is 

obtained by setting the control parameters (α and β) to be 180o, as indicated in Table 6.1. 

The light loading condition is achieved by applying α=β=90o, as presented in Table 6.2. 

The given efficiency calculations represent only the passive components’ efficiency and 

do not consider the inverters’, feeders’ and supplies’ losses. The tables show that LC-series 

topology provides the highest efficiency and PF in both the full and light load conditions, 

due to the sinusoidal waveforms. LC-parallel exhibits very poor PF and the lowest 

efficiency operation due to the large current spikes. LCL-topology gives higher PF and 

efficiency than LC-parallel but less than LC-series, due to the non-sinusoidal inverter 

currents, which increase the reactive power and the losses in the system. 

 

Table 6.1. Power-Flow Performance for all Topologies under Full-Loading Conditions. 

Topology Pp (kW) Ps  (kW) %η PF 

LC-series (Vdc=60 V and Vb=50 V) -1.536 1.479 96.33 0.999 

LC-parallel (Vdc=236V and Vb=196 V) 1.532 -1.466 95.65 0.108 

LCL (Vdc=240 V and Vb=200 V) 1.534 -1.473 96 0.9654 

 Evaluated at α=β=180o. 
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Table 6.2. Power-Flow Performance for all Topologies under Light-Loading Conditions. 

Topology Pp (kW) Ps  (kW) %η PF 

LC-series (Vdc=60 V and Vb=50 V) -0.768 0.740 96.3 0.999 

LC-parallel (Vdc=236V and Vb=196 V) 0.766 -0.733 95.6 0.108 

LCL (Vdc=240 V and Vb=200 V) 0.767 -0.736 96 0.9654 

 Evaluated at α=β=90o. 

 

Despite LCL-topology having two more passive components, it is more appropriate 

for high-power applications (e.g. EVs) and for the situations where the inverters are 

installed far from the pads, due to the following: 

- The parallel capacitors behave as PF correction and supply the required reactive 

(magnetizing) power. 

- Only the real power component is driven from the supply, which leads to simple inverter 

design and operation. 

- The inverter currents are very small compared to the pad currents, which means low 

conduction and feeder losses. 

- The wireless pads and capacitors require simple design since they do not have to handle 

high voltage operation. 

- The system behaves as a current-source, therefore the bidirectional power-flow can be 

easily achieved by controlling the inverter voltages. 

- It is less sensitive to the misalignment than LC-series topology. 

- No current spikes appear due to the filtration process. 
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 Experimental Evaluation for Different Topologies. 

In this section, the BIWPTS prototype presented in Figure 5.24 with the design 

parameters in Table 5.3 is utilized to evaluate the performance of the different topologies 

based on experimental tests. In this prototype, the DC voltage levels (Vdc and Vb) are scaled 

down (1/4 time the Simulink model values) to fit the available Li-ion battery module in the 

laboratory. The used DC voltage levels are Vdc=60 V and Vb=50 V. 

 

 

Figure 6.6. Experimental and theoretical LCL-topology performance under full supply 

capacity for G2V operation (α=β=180o, δ=-90o, Vdc=60 V, Vb=50 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil 

variables. 
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6.4.1 Experimental Validation of LCL Topology Model. 

In this section, the LCL topology is tested and the instantaneous voltage and current 

waveforms are recorded. These measured waveforms are compared with the theoretical 

ones, estimated from the proposed analytical model, for verification purposes. The 

response of LCL BIWPTS under the full supply capacity during G2V and V2G operation 

is indicated in Figures 6.6 and 6.7, respectively. The figures present comparison between 

experimental tests and theoretical model results. Good agreement is observed between the 

two models.  

 

 

Figure 6.7. Experimental and theoretical LCL-topology performance under full supply 

capacity for V2G operation (α=β=180o, δ=90o, Vdc=60 V, Vb=50 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil 

variables. 
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Moreover, the same prototype is analyzed to verify the effect of the phase-shift 

parameters on the power-flow magnitude. In this case, the effect of changing α and 𝛽 on 

the system power-flow is investigated. The system power is reduced by applying α=𝛽 =90o, 

while δ = ±90o to control the power flow direction. The results of G2V operation with a 

reduced power level are described in Figure 6.8. It can be observed that the two inverters’ 

voltages show zero-voltage level to reduce the RMS voltages, currents and, in 

consequence, the power. This effect is clear in the systems’ currents and voltages. The 

system performance under the V2G operation is shown in Figure 6.9. Also, the results show 

good agreement between the theoretical and experimental data. 

 

Figure 6.8. Experimental and theoretical LCL-topology performance under reduced supply 

capacity for G2V operation (α=β=90o, δ=-90o, Vdc=60 V, Vb=50 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil 

variables. 
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Figure 6.9. Experimental and theoretical LCL-topology performance under reduced supply 

capacity for V2G operation (α=β=90o, δ=90o, Vdc=60 V, Vb=50 V). (a) Primary inverter 

variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) Secondary coil 

variables. 

 

 

In this analysis, two scales of BIWPTS are utilized. The large-scale is used in the 
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between the power levels is about 16, which is the square of the scaling factor 4. Thus, it 
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can be concluded that the system is scalable, and small-scale prototypes can be utilized to 

verify its performance. 

 

Table 6.3. Large and Small-Scale Power-Flow Analysis. 

Mode (W) pP (W) sP ɳ (%) PF (pu) 

)=200 VbV=240 V & dcV( scale G2V-Large 1534 -1473 96 0.965 

Small-scale G2V (Vdc=60 V & Vb=50 V) 95.855 -92 96 0.965 

Evaluated at α=β=180o and δ=-90o. 

 

6.4.2 Evaluating the Sensitivity to Misalignment for all Topologies. 

Current IPT technology requires a perfect alignment between coils in order to keep 

the transferred power within the desired limits. However, this condition is practically 

impossible. Typically, different types of misalignment are expected between the two sides 

during the practical implementation. Thus, the SAE J2954A international standard has 

defined accepted limits and criteria for the different misalignments that the system may be 

subjected to. The system must operate within a range of these misalignment to be able to 

transfer the required power wirelessly. Two different categories of misalignments are 

accurately defined in J2954A standard [149]. The first class is associated with the planar 

offset in X, Y and Z directions. The second category is related to the angles between the 

two sides. Three different angle misalignments are defined: Rotation, Roll and Yaw angles, 

as indicated in Figure 6.10. 
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Figure 6.10. Angle misalignment in IPT system [149]. 

 

 

Various solutions are presented in the literature to minimize the misalignment issues, 

such as installing electro-mechanic alignment systems. This system causes the charging 

process to be slow and mechanically complex, or multiple primary systems (coil array 

structures) are required [173]. Another method to mitigate the misalignment problems and 

achieve fast charging process without the need for electro-mechanic positioning 

mechanisms is to implement a very precise, complex, closed-loop frequency control [174] 

that keeps the system operating at resonance, even with varying coupling factor. A cheap 

and simple way to deal with the misalignment issues is to choose and design the 

compensation network, such that the power-flow in the system becomes insensitive to the 

misalignment [175]. Therefore, one important aspect to evaluate the performance of a 

compensation network is to measure its sensitivity against the misalignment. 
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Therefore, the performance of different topologies with the variation of the magnetic 

coupling between the system’s sides, due to misalignment, is evaluated and compared in 

this section. In this analysis, the system was operated to transfer the maximum power 

during G2V mode (α=β=180o). All the investigated performance measurement parameters 

are normalized with respect to their values at coupling factor (k) equal 0.2, as an 

intermediate value. Only theoretical results are provided for LC-parallel topology, in order 

not to damage the HF converters. The primary coil RMS current is measured and compared 

with the theoretical (estimated) value under different coupling factors, as presented in 

Figure 6.11. The figure shows that the coil current in LCL topology is independent from 

the coupling factor. This proves that this structure is able to behave as a current-source 

regardless of the misalignment. In contrast, in LC-series, the current is inversely 

proportional with the coupling factor. 

 

 

 

Figure 6.11. Measured and estimated normalized primary coil current under misalignment 

for all topologies (G2V, α=β=180o). 
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In Figure 6.12, the active and reactive primary power for all topologies are evaluated. 

The measured powers are extracted from the experimental data using Fast-Fourier 

transform (FFT) to find the magnitude of each harmonic component. The fundamental 

component is used for active power estimation, while the higher-order harmonics are 

considered for reactive power calculation. LC-parallel and LCL show linear and similar 

increase in active power as k increases [Figure 6.12(a)]. However, LC series exhibits 

significant reduction of power, as the coupling increases due to the sensitivity to the 

variation of the reflected impedance. Also, Figure 6.12(b) indicates that the reactive power 

of LCL topology is fixed regardless of the misalignment, unlike the other two 

configurations. 

 

 

Figure 6.12. Measured and estimated normalized power under misalignment for all 

topologies (G2V, α=β=180o). (a) Active power. (b) Reactive power. 
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Finally, the equivalent fundamental primary impedance for all topologies is 

estimated based on the impedance model in Equation (4-6). This parameter is analyzed 

versus the coupling factor in Figure 6.13. It can be observed that the equivalent impedance 

of LCL topology is less sensitive to the misalignment, unlike that of LC-series and LC-

parallel, which nonlinearly increases and decreases, respectively as the coupling factor 

increases. From Figure 6.13(b), both LC-series and LCL topology provide zero-impedance 

angle (UPF), as was discussed before, while LC-parallel shows lagging inductive 

impedance. 

 

 

Figure 6.13. Theoretical fundamental equivalent impedance under misalignment for all 

topologies (G2V, α=β=180o). (a) Impedance magnitude. (b) Impedance angle. 
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6.4.3 Summary for the Assessment Analysis. 

The outcomes from the comparative analyses among the different topologies are 

summarized in Table 6.4. The table presents the advantages and disadvantages of the 

different topologies, in terms of many factors, such as passive components, control 

complexity, power factor, etc.  It can be noticed that LCL-structure is better in terms of 

system’s design, control implementation, physical installation and the robustness against 

misalignment, as is clarified below: 

- As was discussed in section 6.3.1, in LC series configuration, the inverter should be 

designed to handle both active and reactive current components, which represents huge 

challenges in the semiconductor switches, especially in high-power and HF 

applications. This item not only will represent a problem during the design, but also it 

leads to significant conduction losses in the power converter and in the feeder, which 

will reduce the overall system efficiency. Although the coupler efficiency in LC-series 

is similar to that of LCL topology, the overall system efficiency, including the power 

electronic converters and the feeders (which was not included in this study), will be less 

in case of LC series.  

- Regarding the control complexity, as was mentioned in section 6.3.3, LCL topology 

behaves as a current-source, which is the desired operation for EV charging. In this case, 

the power-flow can be easily controlled by adjusting the output voltage of the inverters. 

However, in the case of the LC-series structure, the system behaves as a voltage-source 

and current controllers are necessary, in addition to power-flow controllers, which 

means more complex control. 

- For the physical installation, in LCL topology, the inverter can be installed near to the 
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power pad or far from it. This is because, in this case, the current and losses in the feeder 

are small. On the other hand, in LC-series, it will be impractical to install the inverter 

far from the power pad, since the feeder current and losses will be significant. 

- Concerning the sensitivity to misalignment, LCL topology shows more robustness 

against the misalignment, in contrast with LC-series network. This feature is very 

important for IPT system in EV applications, in which the system is usually subjected 

to the misalignment during the normal operation. The system may become completely 

useless if it was too sensitive to the misalignment. 

 

Table 6.4. Summary of the Assessment Analysis. 

Topology LC-series LC-parallel LCL 

No. of passive components 4 4 6 

Bidirectional control 

Complexity 

High ----- Low 

PF High Low Medium 

Radio interference Low High Medium 

Coupler efficiency High Low High 

Design requirements High High Low 

Sensitivity to misalignment High Low Low 

Coupler position 
close to 

inverter 
close to inverter 

close to or far 

from inverter 

Soft switching capability High Low Medium 

DC blocking capacitor No need Need Need 
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Thus, it can be concluded that LCL-topology is the most practical and appropriate 

choice for bidirectional operation of EV. Even though LCL structure exhibits some 

deficiencies in PF, radio interference and soft switching capability, all these problems can 

be mitigated by adding DC-blocking capacitors with the proper design for both the 

capacitors and filter inductors, which can be an open research point. 

 

 Conclusion 

A comprehensive, steady-state performance analysis for various configurations of 

bidirectional inductive power transfer system in EVs applications is presented in this 

chapter. The analysis was based on the theoretical harmonics representation for each 

topology that was presented in chapter (4). The proposed theoretical models were utilized 

to study the control parameters’ effect on the steady-state system response and power flow. 

Moreover, the BIWPTS’s performance evaluation parameters (active and reactive power, 

efficiency and power factor) were estimated and compared. For validation purposes, a 

BIWPTS model was built in Simulink/MATLAB for each configuration, using the same 

design parameters, and its outcomes were compared with the theoretical models’ results. 

The results demonstrate good correspondence between the theoretical and the simulated 

models. In addition, the small-scale experimental prototype that was presented in chapter 

(5) is tested and analyzed to verify the theoretical and simulation results. The proposed 

analysis could predict the systems’ steady-state performance precisely as the correlation 

between the simulation and experimental results manifest. The presented analysis 

concludes that, among the different configurations, LCL-topology is more appropriate for 
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EV applications and in the situations where the inverter is a long way from the pad. It 

shows current-source characteristics, power-factor correction capability, simple design and 

control, high overall efficiency and power factor, and more robustness to misalignment. 
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 Introduction 

Inductive wireless power transmission is a promising technology in the charging of 

EVs. This technology is mainly based on the magnetic coupling between two or more coils. 

The coupling coefficient (k) ranges from 0 to 1, based on the magnetic design and the 

distance between the coils. In the conventional transformer, k is about 0.95 and it is called 

strongly coupled technology, but in IPT systems k ranges from 0.01 to 0.4, and it is called 

loosely coupled technology [176]. The electrical isolation in IPT systems provides safe, 

reliable, maintenance free operation in harsh environment. For these features, IPT 

technology has been approved to be convenient and reliable interface for charging and 

discharging the EV’s battery, during long-term parking (stationary), short-term stops 

(quasi-dynamic) or movement (dynamic) [97]. As was reported in chapter (6), among the 

different topologies of BIWPTS, LCL-based system provides better performance, 

especially for EVs applications. Precise model for such system can help the designers and 

researchers to anticipate, optimize and evaluate the system’s behavior amid the 

development. Thus, this chapter deals with developing accurate nonlinear dynamic model 

for LCL BIWPTS in EVs applications. 

According to the literature, several studies have been focused on BIWPTS modeling 

analysis. In [142], [75] steady-state mathematical models for LCL BIWPTS were 

developed. An analytical dynamic model based on state-space representation was 

investigated in [143], [177] for BIWPTS with CLCL topology. In these works, the coils of 

the wireless coupler were ideally modeled as linear inductors and the mutual coupling was 
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represented by the T-model, as in [75], or the reflected impedance, as in [142]. In these 

models, the core losses and the nonlinear magnetic characteristics of ferrite materials of 

the power pads were neglected. These approximations may lead to inaccurate prediction 

and evaluation for the system performance under different control and operating 

conditions. Considering such kind of features necessitates physics-based models for the 

wireless coupler, such as FEMs. Several FEA for different structures of power pads in EV 

applications were presented in the literature [84], [178]. In these works, FEMs were built 

and pure sinusoidal currents were injected to emulate the system’s performance. In this 

case, the effect of the nonlinearities due the power electronic converters and the dynamic 

controllers on the system were neglected. For precise evaluation of BIWPTS, the impacts 

of both the power electronics and the magnetic material characteristics need to be 

considered in the same simulation environment. 

Thus, this chapter presents a physics-based co-simulation platform for LCL BIWPTS 

in EVs applications. The platform is established through the coupling between finite 

element and circuit analysis. The power electronic converters and controllers are developed 

in Simulink and the power pads are modeled in Magnet environment. The two parts are 

linked together through the compatible Simulink Plug-in tool. In addition, a state-space 

dynamic mathematical model for the same LCL BIWPTS is derived and implemented in 

MATLAB environment. A 1.2 kW LCL BIWPTS is analyzed under different dynamics by 

both models, and the results are compared. The effect of the nonlinearities and the magnetic 

material characteristics on the system performance is assessed in terms of error and 

harmonics analysis. The analysis considered both the full and the light loading operating 

conditions in the system. The proposed co-simulation could provide accurate prediction for 
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the system dynamics, during both charging and discharging operation. The scheme is 

generic and can be easily expanded to different pad structures, compensation networks and 

inverter topologies. 

The main contributions in this work are summarized below: 

- A dynamic analytical model for LCL BIWPTS based on state-space representation is 

derived, implemented and analyzed. 

- A 2D-FEM for wireless coupler with DD pad structure is built considering the magnetic 

characteristics of N87 ferrite material. 

- Detailed analysis and explanation for the coupling between the power converters and 

controller in Simulink and the 2D-FEM in Magnet is presented. 

- The impact of the nonlinearities due to the magnetic material and the power electronics 

on the BIWPTS’s performance based on error and harmonics analysis is investigated, 

during different dynamics in the system. 

- The system power flow under both light and full loading conditions is evaluated, during 

G2V and V2G operations. 

- The effectiveness of the platform is verified by means of analytical and experimental 

results. 

 

 Analytical Dynamic Model of BIWPTS 

Similar to the steady-state models, presented in chapter (4), the DC-bus is modeled 

as a fixed DC source (Vdc), and the EV’s battery is represented by a fixed DC source (Vb), 

in the nonlinear model. A dynamic mathematical model, based on state-space 

representation, is presented in this section to predict the entire BIWPTS’s performance. 
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7.2.1 HF VSHBC Dynamic Model 

As was discussed before, two HF VSHBCs are utilized in the BIWPTS to supply the 

wireless coupler with controlled square-wave voltages at the resonant frequency, as 

indicated in Figure 7.1. These square-waves are controlled to achieve the required 

bidirectional power-flow in the system. The phase-shift control technique, depicted in 

Figure 4.4, is considered for this purpose. In this method, the controller adjusts the 

magnitude and the phase angle of the two inverters’ voltages to manage the power flow-

magnitude and direction between the two sides of the system. The switching activities for 

the primary inverter driven by the phase-shift control method are described in Figure 7.2. 

The switching signals for the second leg (S13 and S14) are shifted by an angle α from the 

first leg signals (S11 and S12). This parameter (α) varies between 0 to 180o to change the 

RMS inverter’s output voltage (vpi) from zero to maximum, respectively. The switching 

signals of the secondary inverter follow the same activities in Figure 7.1. There is a phase-

shift 𝛽 between the second leg signals (S23 and S24) and the first leg signals (S21 and S22). 

Also, the four secondary signals are shifted by an angle δ from the first inverter switching 

signals. Typically, the angle δ is used to manage the direction of the power-flow from the 

power grid to the EV, and vice versa. The negative δ means performing G2V operation, 

while positive δ provides V2G service. This parameter is theoretically set to ±90o to allow 

maximum active power flow with almost UPF operation. 
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Figure 7.1. Power electronics circuit diagram of LCL BIWPTS. 
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Figure 7.2. Switching activities and output voltage waveform of primary inverter. 
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Depending on the switching actions in Figure 7.2, four switching states for the 

primary inverter are stated in Table 7.1. The tri-state function [Ψp(t)] is evaluated from the 

individual switching function using Equation (7-1) and indicated in Figure 7.2 and Table 

7.1. 

𝛹𝑝(𝑡) = 𝑆11(𝑡)𝑆14(𝑡) − 𝑆12(𝑡)𝑆13(𝑡)                                 (7-1) 

The instantaneous output voltage of the primary inverter [vpi(t)] is expressed in terms 

of the tri-state function and the DC-link voltage (Vdc), as in Equation (7-2). 

𝑣𝑝𝑖(𝑡) = 𝛹𝑝(𝑡) × 𝑉𝑑𝑐                                         (7-2) 

 

Table 7.1. Switching States of the Primary HF VSHVC. 

State Period 11S 12S 13S 14S pΨ piV 

1S 0 < t ≤ α/2πfs 1 0 0 1 1 dcV 

S2 α/2πfs < t ≤ Ts/2 1 0 1 0 0 0 

S3 Ts/2 < t ≤ (Ts/2+α/2πfs) 0 1 1 0 -1 -Vdc 

S4 (Ts/2+α/2πfs) < t ≤ Ts 0 1 0 1 0 0 

 

 

For the secondary inverter, the switching states are the same as the primary ones, but 

shifted in time by the angle δ, and the phase shift parameter is 𝛽 instead of α. Thus, the tri-

state function [Ψs(t)] and the instantaneous output voltage of the secondary inverter [vsi(t)] 

are expressed, as in Equation (7-3). 



 

148 

 

𝛹𝑠(𝑡2) = 𝑆21(𝑡2)𝑆24(𝑡2) − 𝑆22(𝑡2)𝑆23(𝑡2)

𝑣𝑠𝑖(𝑡2) = 𝛹𝑠(𝑡2) × 𝑉𝑏                                     
                            (7-3) 

where, 𝑡2 = 𝑡 + 𝛿 2𝜋𝑓𝑠⁄ , fs is the switching frequency (fs=1/Ts), which is the same as the 

resonant frequency (fr) in both sides. 

 

7.2.2 Magnetic Coupler and Compensation Network Dynamic Model 

In LCL BIWPTS structure, the compensation capacitor is connected in parallel with 

each coil of the wireless coupler for PFC and reactive power compensation. Also, an L-

filter is introduced between the inverter and the capacitor for providing current-source 

characteristics. The time-domain equivalent circuit of LCL-based symmetrical BIWPTS is 

depicted in Figure 7.3. The HF inverters are represented by AC sources with square or 

quasi-square waves. The system is designed for fixed frequency operation, and the two 

sides operate at the same resonant frequency (ωr). The compensating capacitors are tuned 

to resonate with the coil self-inductances based on Equation (4-2), to be independent from 

the misalignment between the ground and the vehicle pads. 

The filter inductances (Lpi and Lsi) are designed to match the pad self-inductances 

(i.e. Lpi=Lpc and Lsi=Lsc) in order to provide fixed pad currents and to make the operating 

frequency match the design resonant frequency, as was discussed in chapters (4) and (6). 

The system dynamics are modeled based on the state-space representation, as given 

in Equation (7-4). 

ẋ = A x + B u                                                  (7-4) 

where, x is the state vector and u is the control vector. 
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Figure 7.3. Dynamic electric equivalent circuit of symmetrical LCL BIWPTS. 

 

 

These vectors, x and u, are stated for the LCL BIWPTS, in Equation (7-5). 

x = [𝑖𝑝𝑖 𝑣𝑝𝑐     𝑖𝑝𝑐 𝑖𝑠𝑐     𝑣𝑠𝑐 𝑖𝑠𝑖]
𝑇

 𝑢 = [𝑣𝑝𝑖 𝑣𝑠𝑖]𝑇                                      
                                (7-5) 

where, the subscript p stands for the primary side variables and s identifies the secondary 

side, 𝑖𝑝𝑖 and 𝑖𝑠𝑖 are the instantaneous inverter currents, 𝑖𝑝𝑐 and 𝑖𝑠𝑐 are the instantaneous 

coil pad currents, and 𝑣𝑝𝑐 and 𝑣𝑠𝑐 are the instantaneous coil voltages. 

Following the basic principles of circuit theory, the dynamic model is expressed by 

six ODEs, as given in Equation (7-6). 

 

𝑖𝑝𝑖̇ = (
1

𝐿𝑝𝑖
) (𝑣𝑝𝑖 − 𝑅𝑝𝑖𝑖𝑝𝑖 − 𝑣𝑝𝑐)                                    

𝑣𝑝𝑐̇ = (
1

𝐶𝑝
) (𝑖𝑝𝑖 − 𝑖𝑝𝑐)                                                      

𝑖𝑝𝑐̇ = 𝑀𝛾 (𝑣𝑠𝑐 − 𝑅𝑠𝑐𝑖𝑠𝑐 − (
𝐿𝑠𝑐

𝑀
) 𝑣𝑝𝑐 + (

𝑅𝑝𝑐𝐿𝑠𝑐

𝑀
)𝑖𝑝𝑐)    

𝑖𝑠�̇� = 𝐿𝑝𝑐𝛾 (−𝑣𝑠𝑐 + 𝑅𝑠𝑐𝑖𝑠𝑐 + (
𝑀

𝐿𝑝𝑐
) 𝑣𝑝𝑐 − (

𝑅𝑝𝑐𝑀

𝐿𝑝𝑐
)𝑖𝑝𝑐)

𝑣𝑆𝑐̇ = (
1

𝐶𝑠
) (𝑖𝑠𝑖 − 𝑖𝑠𝑐)                                                      

𝑖𝑠𝑖̇ = (
1

𝐿𝑠𝑖
) (𝑣𝑠𝑖 − 𝑅𝑠𝑖𝑖𝑠𝑖 − 𝑣𝑠𝑐)                                    

                       (7-6) 

where, 𝛾 = 1/(𝑀2 − 𝐿𝑠𝑐𝐿𝑝𝑐). 
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According to Equations (7-4)-(7-6), the system matrix A and the input matrix B are 

deduced, as in Equation (7-7). 

A =

[
 
 
 
 
 
 
 
 
 
−𝑅𝑝𝑖

𝐿𝑝𝑖

−1

𝐿𝑝𝑖
0 0 0 0

1

𝐶𝑝
0

−1

𝐶𝑝
0 0 0

0 −𝛾𝐿𝑠𝑐 𝛾𝐿𝑠𝑐𝑅𝑝𝑐 −𝛾𝑀𝑅𝑠𝑐 𝛾𝑀 0

0 𝛾𝑀 −𝛾𝑀𝑅𝑝𝑐 𝛾𝐿𝑝𝑐𝑅𝑠𝑐 −𝛾𝐿𝑝𝑐 0

0 0 0
−1

𝐶𝑠
0

1

𝐶𝑠

0 0 0 0
−1

𝐿𝑠𝑖

−𝑅𝑠𝑖

𝐿𝑠𝑖 ]
 
 
 
 
 
 
 
 
 

; B =

[
 
 
 
 
 
 
1

𝐿𝑝𝑖
0

0 0
0 0
0 0
0 0

0
1

𝐿𝑠𝑖]
 
 
 
 
 
 

            (7-7) 

The system’s ODEs are programmed and solved in MATLAB script using the fourth 

order Runge-Kutta (RK4) numerical technique, and utilized to predict the BIWPTS’s 

dynamics. 

 

 Physics-Based Co-simulation Platform 

A typical BIWPTS for EV connection consists of the power electronics converters, 

passive compensation elements and power pads. The power pads are made of copper litz 

wire to minimize the skin and proximity effects, and magnetic ferrite material to direct the 

flux lines and reduce the magnetic path reluctance. In typical circuit models, the magnetic 

coupler is modeled by self and mutual-inductances using T-model mutual representation 

[75], or using the reflected impedance theory [142]. In this case, the parameters are 

extracted or estimated at one operating point, and the nonlinearities due to the magnetic 

material and the magnetic losses are not considered. Thus, relying on such approximate 

models to simulate the system’s performance under different control and operating 

conditions is not accurate and may lead to significant errors. In order to precisely simulate 
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the system’s performance, the magnetic characteristics need to be considered in the model. 

Thus, combining the physics-based model for the power pads, such as FEM and the circuit 

simulation is necessary. The main limitation for such coupling is the long computation 

time. For minimizing this problem, compatible simulation tools are considered in this work. 

More details about the FEM and the co-simulation are presented in this section. 

 

7.3.1 Finite-Element Model in Magnet 

Among the different pad structures presented in the literature, the polarized DD 

design is considered in this work. It is simple in design and provides better coupling, greater 

tolerance and cost effectiveness. Moreover, it offers a charge zone five times larger than 

that possible with the typical circular pads for a similar material cost [84]. The typical 

structure of one DD power pad is depicted in Figure 7.4.  

Aluminum shield

Ferrite sheet

Coil

current
field

 

Figure 7.4. Double-D power pad structure using sheet of ferrite core. 

 

It comprises of two or more copper coils magnetically connected in series (flux from 

one coil passes through the other) and electrically connected in parallel, to lower the 
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equivalent inductance seen by the power supply. The coils are placed on top of ferrite strips 

or a sheet, to direct the flux streamlines from one coil to the other. Thus, there is no 

magneto-motive force (MMF) produced that can drive the flux out of the back. This allows 

aluminum shielding to be placed underneath with little impact on the coils’ quality factor, 

creating a truly single-sided flux pad with a path height proportional to half of the pad 

length [144], [176]. A 2D-FEM for the wireless coupler is developed in Magnet 

environment. It consists of two identical DD power pads to satisfy the symmetrical 

bidirectional operation, in which each side can behave as a source and a load at the same 

time. Each pad consists of two Litz wire coils. The coils are attached to a ferrite sheet with 

the commercial ferrite material N87. This material is the most commonly used in IPT 

systems. It is composed of a combination of MnZn magnetic material. It offers good 

magnetic characteristics, as shown in Figure 7.5, with mass density of 4850 kg/m3 [179]. 

These characteristics are considered in the developed 2D-FEM. The 2D-FEM for the two 

identical DD power pads is shown in Figure 7.6, and the dimensions are presented in Table 

7.2. 

 

 

Figure 7.5. Characteristics of N87 ferrite material. (a) Magnetization characteristic 

@10kHz and 25 oC. (b) Core losses characteristic @40kHz and 25 oC. 
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Figure 7.6. 2D-FEM of one power pad of the wireless coupler. 

 

 

Table 7.2. Dimensions of the Power Pad in 2D-FEM 

Parameter Value Parameter Value 

a 67 mm c 1 mm 

b 7 mm d 1 mm 

e 16 mm f 5 mm 

g 100 mm   
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The model was analyzed based on the 2D FEA for solving a time-varying field, using 

the magnetic vector potential field formulation given in Equation (7-8) [180], [181]. 

∇ × [𝜇−1(∇ × 𝐴)] = −𝜎 (
𝜕𝐴

𝜕𝑡
+ ∇𝑉)                                   (7-8) 

where, μ is the magnetic permeability of the medium (H/m), and  𝜎 is the electric 

conductivity of the medium (A/V.m), A is the magnetic vector potential (V.s/m), and V is 

the scalar potential voltage function. 

The nonlinearities that are investigated in this work are associated with two elements: 

1) the nonlinear characteristics of the magnetic material, and 2) the nonlinearities in the 

sources due to the power electronic components. The magnetic material nonlinearity is 

represented in Equation (7-8) by μ. For the nonlinear magnetic materials (e.g. ferrite 

material), the permeability μ depends on the local value of B, which changes nonlinearly 

based on H, according to the B-H characteristic. Thus, iterative technique is required to 

solve Equation (7-8) until the element permeability values have converged. The second 

nonlinearity (associated to the sources) is characterized by the right-side of Equation (7-8), 

which represents the current density vector of the source.  

Dirichlet (Flux Tangential) boundary conditions are applied to the surrounding area 

around the model. In this case, the entire outer boundary behaves as a flux line. This choice 

is the best for this case, since it is equivalent to putting the model in a cavity of a material 

with zero permeability, so that no flux can escape from the model. In addition, these 

boundaries are taken sufficiently far away from the components of the model (≈10 times 

the model dimensions), thus it represents a good approximation to the open boundaries. 

Therefore, the model can provide accurate solution with minimum computational effort. 
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Transient magnetic field analysis is performed in Magnet environment for the 2D-

FEM. The coil currents during this analysis are given in Figure 7.7. They are typically 

sinusoidal, with a 90o phase-shift between them. Five time instants are defined in the 

waveforms (t1, t2, t3, t4 and t5), and the magnetic flux distribution at these instants, when 

the two power pads are perfectly aligned, are indicated in Figure 7.8. These positions 

almost cover all the possibilities and are repeated periodically with the time. 
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Figure 7.7. Instantaneous wireless pads currents waveforms. 
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(a)
(b)

(c)

(e)

(d)

(f)

 

Figure 7.8. Magnetic flux density distribution of 2D-FEM. (a) At t1. (b) At t2. (c) At t3. (d) 

At t4. (e) At t5. (f) Color map scale. 
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7.3.2 FE-Simulink Co-simulation 

For accurate evaluation of the magnetic material’s effect on the BIWPTS’s 

performance, the 2D-FEM of the wireless coupler is coupled with the power converters’ 

simulation. For reasonable simulation time, two compatible tools are used in this platform, 

as depicted in Figure 7.9. Simulink tool is used to simulate the compensation network, the 

power electronic converters, and the controllers. Magnet software is considered to model 

the power pads. The two models are coupled through the Simulink Plug-in tool. This tool 

allows Simulink to control the sources of the coils in Magnet environment [145].  

 

 

Figure 7.9. Co-simulation Simulink-Magnet Platform. 

 

 

The details of the coupling between the circuit and finite element environments are 

described in Figure 7.10. In Magnet environment, each coil is connected to a controlled-

voltage or current-source in the Circuit window. Voltage-source is preferred, as it results 

in a more stable coupling for magnetic components and is less likely to yield unphysical 

conditions [182]. In Simulink medium, each pad coil is denoted as a controlled current-

source. The voltages across the current-sources represent the control signals of the 
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controlled voltage-sources in Magnet. After analyzing the FEM, the coil currents are 

calculated and used as control signals for the controlled current-sources in Simulink 

environment, as indicated in Figure 7.10. The Simulink Plug-in tool has been designed to 

operate properly when the Simulink step-size is fixed. It also provides the ability to set the 

MagNet step-size to be different from that of Simulink. In this case, the step size of the FEA 

can be much larger than that of the circuit analysis, to accelerate the simulation time. 
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Figure 7.10. Coupling between Simulink and Magnet software. 

 

 Model Verification and Discussion 

A 1.2kW LCL BIWPTS model (shown in Figure 7.1) is analyzed by both the 

dynamic analytical model and the co-simulation platform. The framework is designed to 

resonate at 40 kHz, with an air-gap length between the primary and secondary coils of 100 

mm, and design parameters given in Table 7.3. The BIWPTS’s model comprises of two 

DC supplies to emulate the DC-bus and the EV’s battery, two HF full-bridge inverters, two 

identical DD power pads, two parallel compensation capacitors, and two L-filters. Each 

power pad consists of two copper coils attached to a ferrite sheet of N87 magnetic material 
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from EPCOS. The analytical and co-simulation results during both G2V and V2G 

operation are presented and discussed in this section. 

 

Table 7.3. Design Parameters of the BIWPTS Model 

Parameter Value Parameter Value Parameter Value 

piL 26.1 µH siL 26.1µH pC 0.61 µF 

Rpi 38 mΩ Rsi 38 mΩ Cs 0.61 µF 

Lpc 26.1µH Lsc 26.1 µH M 5.2 µH 

Rpc 38 mΩ Rsc 38 mΩ F 40 kHz 

 

 Error Analysis 

To show the nonlinearities in the system, selected dynamics are introduced to the 

BIWPTS, such as starting, power-flow level variation and switching between the different 

modes of operation (G2V and V2G). The system under these disturbances is analyzed in 

time-domain, using both the co-simulation platform and the ODEs presented in section 7.2.  

Both models are solved in MATLAB environment for 0.04 sec with 20 MHz sampling 

frequency. The transient FEA is achieved at 2 MHz sampling frequency in Magnet 

environment. The analyzed scenario, including the different dynamics, is indicated in 

Figure 7.10. The BIWPTS starts with G2V operation to charge the EV at full power level 

(α=β=180o and δ=-90o), as depicted in Figure 7.11(a). In this period, the two inverters 

generate full-square wave output voltages, with 90o phase-shift (vsi lags vpi), as shown in 

Figure 7.11(b) and 7.11(c). 



 

160 

 

 

Figure 7.11. Introduced dynamics in BIWPTS (Vdc=240V and Vb=200V). (a) Phase shift 

control parameters (α, β and δ). (b) Inverter output voltages. (c) Zoom for G2V to V2G 

transition at full capacity. (d) Zoom for power level reduction in V2G mode. (e) Zoom for 

V2G to G2V transition at reduced power level. 

 

 

At 0.01 sec, the control parameter δ varies from -90o to 90o to discharge the EV and 

realize V2G service. At this instant, the phase of vsi changes to lead vpi by 90o, while both 

inverters still transfer the full power capacity [see Figure 7.11(c)]. The system keeps 

working at V2G operation with full capacity until the control parameters α and β are 

reduced from 180o to 90o at 0.02 sec. After 0.02 sec, the inverters generate quasi-square 

waves with zero level to reduce the RMS voltages and the power flow, in consequence [see 
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Figure 7.11(d)]. Another mode switching action in applied at 0.03 sec to charge the EV 

with a reduced power level [see Figure 7.11(e)]. 

 

 

Figure 7.12. RMS values of BIWPTS’s variables (Vdc=240V and Vb=200V). (a) Primary 

inverter variables. (b) Primary coil variables. 

 

 

The RMS value of the BIWPTS’s variables during the presented dynamics are 

indicated in Figure 7.12. The figure compares between these variables from both co-

simulation and analytical model results. Large transients appear during the transition for 

both power level variations and switching the mode of operation. The results show 

significant mismatch between the analytical and FE co-simulation platform. The reasons for 

these mismatches are the actual characteristics of the magnetic material, which are neglected 
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in the analytical model. The errors between the two results are evaluated and presented in 

Figure 7.13. These errors are significant during the transient period and decrease at steady-

state region. Also, it can be noticed that the errors in the different modes of operation are 

not the same. For example, ∆Ipi in V2G operation is slightly larger than that in G2V 

operation. The reason for this behavior is the nonlinearities in the system. 

 

 

Figure 7.13. Error between analytical and FE co-simulation platform results. (a) Primary 

inverter current. (b) Primary coil current. (c) Primary coil voltage. 

 

 

The deviations in the system variables reflect errors in the power flow analysis. The 
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and co-simulation, is given in Figure 7.14(a). The error between the two results is depicted 

in Figure 7.14(b). As can be seen, a large and non-homogeneous error is experienced 

between the two data. 

 

 

Figure 7.14. Active power flow. (a) Primary power (b) Primary power error. 

 

 

Different performance is expected at different power levels (loading conditions) of 

BIWPTS. In order to examine that, the same BIWPTS is analyzed at lower DC voltage 

levels (Vdc and Vb are 60V and 50V instead of 240V and 200V, respectively). These voltage 

levels allow only 1/16 of the full-power to be transferred. The NRMSE is evaluated, based 

on Equation (7-9), for all the system’s variables, during both full and light loading 

conditions, and presented in Table 7.4. 

0.01 0.02 0.03 0.04

-1

0

1

P
p
 (

k
W

)

 

 
P

theo

P
co-sim

0.01 0.02 0.03 0.04

-200

0

200


P

p
 (

W
)

Time (sec)

(b)

(a)



 

164 

 

𝑁𝑅𝑀𝑆𝐸 = √∑ (𝑓(𝑡𝑖) − 𝑔(𝑡𝑖))
2𝑚

𝑖=1 ∑ (𝑓(𝑡𝑖))
2𝑚

𝑖=1⁄                           (7-9) 

where, f(ti) and g(ti) are the value of the variable at sampling index (i), which are calculated 

from the analytical and FEA co-simulation, respectively. 

 

Table 7.4. %NRMSE at Full and Light Loading Conditions. 

Mode pii sii pci sci pcv scv pp sp 

)=200 VbV=240 V, dcV( Full load 17.8 17.57 2.3 2.3 2.64 2.64 11.4 11.2 

Light load (Vdc=60 V, Vb=50 V) 14.9 14.6 1.6 1.6 2.65 2.65 10.7 10.5 

  

 Harmonics Analysis 

The nonlinearities in the arrangement due to the magnetic characteristics can be 

identified by performing harmonics analysis in the system. A FFT study is implemented for 

the primary inverter current (ipi), during both G2V and V2G operation. The inverter voltage 

and current waveforms during G2V operation with full supply capacity are indicated in 

Figure 7.15(a). As can be observed, ipi is in-phase with vpi, which means that the system is 

hitting the resonance and working at UPF. The magnitude of FFT analysis for ipi from both 

the analytical and finite element (FE) co-simulation models are presented in Figure 7.15(b). 

Only odd harmonics appear in the current waveform due to the square-wave voltages. The 

co-simulation results show large fundamental current and slight increase in the third 

harmonic compared with the analytical results.  
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Figure 7.15. FFT analysis during full G2V operation (Vdc=240V, Vb=200V, α=β=180o and 

δ=-90o). (a) Primary inverter variables. (b) FFT magnitude of primary inverter current. 

 

For better evaluation, the total harmonic distortion (THD) for all the system’s 

variables is estimated, and presented in Table 7.5. The table shows the THD at both full and 

light loading conditions. In general, THDs in co-simulation results are smaller than that 

from the analytical results due to the larger fundamental components in the co-simulation 

data. The differences diminish in the light loading conditions, since the magnetic core 

becomes less saturated and offers linear characteristics. The secondary inverter current (isi) 

exhibits less THD than that of ipi. Also, it can be seen that THD of the coils’ variables (Ipc, 

Isc, Vpc and Vsc) are very small, which means that these variables are almost sinusoidal due 

to the filtration in the compensation network. Similar results are noticed during V2G 

operation, as presented in Figure 7.16 and Table 7.6. 
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Table 7.5. %THD during G2V Operation for Full and Light Loading 

Mode pii sii pci sci pcv scv 

Theoretical 

Full load  62.84 34.32 0.029 0.029 0.23 0.23 

Light load 58.61 36.21 0.03 0.03 0.23 0.23 

Co-simulation 

Full load  52.34 26.34 0.035 0.035 0.25 0.25 

Light load 52.28 26.44 0.035 0.035 0.25 0.25 

 

 

 

 

Figure 7.16. FFT analysis during full V2G operation (Vdc=240V, Vb=200V, α=β=180o and 

δ=90o). (a) Primary inverter variables. (b) FFT magnitude of primary inverter current. 
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Table 7.6. %THD during V2G Operation for Full and Light Loading 

Mode pii sii pci sci pcv scv 

Theoretical Full load  72.82 30.96 0.029 0.029 0.23 0.23 

Light load 78.77 29.48 0.029 0.029 0.23 0.23 

Co-simulation Full load  54.25 25.62 0.034 0.034 0.25 0.25 

Light load 54.46 25.6 0.034 0.034 0.25 0.25 

 

 

 

 Conclusion 

This chapter presents an accurate platform for predicting the performance of a 

bidirectional inductive wireless power transfer system during G2V and V2G services. The 

proposed co-simulation considered the nonlinearities in the system due to the power 

electronic converters, the power flow controllers and the magnetic characteristics of the 

power pads. The platform is developed using two compatible softwares based on circuits 

and finite element analysis. The system is implemented and analyzed in MATLAB 

environment. The results from the co-simulation are compared with the outcomes from a 

six order state-space dynamic model for 1.2 kW LCL BIWPTS, with double-D pad 

structure. The comparison shows the impact of the magnetic material characteristics in 

terms of errors and harmonics. The analysis indicated the effectiveness of the proposed 

platform, and its ability to be extended for different coupler designs, inverter topologies 

and compensation configurations. 
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 Introduction 

WPT is a technology, which could set the human free from the inconveniences of 

wires. It is capable of transferring the electric power through a relatively large air-gap 

without physical connection. WPT are intended to deliver power efficiently from a 

stationary primary source to one or more movable secondary loads by magnetic coupling. 

Bidirectional operation of this technology is exceptionally encouraging, particularly in EV 

ancillary services. The proper magnetic design is one of the most difficult and critical 

phases in developing a BIWPTS, especially for high-power (i.e. EVs) applications. Thus, 

this chapter presents detailed analysis for the choice and design of the passive elements in 

a BIWPTS. A clear methodology for achieving the best design for all the passive elements 

in a symmetrical LCL BIWPTS is developed. The proposed strategy depends on the 

electromagnetic field computations joined with the steady-state analytical model, presented 

in chapter (4). A 3D-FEM for an 8 kW polarized DD power pad is developed and optimized 

intuitively. The design is accomplished to meet with the WPT2 power level and Z2 class 

in J2954A standard [149]. Moreover, the choice of the PFC capacitors and the impedance 

matching coils was investigated. The best combination of the components’ parameters, 

including the power pads, compensation capacitors and L-filters, was investigated. 

Following the proposed design considerations, a LCL BIWPTS model is developed in 

MATLAB Simulink, and its outcomes are compared with the theoretical model results. 

Additionally, a small-scale experimental prototype was assembled, using the same design 
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specifications with reduced DC voltage levels. The models were tested during charging 

(G2V) and discharging (V2G) operation, and good correlation is observed for all of them. 

 

 The Proposed Design Strategy 

As was indicated in Figure 7.1, the LCL BIWPTS contains six passive components: 

Lpi, Lsi, Cp, Cs, Lpc, and Lsc; in addition to the mutual inductance (M) between the primary 

and secondary sides, which is directly related to the magnetic coupling factor (k). The 

performance of a BIWPTS depends mainly on the values of these elements. They are 

governing the system’s power transfer capability, efficiency and cost. Thus, these elements 

must be decided and designed carefully, to accomplish the desired system’s operation. A 

flow-chart for a clear design strategy to configure these parameters is depicted in Figure 

8.1. The algorithm describes five different phases (I-V), which need to be followed, to 

accomplish the BIWPTS’s design [178], [183]. 

The first phase in the design, I, is to decide the operating frequency (fr), the desired 

power level (Pdes), the air-gap range and the compensation configuration. The SAE J2954A 

standard defines the frequency range of 81.38 kHz to 90 kHz [149]. Also, four power levels 

(WPT1, WPT2, WPT3 and WPT4) were established by the same standard to support 3.7, 

7.7, 11.1 and 22 kVA, respectively. In addition, the air-gap between the two sides is 

characterized by three different classes (Z1, Z2 and Z3) that cover most of the ranges in 

the light-duty EVs. Thus, the operating frequency, power level and air-gap length can be 

decided based on this standard.  
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Figure 8.1. Flow-chart for the proposed design methodology. 
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Also, in this phase, the designer needs to choose the appropriate compensation 

configuration, which is decided based on the assessment and comparative analyses 

presented in Chapter (6) and published in [76]. According to the study, the most appropriate 

network for EVs’ applications is the LCL-topology, which shows high efficiency, simple 

design and control, and current-source characteristics. Due to these reasons, the LCL 

compensation topology is considered in this work. The last step in phase I is to assume a 

reasonable initial value for the coupling coefficient (ko), based on the provided ranges in 

the J2954A standard. In this work, WPT2 power level (7.7 kVA), Z2 class (95-165 mm 

air-gap) are chosen as design targets, since there are no specific characteristics for this 

category and only proposals were presented in the J2954A standard. Also, the initial 

desired coupling factor is assumed as ko=0.3; and the DC-bus and the EV’s battery voltage 

are chosen as Vdc=420 V and Vb=350 V. 

The second phase, II, of the design is to find the wireless power pad magnetic 

parameters (Lpc and Lsc), which satisfy the desired power, frequency and magnetic coupling 

requirements, previously defined in phase I. These parameters are decided based on the 

developed steady-state mathematical model in chapter (4) for the LCL BIWPTS. This 

model is utilized to predict the effect of the self-inductances of the power pads (Lpc and Lsc) 

on the system’s performance. The BIWPTS’s performance is evaluated based on the active 

power transfer capability, efficiency and power factor. The relations among these 

evaluation parameters and the pads’ self-inductances are described in Figure 8.2. In this 

figure, the system’s primary power (Pp), efficiency (η) and primary power factor (PFp) are 

analyzed with respect to the self-inductance. In this analysis, it is assumed that the two 

power pads are identical (Lpc = Lsc), due to the symmetry in the system. It can be noticed 
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that the inductance value that handles about 7.8 kW (WPT2), with 92.61% efficiency and 

0.955 power factor is 19 μH. Thus, this value is considered in the design. 

 

 

Figure 8.2. Effect of the pad self-inductance on the BIWPTS’s performance (Vdc=420 V 

and Vb=350 V). (a) Primary active power. (b) System’s efficiency. (c) Primary power 

factor. 

 

 

Once the self-inductances of the power pads are defined, the following step is to 

achieve the magnetic design that is able to provide these values. Then, this design needs to 

be optimized to fulfill the desired magnetic coupling requirement. This task is usually 

achieved, using a 2D or 3D FEA. More details about the power pads’ magnetic design and 

optimization are presented in the next section.  
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 Magnetic Design of the Power Pads  

Several planar structures of the power pad for EVs applications are presented in the 

literature, such as circular or rectangular [184], DD [176], bi-polar [185], [186], DDQ [176] 

and tripolar [187]. The typical structure of all these configurations contains copper coils, 

ferrite material and aluminum shield, as depicted in Figure 8.3. Among these different 

configurations, only the circular/rectangular and the DD shapes are recommended by the 

J2954A standard. By comparing between the circular and DD structure, the DD provides 

better coupling, greater tolerance, greater charging zone, and cost effectiveness [84], [85], 

[169], [176]. 

 

 

Figure 8.3. Different structures of power pads in EVs applications. (a) Circular. (b) Double-

D. (c) Bipolar. (d) Double-DQ. 
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Because of the advantages of the polarized DD design, it is considered in this work. 

As was discussed in chapter (7), each pad consists of two or more coils, electrically 

connected in parallel, to reduce the equivalent inductance; aluminum shield and magnetic 

ferrite cores. The ferrite cores can be arranged to form a solid sheet, as indicated in Figure 

7.4, or multiple parallel bars, as depicted in Figure 8.3. Using the solid sheet guarantees 

better magnetic coupling and shielding than those from the bars. However, it results in a 

higher cost and weight for pads. 

 

 

8.3.1 3D Finite Element Model of DD Power Pad  

Due to the complex structure of the power pad, finding accurate analytical solutions 

for electromagnetic field distribution may not be conceivable. However, distinctive 

numerical analysis techniques can be utilized for electromagnetic field analysis. In this 

study, static 3D-FEA was considered. The commercial tool ANSYS Maxwell software is 

utilized for electromagnetic field calculation and magnetic parameters’ estimation. A 3D-

FEM is built for the DD power pad, as depicted in Figure 8.4. In this model, the bars’ core 

option is considered to present the most cost-effective solution; and to be able to be built 

with the available material in the laboratory. This model is optimized in order to achieve 

the desired requirements, defined in phases I and II. For design simplicity, the standard 

ferrite core (I93x28x16) of N87 magnetic material from EPCOS is utilized, without any 

special cutting. In this structure, many different variables need to be defined in the design, 

such as coil length (Lc), coil width (Wc), number of ferrite bars, number of I-cores in each 

bar, spacing between bars (Df), shield dimensions (Ls, Ws, Ts and Gs), and coil side (CS), 



 

175 

 

which is a function of number of turns (N) and the distance between two adjacent turns 

(pitch), as indicated in Figure 8.5. 

 

 

Figure 8.4. 3D-FEM for DD wireless coupler based on ferrite bars. 

 

 

(a)

(b)

(c)
Ts

Wc

Lc

Df

CS

Ws

Ls

Gs

 

Figure 8.5. Different views of DD wireless coupler. (a) Front. (b) Top. (c) Side. 
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8.3.2 3D Finite Element Analysis and Optimization of DD Power Pad  

The developed model was analyzed based on the 3D FEA for solving the static 

problem, using the static-magnetic vector potential partial differential equation given in 

Equation (8-1). The magnetic field distribution, though a vertical section in the middle of 

the model, while the currents in the two sides are equal to 23 A, is shown in Figure 8.6. 

Also, the distribution of the magnetic flux density in the ferrite bars is depicted in Figure 

8.7. 

∇ × (𝜈(∇ × �̅�)) = 𝐽�̅�                                                  (8-1) 

where, ν is the magnetic reluctivity (m/H), A is the magnetic vector potential (V.s/m), and 

Je is the current density vector. 

 

 

 

 

Figure 8.6. Magnetic field distribution across a vertical section in the middle of the 3D 

FEM of the DD power pad. 
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Figure 8.7. Magnetic flus density distribution in the ferrite bars of the DD power pad model. 

 

 

The 3D static FEA was performed to evaluate the design and obtain the magnetic 

parameters (k and Lpc, Lsc), then these parameters were introduced inside the mathematical 

model, to assess the BIWPTS’s power (Pp) and efficiency (η) [178]. Selected results for 

optimizing the magnetic design are presented in Figures 8.8, 8.9 and 8.10. In these 

analyses, the perfect alignment is assumed between the two power pads. In Figure 8.8, the 

coil-width (Wc) is investigated at fixed ferrite bars (six bars with four I-cores/bar). In this 

case, the number of turns was set to six turns in each coil. As can be noticed, for Wc that 

nears the half of the ferrite bars’ length (186 mm), expanding Wc increases Lpc, k, Pp and 

η, significantly. Greater increase in Wc demonstrates a small increase in Lpc, k and η, but 

Pp experiences a maximum point at Wc = 260 mm. Increasing Wc over this value leads to 

a drop in the power transfer. Thus, Wc = 260 mm is considered in this design and this value 

is kept fixed in the flowing analysis. 
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Figure 8.8. Effect of coil-width on the evaluation parameters (Vdc=420 V and Vb=350 V). 

(a) Primary self-inductance and coupling factor. (b) Primary power and efficiency. 

 

 

 

The coil-width is kept fixed at 260 mm, and the spacing between the ferrite bars (Df) 

is studied in Figure 8.9. The figure shows that a slight increase in Df increases Lpc, k and 

η, but decreases Pp. Once Df becomes more than twice the bar width (2x28 mm), all the 

parameters drop dramatically. The best Df is chosen at 46 mm, at which the model provides 

the highest coupling factor.  
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Figure 8.9. Effect of Df on the evaluation parameters (Vdc=420 V and Vb=350 V). (a) 

Primary self-inductance and coupling factor. (b) Primary power and efficiency. 

 

 

 

Another variable [spacing between turns (pitch)] is optimized, as described in Figure 

8.10. In this case, it is assumed that the pitch is fixed for all the coils in the DD power pad. 

The figure demonstrates that expanding the pitch leads to a better coupling factor and 

higher power transfer, but less system’s efficiency. Thus, the value of the pitch was decided 

to achieve the required power level, with reasonable efficiency and coupling factor. This 

parameter was set to 11 mm. Similarly, the entire pad’s design parameters are investigated 

and the final parameters are presented in Table 8.1. 
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Figure 8.10. Effect the pitch on the evaluation parameters (Vdc=420 V and Vb=350 V). (a) 

Primary self-inductance and coupling factor. (b) Primary power and efficiency. 

 

Table 8.1. Final Design Parameters of the DD Power Pad. 

Parameter value Parameter Value 

Wc 260 mm Ls 700 mm 

Lc 500 mm Ws 600 mm 

Df 46 mm Ts 10 mm 

CS 70 mm Strings 6 

Turns 6 Bars 4 

Pitch 11 mm   
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8.3.3 Design of LCL Compensation Configuration 

In the wake of completing the magnetic design and evaluation, the following phase, 

IV in Figure 8.1, is to estimate the LCL compensation topology parameters (Lpi, Lsi, Cp and 

Cs). For LCL topology, the capacitors are connected in parallel, and are tuned to resonate 

with the self-inductances of the wireless pads, as was indicated in Equation (4-2). In this 

case, the system behaves as a parallel-resonance circuit, with high equivalent impedance 

at the resonant frequency to provide current-source characteristics. 

Typically, the filters’ parameters (Lpi and Lsi) are assigned based on the power 

transfer capabilities. However, the BIWPTS’s performance is very sensitive to the variation 

of the filter inductance with respect to the pad self-inductance, as was depicted in Figure 

4.12. For a 40 kHz resonant frequency, the operating frequency matches with 40 kHz only 

when Lpi=Lpc and Lsi =Lsc. At these conditions, the system shows UPF operation (zero 

impedance angle), as indicated in Figure 4.12(b) [102]. A small deviation of Lpi from Lpc 

leads to deviation in the resonant frequency. In this case, the operating frequency needs to 

be adjusted to match with the resonant frequency, which requires more complex 

controllers. The last phase, V, before considering the design, is to check the system 

efficiency, using the developed mathematical model. If it achieves the desired efficiency, 

then the design will be considered, otherwise different magnetic design needs to be tried, 

by repeating phases II to V. 

 

 Design Verification and Results 

For confirming the adequacy of the proposed design methodology, two 8 kW 

identical DD power pads were built, according to the parameters shown in Table 8.1. These 
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pads were developed using litz wire Type 2, 660/38 AWG 10, and the standard ferrite core 

I93x28x16 of N87 magnetic material from EPCOS. The ferrite I-cores are attached together 

to form the ferrite bars. Each pad contains six bars, with four cores per bar, as shown in 

Figure 8.11. Also, it contains two litz wire coils, connected electrically in parallel and 

magnetically in series. The final shape of the DD power pad is indicated in Figure 8.12.  

 

 

Figure 8.11. Ferrite bars of N87 material from EPCOS for one DD power pad. 
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Ferrite bar

I-core

Litz wire

 

Figure 8.12. Final shape of the developed 8 kW DD power pad. 

 

 

The compensation networks are built using Metallized Film capacitors and hand-

made filters. The power pads, the compensation networks and the HF VSHBCs [described 

in chapter (5)] are gathered, to form a prototype for an 8 kW LCL BIWPTS, as indicated 

in Figure 8.13. It comprises of two identical DD power pads, two 40 kHz VSHBCs, a firing 

board to generate synchronized switching signals for the converters using the PPM 

technique, a 50 V Li-ion battery module to emulate the EV battery behavior, a 

programmable MAGNA power supply to emulate the DC-bus, and sensors’ board with 
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LEM voltage and current transducers and oscilloscopes. The final BIWPTS’s design 

parameters are described in Table 8.2. 

 

 

Li-ion 
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DC power supply
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Figure 8.13. Test-bed for a symmetrical LCL BIWPTS based on the DD power pads. 

 

 

 

Table 8.2. Design Parameters of LCL BIWPTS with DD pads structure. 

Parameter Value Parameter Value Parameter Value 

piL 19.8 µH siL 19.6 µH pC 0.79 µF 

Rpi 40 mΩ Rsi 40 mΩ Cs 0.8 µF 

Lpc 20.1 µH Lsc 19.8 µH k 0.32 

Rpc 60 mΩ Rsc 60 mΩ f 40 kHz 
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In addition, these parameters are utilized inside the Simulink model (presented in 

Figure 5.24), and the steady-state analytical model [presented in chapter (4)]. The two 

models are analyzed and compared for 8 kW power level, during G2V (charging) 

operation, as depicted in Figure 8.14. Very good agreement can be observed between the 

analytical and simulated results. 

 

 

 

Figure 8.14. Performance of an 8 kW LCL BIWPTS, during G2V operation (α=β=180o, 

δ=-90o, Vdc=420V and Vb=350V), using Simulink and analytical models. (a) Primary 

inverter variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) 

Secondary coil variables. 
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Moreover, the DC voltage levels (Vdc and Vb) are scaled down (1/7 time the design 

values, to fit the available Li-battery module in the laboratory), and the experimental 

prototype is analyzed and compared with the analytical model’s results, during both G2V 

and V2G operation, as indicated in Figure 8.15 and 8.16, respectively. Also, good 

agreement can be observed between the two results. In order to check the system 

scalability, the power-flow is evaluated for both the large and small-scale system, during 

G2V operation, as presented in Table 8.3. As can be noticed, both scales provide the same 

efficiency and power factor. The ratio between the power levels is about 49, which 

represents the square of the scaling factor 7. In addition, the power, efficiency and power 

factor results match with the desired values, defined by the proposed design strategy. 

 

 

Figure 8.15. Performance of the small scale LCL BIWPTS, during G2V operation 

(α=β=180o, δ=-90o, Vdc=60V and Vb=50V), using experimental and analytical models. (a) 

Primary inverter variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) 

Secondary coil variables. 
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Figure 8.16. Performance of the small scale LCL BIWPTS, during V2G operation 

(α=β=180o, δ=90o, Vdc=60V and Vb=50V), using experimental and analytical models. (a) 

Primary inverter variables. (b) Secondary inverter variables. (c) Primary coil variables. (d) 

Secondary coil variables. 

 

 

 

Table 8.3. The Power Flow of the Large and Small Scale Models 

Mode (W) pP (W) sP η (%) PF (pu) 

Large scale G2V 8050 7424 92.2 0.978 

Small scale G2V 164 151 92.2 0.978 
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 Conclusion 

In this chapter, an efficient design methodology for a symmetrical LCL BIWPTS 

was presented. An 8-kW polarized DD pad magnetic design was investigated, and 

intuitively optimized based on finite-element analysis, using ANSYS Maxwell tool. The 

proposed procedure is utilized to design a LCL BIWPTS that satisfies the standard 

requirements of WPT2 power level and Z2 class in the J2954A standard. This methodology 

is generic, and can be utilized for different power levels, air-gap classes, resonant 

frequencies and power pad structures. Also, the choice and design of the compensation 

capacitors and the impedance matching parameters were investigated. The proposed design 

technique was assessed based on simulation, analytical as well as experimental analysis 

and results. The results confirm the effectiveness of the proposed strategy with good 

agreement between the different models’ results. 
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 Introduction 

The magnetic design of the power pads is crucial for the IPT system’s performance. 

Several studies for investigating the design of the DD power pad structure in EVs 

applications are presented in the literature [176], [178], [188]. In these works, the coil turns 

were modeled as a rectangular block of copper (single-turn and single-layer), as was 

discussed in chapter (8) and indicated in Figures 8.3 and 8.4. This way of modeling does 

not represent the actual coil, which contains several turns with air-gaps among them. The 

single-turn single-layer (STSL) model helps to reduce the computational time and effort, 

during FEA. However, it introduces some errors in the analysis due to this approximation. 

These errors are negligible, as long as the turns are close enough to each other. However, 

if the separations between the turns are noticeable, this approximation will be incorrect and 

may lead to significant errors. Moreover, in these presented studies, the authors picked up 

some design variables, and analyzed them manually, within a specific range, as was 

explained in section 8.3.2. This manual design optimization technique is acceptable in the 

systems having few and independent design parameters. However, in complex situations, 

like IPT systems, many design parameters need to configured, and these parameters are 

related to each other. Thus, applying the manual optimization in IPT systems’ design is 

very difficult, and requires a wide knowledge and experience, even though finding the 

optimum solution is not guaranteed. 
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Some automatic optimization algorithms for IPT systems’ design were presented in 

the literature, based on Pareto multi-objective optimization [189]–[191]. These algorithms 

were solved, using genetic algorithm, as in [191], and particle swarm, as in [190]. These 

evolutionary techniques are very time consuming, especially when FEA becomes a part of 

the optimization process. Moreover, the simplified coil model (STSL) was considered in 

these works as well. 

Different from what was presented in the literature, this chapter presents an automatic 

multi-objective optimization for the design parameters of the DD power pad structure. A 

detailed 2D FEM for the power pad, considering the separations among the turns, is 

developed. The developed model is coupled with a fast and an efficient improved Tabu 

search (ITS) algorithm, for optimization purposes. In the proposed algorithm, several 

objectives are evaluated, such as magnetic coupling, misalignment (horizontal, vertical and 

rotational), as well as the cost of the power pads. For verification purposes, the system 

coupling performance and cost are investigated, using the optimum design parameters, and 

compared with three other designs that are presented in the literature. The proposed 

optimized design shows the best coupling performance with moderate cost. The results 

proved the validity and advantages of the proposed design optimization methodology. 

 

 A Detailed 2D FEM of the DD Power Pad 

In this study, the FE modeling and analysis are achieved, using ANSYS Maxwell 

software for electromagnetic field calculation, and magnetic parameters’ estimation. A 

detailed 2D quasi-static electromagnetic FEM is built and analyzed in this study. The coil 
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turns are exactly modeled, to accurately investigate the effect of the separations among 

them, as shown in Figure 9.1.  

 

Aluminum

 shield
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Figure 9.1. A 2D-FEM of the DD power pad, showing the optimization variables. 

 

Each turn is modeled as a stranded coil domain to emulate the litz wire performance, 

which is commonly used in IPT systems. In this model, the separation among the turns 

(pitch) in the middle sides is assigned to a variable P1, while the pitch in the outer sides is 

associated to a variable P2. This way provides more freedom and flexibility for the search 

algorithm to find the optimum design solution. In addition, the dimensions of the power 

pad’s components (indicated in Figure 9.1) are assigned to different variables, to facilitate 

their modification and optimization. The model was analyzed using the 2D FEA for solving 

the static problem, based on the static magnetic vector potential partial differential 

equation, given in Equation (8-1). The dimensions of the developed 2D FEM’s components 

are indicated in Table 9.1. These dimensions are kept fixed during the optimization process, 

and only the separations (P1 and P2) and the ferrite bars’ variables [width (Wf) and thickness 

(Tf)] vary. 
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Table 9.1. Dimensions of the 2D FEM for the DD pad structure. 

Parameter Value Parameter Value 

Coil width (Wc) 190 mm Shield thickness (Ts) 5 mm 

Coil diameter (Dc) 5.6 mm Shield width (Ws) 500 mm 

Turns per coil (N) 6 turns Shield edge (Hs) 50 mm 

 

 The Multi-objective Optimization Problem 

Regardless of the compensation topology, the power transfer between the primary to 

the secondary side of an IPT system is a function of the supply characteristics (frequency 

and current), secondary pad magnetic parameters (self and mutual inductances) and load 

characteristics (quality factor), as given in Equation (9-1) [85]. 

𝑃𝑜 = 𝜔𝐼1
2(𝑀2 𝐿2⁄ )𝑄2                                                    (9-1) 

where, ω is the frequency of the primary current, I1; M is the mutual inductance; L2 is the 

secondary pad self-inductance; and Q2 is the secondary circuit quality factor. 

Under the assumptions of 1) implementing parallel compensation at the secondary 

circuit, which is the common case in EVs applications, 2) operating the system at fixed 

resonant frequency in both the primary and secondary sides, and 3) considering identical 

pads on both sides (L1=L2=L), the secondary quality factor (Q2) and mutual inductance 

(M) can be written as in Equation (9-2). 

𝑄2 = 𝑅𝐿 𝜔𝐿⁄          

𝑀 = √𝐿1𝐿2 = 𝑘𝐿
                                                 (9-2) 

where, RL is the load equivalent resistance. 
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By substituting Equation (9-2) into (9-1), the output power at the secondary side can 

be written, as in Equation (9-3). 

𝑃𝑜 = 𝐼1
2𝑘2𝑅𝐿                                                  (9-3) 

From Equation (9-3), it can be noted that the power transfer can be increased by 

increasing the supply current (I1
2), the load equivalent resistance (RL) and the magnetic 

coupling (k2). The term I1
2RL is limited by the power electronic converters’ capabilities and 

the system’s losses and load. The coupling factor is related to the magnetic design of the 

power pad and alignment condition between the two sides of the system. An IPT system 

with a higher coupling factor means that the system is able to transfer more power 

efficiently. Thus, the higher coupling factor, the better pad design.  Generally speaking, the 

coupling factor can be increased by extending the size and weight of materials used in the 

power pad. However, this design will result in an expensive and impractical IPT system, 

which is not acceptable, due to the limitations in EV’s manufacturing related to space, 

weight and cost. Thus, the design optimization of the power pad exhibits a tradeoff between 

coupling performance and cost. Therefore, in this work, both the coupling coefficient and 

system’s cost are considered as objectives in the optimization problem. These objectives 

are stated as functions of the geometry parameters given in Figure 9.1. 

 

9.3.1 Optimization Objectives 

In this study, the main concern is to investigate the effect of the separations among 

the adjacent turns (P1 and P2) on the system performance, and to find the best combination 

of these pitches and the dimensions of ferrite sheet [width (Wf) and thickness (Tf)] in the 



 

194 

 

DD pad structure. This combination must achieve the highest coupling performance and 

the least cost. In this case, the power pad size and number of turns are kept fixed, with the 

values given in Table 9.1. 

 

9.3.1.1 Coupling Performance with Misalignment 

One of the main objectives of the optimization problem is to maximize the mutual 

coupling between the system’s sides. However, the coupling performance varies based on 

the alignment between the two sides. The coupling factor is maximum, when the two sides 

are perfectly aligned, and decreases with misalignment. The good pad design must be able 

to achieve the best coupling, during both the perfect alignment and misalignments. Thus, 

in this work, the average coupling factor (kave) is considered inside the cost function. This 

factor kave represents the average coupling factor of four different positions for the coupler, 

which cover the different possible misalignments in the system, as shown in Figure 9.2. 

The first position [Figure 9.2(a)] denotes the perfect aligned situation. The second and third 

positions [Figure 9.2(b) and (c)] represent the vertical and horizontal misalignment, 

respectively. The fourth position investigates the rotational misalignment case [see Figure 

9.2(d)]. For each combination of the optimization variables (P1, P2, Wf and Tf), the coupling 

factor is evaluated at the four positions, using FEA. By knowing the individual factors, the 

average value is estimated, using Equation (9-4), and considered as an optimization 

objective. The misalignment parameters, in Figure 9.2 (g, v, h and θ), are set to match with 

the maximum acceptable misalignments defined in the J2954A standard [149]. 

𝑘𝑎𝑣𝑒 = (𝑘𝑎 + 𝑘ℎ + 𝑘𝑣 + 𝑘𝑟) 4⁄                                       (9-4) 
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where, ka, kh, kv and kr represnt the coupling factor, during the perfect alignmnet, horizontal 

misalignment, vertical misalignment and rotational misalignment, respectively. 

g
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h
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Figure 9.2. Different positions of misalignments. (a) Aligned. (b) Vertical misalignment. 

(c) Horizontal misalignment. (d) Rotational misalignment. 

 

9.3.1.2 Material Cost of the DD Power Pad 

The total material cost of the wireless coupler is represented by the cost of three main 

parts: copper windings (Cc), ferrite material (Cf) and aluminum shield (Cs). The estimation 

of each of these costs in terms of the pad’s dimensions is described in Equation (9-5). 

𝐶𝑓 = 𝐿𝑓 ×𝑊𝑓 × 𝑇𝑓 × 𝑐𝑓                                             

𝐶𝑠 = 𝐿𝑠 ×𝑊𝑠 × 𝑐𝑠ℎ                                                     

𝐶𝑐 = 4[𝑁(𝐿𝑐 ×𝑊𝑐) − (𝑃1 + 3𝑃2)∑ 𝑚𝑁
𝑚=1 ] × 𝑐𝑐

                           (9-5) 
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where, N is the number of turns per coil; Wf, Lf and Tf are the dimensions of the ferrite bars; 

Ws and Ls are the dimensions of the aluminum shield; Wc and Lc are the dimensions of the 

copper coil; and cf, csh and cc are the cost coefficients of ferrite sheet, aluminum shield and 

copper coil, respectively. 

The dimensions of the pad’s components are indicated in Figure 9.1 and 9.3. 

Although only the width dimensions are included in the 2D FEM, the entire components’ 

dimensions are required for the cost calculation. The width information is presented in 

Table 9.1, and the length data are configured as ratios of them, according to the J2954A 

standard. The length of each component is set to 76% of its width (i.e. Lf=0.76 Wf, Ls=0.76 

Ws and Lc=0.76 x 2Wc). 
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Figure 9.3. Top view of DD power pad with components’ dimensions. 
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For each combination of the optimization variables, the three types of costs are 

evaluated and added together to find the total cost of the power pad, as given in Equation 

(9-6). For the identical pads’ case, the total material cost of the wireless coupler, which 

represents one of the optimization objectives, is double each pad’s cost. 

𝐶𝑡 = 𝐶𝑓 + 𝐶𝑠ℎ + 𝐶𝑐                                                   (9-6) 

 

9.3.2 Multi-objective Cost Function and Constraints 

 

The basic objectives of the optimization algorithm are to minimize the coupler’s 

material cost and maximize the magnetic coupling. The multi-objective optimization 

function (MOF) is stated mathematically in Equation (9-7). For simplicity, the weighted 

sum method is used to evaluate the two objectives, in which two different weights (w1 and 

w2) are assigned to the two objectives. 

𝑀𝑖𝑛 𝑀𝑂𝐹(𝑃1, 𝑃2,𝑊𝑓 , 𝑇𝑓) = 𝑤1𝐶𝑡 + 𝑤2(1 − 𝑘𝑎𝑣𝑒)                          (9-7) 

The optimization constraints are defined by the limits of each optimization variable, 

as given in Equation (9-8). These limits are decided according to the physical structure 

limitations and the designer experience. 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 =

{
 
 

 
 
𝑃1𝑚𝑖𝑛 ≤ 𝑃1 ≤ 𝑃1𝑚𝑎𝑥    

𝑃2𝑚𝑖𝑛 ≤ 𝑃2 ≤ 𝑃2𝑚𝑎𝑥    

𝑊𝑓𝑚𝑖𝑛
≤ 𝑊𝑓 ≤ 𝑊𝑓𝑚𝑎𝑥

𝑇𝑓𝑚𝑖𝑛
≤ 𝑇𝑓 ≤ 𝑇𝑓𝑚𝑎𝑥

    

                                      (9-8) 

 Solving of the Optimization Problem 

After formulating the multiobjective optimization problem, including defining the 
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optimization variables, cost function and constraints, the next step is to solve this problem, 

using one of the search algorithms. In this work, a modified version of the Tabu search 

algorithm is considered, and linked with the developed 2D FEM, to find the optimum 

design parameters. The details of the proposed search algorithm and the coupling with FEA 

are presented in this section. 

 

9.4.1 The Proposed Improved Tabu Search (ITS) Algorithm 

An improved version of the Tabu search (ITS) algorithm is utilized to solve the 

proposed optimization problem. The proposed algorithm is mainly based on the universal 

Tabu search (UTS) approach for global optimization, with continuous variables in 

electromagnetics [192]. There are two searching phases in the UTS: diversification and 

intensification. The task of the diversification phase is to search the objective space widely, 

while the function of the intensification phase is to locate the global optimal solution 

precisely. In the ITS algorithm, the sampling points are generated with the Latin Hypercube 

Sampling (LHS) method [193], which provides more uniform sampling in the objective 

space than the random sampling used in the UTS technique. The advantages of the 

proposed ITS method are: 1) the ability to jump out of the local optimal solutions, 2) high 

convergence speed, and 3) simplicity of implementation and realization. The procedure of 

the proposed ITS algorithm execution is described with the flowchart shown Figure 9.4, 

and explained as follows: 

Step 1: The algorithm generates the initial values of its parameters and defines the range 

of the variables. It also states the iteration number; the maximum iteration number; the 

iteration number for diversification and intensification, respectively. 
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Converge?

Initialized  

Generate initial sampling 

points with LHS

Calculate Fitness value

Sort and compare the fitness value

Update best_current and best_overall

Record elements of  best_current and best_overall

Diversification phase: generate new sampling points based on best_current

Intensification phase: generate new sampling points based on best_overall

END

N

Y

 

Figure 9.4. Flowchart of the proposed ITS algorithm. 

 

 

Step 2: It generates initial sampling points with LHS. 

Step 3: It calculates the fitness value, using FEA, sorts and compares the fitness value to 
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get the best_current and best_overall. The best_current is the best objective function value 

in the current iteration, and the best_overall is the best solution up till now. 

Step 4: It generates new sampling points based on the rules in different phases. 

Step 5: It checks the iteration number, if it meets the maximum iteration number, then it 

goes to step 6; otherwise it goes to step 3. 

Step 6: Stop and end the algorithm. 

 

9.4.2 The Link between the ITS algorithm and FEA  

The proposed ITS optimization algorithm is implemented in MATLAB script, and 

coupled with the 2D-FEM of the inductive coupler in Maxwell environment. This link is 

achieved using Visual Basic commands, as in Figure 9.5. The ITS algorithm generates the 

populations, which contain information about the optimization variables (P1, P2, Wf and 

Tf). These populations are passed to Maxwell environment, which contains four different 

projects, I-IV. These projects represent the four different misalignment positions, shown 

in Figure 9.2. The algorithm opens project I, and modifies its parameters based on the 

current population. Then, it solves the project and estimates the coupling factor (ka). This 

factor is saved in a text file, then the project is closed. The same steps are repeated for the 

other three projects, to evaluate and save kv, kh and kr. The coupling factors are passed to 

the MATLAB code, which evaluates the average coupling, total cost and the current MOF. 

This value of MOF is passed to the ITS algorithm, to sort and compare the fitness values 

to get the best_current and best_overall. These steps are repeated for each population until 

the optimum solution is obtained, or the maximum number of iterations is reached. 
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MATLAB 
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Figure 9.5. Block diagram for the link between ITS algorithm in MATLAB and FEA in 

Maxwell. 

 

 Results and Discussion 

The proposed off-line multi-objective design optimization was achieved for an IPT 

system with two identical DD power pads. The settings and results of the optimization 

process are discussed in this section. Also, the coupling performance and cost of the 

wireless coupler, considering the optimization results, are investigated. 
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9.5.1 Optimization Results 

The proposed ITS algorithm is implemented in MATLAB environment and linked 

with the 2D-FEM of the inductive coupler, as discussed in section 9.4. The different 

misalignment parameters (g, v, h and θ), shown in Figure 9.2, are chosen to represent the 

maximum acceptable  misalignments in the J2954A standard for the Z2 class, as indicated 

in Table 9.2. The Z2 class covers an air-gap range between the two sides of the system of 

95-165 mm. Thus, the avaerage of this range is considered as the normal vertical air-gap 

(g=130 mm). Also, the table shows the cost coefficients that are utilized for material cost 

calcualtion. These values represent the current cost in the market. 

 

Table 9.2. The Misalignment Parameters and the Cost Coefficients during the 

Optimization. 

Parameter Value Parameter Value 

G 130 mm cf 0.18 $/cm3 

H 100 mm cc 2.04 $/m 

V 35 mm csh 333.68 $/m2 

Θ 6o -------- --------- 

 

 

The boundaries of the optimization variables (constraints) are indicated in Table 9.3. 

These limits are chosen, according to the physical limitations of the DD structure, and the 

designer experience. The lower limits of the pitches (P1min and P2min) are set to zero, to 

include the case, in which the windings are perfectly attached together without separations. 
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The upper limits are chosen to be twice the conductor diameter (P1max=P2max=2Dc), in order 

to avoid the overlap between the coil-sides for the same coil. The boundaries of the width 

of ferrite bars are decided to cover the whole range of the power pad width (2Wc). Thus, 

Wfmin<<Wc and Wfmax>>2Wc, as given in Table 9.3. Finally, the limits of the ferrite bars’ 

thickness (Tfmin and Tfmax) are configured by trial and error. 

 

Table 9.3. Boundaries of the Optimization Variables. 

Parameter Value Parameter Value 

P1min 0 mm Wfmin 100 mm 

P1max 11.2 mm Wfmax 450 mm 

P2min 0 mm Tfmin 3 mm 

P2max 11.2 mm Tfmax 20 mm 

 

The setting of the ITS algorithm, during the optimization process, are indicated in 

Table 9.4. These parameters are chosen based on expeience, and trial and error. The 

optimization process is repeated three times to confirm the optimum solution. The 

progression of the multi-objective optimization algorithm is indicated in Figure 9.6. As can 

be noticed, the algorithm contains two phases: phase I (diversification) and phase II 

(intensification). In phase I, the best fitness decreases significantly, due to the wide search 

feature in this stage. In phase II, the algorithm searches the global optimum accurately, thus 

the reduction in the best fitness is very small. The final optimum design variables are 

presented in Table 9.5. 
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Table 9.4. Settings of the ITS Optimization Algorithm’s Parameters. 

Parameter Value 

Number of iteration in phase I 200 

Number of iteration in phase II 100 

Number of populations in phase I 8 

Number of populations in phase II 5 

Number of initial populations 20 

Number of runs 3 

 

 

 

Figure 9.6. Progression of ITS optimization algorithm. 

0 50 100 150 200 250 300
1.155

1.16

1.165

1.17

1.175

1.18

1.185

1.19

B
e

s
t 

F
it

n
e

s
s

Iterations

200 250 300
1.1573

1.1573

1.1573

1.1573

Phase IIPhase I



 

205 

 

Table 9.5. The Optimum Design Parameters. 

Parameter Value Parameter Value 

P1opt 8.09574409917262 mm Wfopt 248.292970599325 mm 

P2opt 4.06555885383175 mm Tfopt 5.00004272074758 mm 

 

9.5.2 Assessment of the IPT System’s Performance  

The optimum values of the separations among the turns are introduced to the FEM 

to evaluate the system’s performance. The optimum system performance is compared with 

three other scenarios that exist in the literature. The power pad structure for the four 

different scenarios is shown in Figure 9.7. In the Optimum scenario [Figure 9.7(a)], the 

variables’ values in Table 9.5 are considered. In the Minimum scenario [Figure 9.7(b)], the 

separations were set to zero, which represent the case in which the turns are attached 

together without separations, as in [188]. For the Maximum one [Figure 9.7(c)], the pitches 

were set to the maximum limits (P1=P2=11.2 mm), which was considered in [194]. The 

Different scenario [Figure 9.7(d)] was proposed in [176], in which the separation in the 

middle sides was set to maximum (P1=11.2 mm), while that for the outer sides was set to 

zero (P2=0 mm). 

Quasi-Static magnetic analysis is performed in Maxwell for each scenario, and the 

magnetic flux distribution for all the cases are indicated in Figure 9.8. The figure shows 

that the Optimum scenario provides higher magnetic flux link between the two pads than 

the Maximum and Different scenarios. Also, the magnetic flux is directed perfectly 

between the two pads, with minimum leakage, compared with the other cases.  
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(a)

(b)

(c)

(d)

 

Figure 9.7. Four different design scenarios. (a) Optimum (P1=P1opt, P2=P2opt). (b) Minimum 

(P1=P2=0). (c) Maximum (P1=P2=11.2 mm). (d) Different (P1=11.2mm, P2=0). 

 

 

In addition, in the Optimum case, the flux density in the magnetic ferrite material is 

better distributed, with less saturation effect, than the Minimum case. The magnetic flux in 

the Minimum and Different scenarios shows overlap with the aluminum shield. This 

overlap badly affects the coupling performance, and increases the sensitivity of the 

magnetic parameters to the variation of the air-gap and misalignments in the system. On 

the other hand, no overlap can be noticed in the Optimum case. 
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(d)

(a)

(c)

(b)

 

Figure 9.8. Magnetic flux distribution for all scenarios (g=130 mm and v=h=θ=0). (a) 

Optimum. (b) Minimum. (c) Maximum. (d) Different. 
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For better performance and design evaluation, the magnetic coupling factor and the 

coupler’s cost are numerically estimated, and compared for all scenarios. The coupling 

factor under different vertical air-gaps (g) is studied in Figure 9.9. Also, the cost of two 

identical power pads in all scenarios is evaluated, and compared in Table 9.6.  

 

 

 

Figure 9.9. Coupling factor vs. air gap length with perfect alignment (h=θ=0). 

 

As can be noticed, the attached turns with zero separations show the worst coupling 

performance, and the highest cost. Applying a fixed maximum separation among the turns 

provides the least cost, and better coupling than the Minimum scenario. Considering 

different pitches in the system (Optimum and Different) shows the best coupling 

performance, with moderate cost. The Optimum design provides a higher coupling factor 
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and less cost than the Different one. The difference in the coupling factor between the 

Optimum and Different scenarios is large for small air-gap, and diminishes with increasing 

the air-gap. This nonlinear behavior is due to the effect of the aluminum shield with the 

variation of the air-gap. This impact is significant in the Different scenario [Figure 9.8(d)], 

and almost disappears in the Optimum case [Figure 9.8(a)]. 

 

Table 9.6. Cost of the Wireless Coupler (Two Pads) in all Scenarios. 

Scenario Cost ($) Scenario Cost ($)   

Optimum 384 Maximum 375.6   

Minimum 391 Different 387.1   

 

 

Finally, the coupling factor under different horizontal and rotational misalignments 

is investigated in Figure 9.10 and Figure 9.11, respectively. Similar behavior to that in 

Figure 9.9 is noticed for all scenarios. For large horizontal misalignment (h>75 mm), the 

Different and Optimum scenarios show very similar coupling performance, due to the wide 

spread of the middle turns, which provides long flux pipe. The Different case shows slight 

improvement in the coupling factor, higher than that from the Optimum one, at very large 

h (>100 mm). However, at this level of misalignment, which exceeds the maximum 

acceptable limits, it will be impractical and inefficient to operate the system. In addition, 

still the Optimum one provides less cost than the Different case. 
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Figure 9.10. Coupling factor vs. horizontal misalignment with g=130 mm and θ=0. 

 

 

 

Figure 9.11. Coupling factor vs. rotational misalignment with g=130 mm and h=0. 
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 Conclusion 

This chapter presents a fast and an efficient multi-objective optimization technique, 

for the magnetic design of the power pads in IPT systems, for EV applications. The 

algorithm is based on an improved Tabu search technique, with the link of a 2D static finite-

element analysis. The study investigates the effect of the separations among the turns, and 

the ferrite martial dimensions on the IPT system’s performance and cost. The results show 

that using different separations for the middle and the outer coils’ sides leads to better 

coupling performance and less cost. Increasing the separation on the middle sides to be 

larger than that on the outer sides provides better performance. Minimizing the separation 

on the outer sides does not provide the best coupling, as was claimed in the literature. The 

outcomes of the proposed design optimization provides the best coupling performance 

under different misalignments in the system, and shows moderate material cost. 
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 Introduction 

Accomplishing effective G2V and G2V benefits, through wireless power interface 

requires accurate and quick control reaction. Power-flow controllers are fundamental in the 

BIWPTSs to manage the magnitude and direction of the power-flow between the EV and 

power grid. Thus, this chapter proposes a new approach of active power-flow control for a 

LCL BIWPTS in EVs’ ancillary services. The controller allows an EV to autonomously 

charge and discharge its battery wirelessly, during long term parking (stationary) and/or 

the transient stops (quasi-dynamic). According to the literature, power-flow controllers can 

be grouped in terms of the location (primary, secondary or dual) [88], the HF resonant 

inverter topology [195], and the modulation technique, such as pulse-width [161], [162], 

pulse-phase [163], [164], pulse-frequency modulation [163], [165], [166] and a mix 

between them [163]. Diverse sorts of control hypothesis, such as classical PI [165], [166], 

proportional-integral-derivative (PID) [196], and FLC [162] have been used to drive the 

above modulation variables. Classic PI and PID controllers encounter large settling time, 

overshoots, and oscillations, and may not resist the uncertainties and disturbances. Fuzzy 

controllers are more robust, however they show high computational processing, noisy 

outcome and complexity in the design [132]. In addition, the design of these controllers 

should be versatile with variation of the system’s parameters, which depend on the relative 

position of the power pads. Model-based predictive active power-flow (PAPF) controllers 
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have all the earmarks of being promising in these applications, in terms of simplicity and 

accuracy. 

This chapter presents a new two-layer PAPF controller for LCL BIWPTS in EVs’ 

applications. The proposed controller has the ability to manage the bidirectional power-

flow between the EV and surrounding infrastructures, such as power grid, home micro-

grid, building micro-grid, road or another vehicle. The main contributions in the proposed 

controller are: 

- It consists of two levels of control: 

o The first is responsible for communicating with the surrounding infrastructures and 

gathering information from the driver, charging station, power grid and battery 

management system (BMS). Then, based on these information, it takes a decision to 

charge, discharge or abstain, and estimates the rate of charge or discharge. 

o The second control layer receives the reference signal from the first one, and predicts 

the control parameters for the two HF resonant converters (in the primary and 

secondary sides) to achieve the desired power-flow. 

- It offers intelligent autonomous performance that satisfies both the EV’s owner and 

power grid operator. 

- It guarantees the best driving performance with a minimum energy consumption cost 

and minimum side effects on the power grid. 

- It estimates EV’s psychological price, as a function of its battery state of charge (SOC), 

and compares it with the energy price to decide whether to charge, discharge or abstain, 

and how much the charging or discharging rate. 
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- It exists on the vehicle side, to allow the autonomous operation, so the EV can be 

charged and discharged, independently, without the need of a centralized controller on 

houses, parking garage, public parking or traffic signal. 

- The proposed controller is adaptively estimating the system’s parameters to consider 

the misalignment and the environmental conditions’ impacts on the system’s 

performance. The parameter estimation is achieved using only one voltage sensor. 

- The second layer control is designed based on an accurate analytical modeling for the 

LCL BIWPTS. It provides very fast and stable response, during both the transient and 

steady-state operation, in stationary and quasi-dynamic wireless power transfer 

operation. 

 

 Detailed Power-Flow Modeling 

The proposed controller is mainly depends on the analytical modeling for the LCL 

BIWPTS, which provides rigorous prediction for the system power-flow. This precise 

prediction helps to achieve the proper control design. Thus, this section presents accurate 

mathematical representations for the active and reactive power-flow in the BIWPTS, 

during EVs’ charging and discharging in V2G operation. Four different power models with 

different levels of accuracy are developed. The developed formulas consider the design 

and control parameters’ effect on the BIWPTS’s performance. Moreover, the impact of the 

losses and harmonics in the system, due to the HF resonant converters, on the power-flow 

performance is considered. In addition, practical limitations for the two-way power-flow 

are inspected, during different modes of operation. The conditions for achieving maximum 
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active and reactive power, and unity and zero power factor operation are investigated and 

verified. 

 

10.2.1 Analytical Models of Active and Reactive Power-Flow  

The proposed power-flow models are mainly depend on the steady-state 

mathematical model, which is developed for LCL BIWPTS and presented in sections 4.3 

and 4.4. Based on this model, four different active and reactive power-flow equations with 

different levels of precision are developed, analyzed and compared [197]. According to the 

assumption that most of the power-flow controllers exist on the vehicle side, all the power-

flow analyses are achieved for the secondary side. However, the system is symmetrical and 

both sides have similar performance. 

 

10.2.1.1 Total Power-Flow Model (PAPM and QRPM) 

This model represents the fundamental and harmonics power components. It is 

developed using the exact Vsi and Isi formulas in Equations (4-1) and (4-4), respectively, 

and substituting in Equation (10-1) for secondary power estimation. 

𝑃𝐴𝑃𝑀 = ∑ 𝑅𝑒𝑎𝑙(𝑉𝑠𝑖_𝑛 𝐼𝑠𝑖_𝑛
∗)𝑛=1,3,5,…     

𝑄𝑅𝑃𝑀 = ∑ 𝐼𝑚𝑎𝑔(𝑉𝑠𝑖_𝑛 𝐼𝑠𝑖_𝑛
∗)𝑛=1,3,5,…   

                           (10-1) 

For implementing this model, the power is estimated at each harmonic component 

and added together to represent the total power. This model provides accurate estimation 

for the system’s power-flow, but it needs iterative solution, and it is not appropriate for a 

fast control design. Thus, simpler models are developed rely on some reasonable 

assumptions. 
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10.2.1.2 Fundamental Power-Flow Model (PFAPM and QFRPM) 

This model predicts the fundamental power component only. It is derived by 

neglecting the harmonic components of Isi and Vsi, to find a simple formula for the 

fundamental secondary inverter current (Isi_1), as in Equation (10-2). 

𝐼𝑠𝑖_1 =
𝑗𝑀 𝛾

𝜔𝑟 𝐿𝑝𝑖 𝐿𝑠𝑖
𝑉𝑝𝑖_1 +

𝐿𝑝𝑖 𝐿𝑠𝑖𝐶𝑠𝑅𝑠𝑖+𝑗𝛾𝜔𝑟𝑀
2𝑅𝑠𝑖

2𝐶𝑝
2

𝐿𝑝𝑖 𝐿𝑠𝑖(𝐿𝑠𝑐+𝐶𝑠𝑅𝑠𝑖
2)

𝑉𝑠𝑖_1                      (10-2) 

where, γ is a real number, which is very close to unity, and is given as 𝛾 =

𝐿𝑝𝑖𝐿𝑠𝑖

(𝐿𝑝𝑖+𝐶𝑝𝑅𝑝𝑐𝑅𝑝𝑖 )(𝐿𝑠𝑖+𝐶𝑠𝑅𝑠𝑐𝑅𝑠𝑖 )+𝜔𝑟
2𝑀2𝐶𝑝𝐶𝑠𝑅𝑝𝑖𝑅𝑠𝑖

; Vsi_1 and Vpi_1 are the fundamental components 

of Vsi and Vpi, respectively. 

Therefore, exact formulas for calculating the fundamental secondary powers are 

obtained, by substituting Equation (10-2) into Equation (10-1), as given in Equation (10-

3). The active and reactive power are represented by two terms: the first term characterizes 

the bulk power transfer, and the second one refers to the power losses. The losses’ term is 

effective for active power-flow, since it is proportional with Rsi, however, it is negligible 

for reactive power-flow, which depends on Rsi
2, where Rsi is typically small (<0.5 Ω). 

𝑃𝐹𝐴𝑃𝑀 = (
8

𝜋2
) [

𝑀𝛾𝑉𝑑𝑐𝑉𝑏

𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖
𝑠𝑖𝑛 (

𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) 𝑠𝑖𝑛(𝛿) +

𝐶𝑠𝑅𝑠𝑖𝑉𝑏
2

𝐿𝑠𝑐+𝐶𝑠𝑅𝑠𝑖
2 𝑠𝑖𝑛

2 (
𝛽

2
)]                

𝑄𝐹𝑅𝑃𝑀 = (
−8

𝜋2
) [

𝑀𝛾𝑉𝑑𝑐𝑉𝑏

𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖
𝑠𝑖𝑛 (

𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) 𝑐𝑜𝑠(𝛿) +

𝛾𝜔𝑟𝑀
2𝑅𝑝𝑖

2𝐶𝑝
2𝑉𝑏

2

𝐿𝑝𝑖 𝐿𝑠𝑖(𝐿𝑝𝑐+𝐶𝑝𝑅𝑝𝑖
2)
𝑠𝑖𝑛2 (

𝛽

2
)]

     (10-3) 

 

10.2.1.3 Approximate Fundamental Power-Flow Model (PAFAPM and QAFRPM) 

It provides simple formulas for the fundamental power, by neglecting the losses 

terms in Equation (10-3). This will end up with the simple power-flow model in Equation 

(10-4), which matches with the presented one in Equation (4-17), for the primary power. 
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𝑃𝐴𝐹𝐴𝑃𝑀 = (
8

𝜋2
) [

𝑀𝛾

𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖
𝑉𝑑𝑐𝑉𝑏 sin (

α

2
) sin (

β

2
) sin(δ)]

𝑄𝐴𝐹𝑅𝑃𝑀 = (
8

𝜋2
) [

−𝑀𝛾

𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖
𝑉𝑑𝑐𝑉𝑏 sin (

α

2
) sin (

β

2
) cos(δ)]

                                (10-4) 

By analyzing the abovementioned three models, we could get accurate and fast 

prediction for the active power-flow, as is discussed in section 10.2.2, however, for reactive 

power prediction, better model needs to be developed, as is presented in the next section. 

 

10.2.1.4 Approximate Power-Flow Model (QARPM) 

An accurate reactive power model can be developed by considering the effect of the 

third and the fifth harmonic components on the reactive power analysis. A simple equation 

for the reactive power-flow at each harmonic component is derived in Equation (10-5). 

This formula is evaluated for the third and fifth harmonics, and added to the approximate 

fundamental reactive power model in Equation (10-4). This results in an accurate and 

explicit model for the reactive power-flow, as given in Equation (10-6). 

𝑄𝑠_ℎ𝑎𝑟𝑚 = (
8

𝜋2
)
𝑉𝑏

2

𝜔𝑟𝐿𝑠𝑖

1

𝑛3
𝑠𝑖𝑛2 (

𝑛𝛽

2
)                                          (10-5) 

𝑄𝐴𝑅𝑃𝑀 = (
8

𝜋2
) [

−𝑀𝛾𝑉𝑑𝑐𝑉𝑏

𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖
𝑠𝑖𝑛 (

𝛼

2
) 𝑠𝑖𝑛 (

𝛽

2
) 𝑐𝑜𝑠(𝛿)

+
𝑉𝑏

2

𝜔𝑟𝐿𝑠𝑖
(
1

33
𝑠𝑖𝑛2 (

3𝛽

2
) +

1

53
𝑠𝑖𝑛2 (

5𝛽

2
))
]                          (10-6) 

 

10.2.2 Models Verification and Comparison  

The performance of the above developed models is investigated and compared in this 

section. In this analysis, the active and reactive power are analyzed with respect to the 
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variation of the control parameter δ, which is responsible for managing the power-flow in 

the BIWPTS. The powers are estimated in per-unit, considering their peak values (Ps_max 

and Qs_max) as bases. 

Figure 10.1 shows the secondary active power using the first three models (PAPM, 

PFAPM and PAFAPM). As can be noticed, the fundamental active power model (PFAPM) 

provides very accurate prediction with 0.2% normalized mean square error (NMSE), with 

respect to the total power model (PAPM). However, the approximate fundamental model 

(PAFAPM) shows 2.44% NMSE. Moreover, the fundamental model is simple and explicit, 

thus it does not require iterative solution. Thus, this model is considered for active power-

flow control design analysis. 

 

 

Figure 10.1. Comparison between the different active power models (α = β = 180o, and 

Ps_max is the base). 
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The performance of the reactive power models is described in Figure 10.2. The 

fundamental (QFRPM) and approximate fundamental (QAFRPM) models show very similar 

and ideal symmetrical operation, due to neglecting the harmonics effect. However, they 

provide poor reactive power prediction, with more than 30% NMSE with respect to the 

total power model (QRPM). This large mismatch makes them inappropriate for a precise 

reactive power-flow analysis. On the other hand, it can be observed that the approximate 

reactive power model (QARPM) is able to predict the system’s reactive power accurately, 

with 6.22% NMSE. Thus, this model is more applicable for reactive power-flow analysis. 

 

 

Figure 10.2. Comparison between the different reactive power models (α = β = 180o and 

Qs_max is the base). 
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in Figure 5.3, with the parameters in Table 5.23 at lower air-gap. The power-flow analysis 

is achieved, during G2V and V2G operations with full and light-loading conditions. The 

measured power is extracted from the recorded voltage and current waveforms, using FFT 

to get the magnitude of each harmonic component. The results indicate that the models 

PFAPM and QARPM provide the most accurate prediction after the total models, with respect 

to the measured power. In addition, they are represented in simple and explicit formulas, 

which do not require iterative solution. 

 

Table 10.1. Numerical Power-Flow Evaluation using the Different Models. 

Mode  APMP  RPMQ   FAPMP  FRPMQ   AFAPMP  AFRPMQ   FAPMP  ARPMQ   MEASP  MEASQ  

Full G2V  -102.5 21.3 -102.7 0 -104.5 0 -102.7 17 -99.7 30.4 

Full V2G  106.4 21.3 106.3 0 104.5 0 106.3 17 110.5 31.1 

Light G2V  -51.2 10.6 -51.3 0 -52.2 0 -51.3 8.5 -49.4 13.6 

Light V2G  53.2 10.6 53.1 0 52.2 0 53.1 8.5 57.3 14.8 

Active powers are in Watt and reactive powers are in VAR. Full means α=𝛽 =180o and light means α=𝛽 

=90o. 

 

 

 

 Power-Flow Criteria 

In G2V and V2G concept the EV will not only inject active power to the grid, but 

also can provide reactive power support. The change among the different modes of 

operation (inject P, inject Q, absorb P, and absorb Q) can be achieved, by adjusting the 

control parameter (δ), as indicated in Figure 10.3. Considering the fundamental power only, 
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the power-flow performance is symmetrical. However, due to the losses and the injected 

harmonics from the HF converters, the system shows asymmetrical operation, as indicated 

in Figures 10.1 and 10.2. The harmonic contents increase the absorbed reactive power from 

the grid, during G2V operation, and limit the ability of the EV to inject Q to the grid, during 

V2G mode [197]. This impact can be noticed by observing the maximum values of Qs in 

Figure 10.3 (1 and 0.6947 pu at G2V and V2G operation, respectively).  

 

 

Figure 10.3. BIWPTS’s active and reactive power-flow criteria. 
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On the other hand, the system’s losses introduce small asymmetric effect on the 

active power-flow (1 and 0.9688 pu at V2G and G2V operation, respectively). This 

asymmetry performance results in some constraints and limitations for the system power-

flow, which need to be considered, during the control system design. These limitations are 

stated mathematically by four novel formulas for power-flow criteria. These formulas 

describe the conditions for achieving maximum active and reactive power, and unity and 

zero power factor system operation [197]. 

 

10.3.1 Active Power-Flow Criteria 

During the symmetrical operation by using the approximate fundamental power 

model (PAFPM), the active power is zero, when δ equals zero. However, in the real operation, 

the system withdraws a small amount of active power (Ps0) to supply the losses, as 

described in Figure 10.3. This amount of power is stated mathematically in Equation (10-

7). In order to force the secondary active power to be zero, the angle δ must start from a 

negative value (δp0), which can be calculated from Equation (10-8). 

𝑃𝑠0 = (
8

𝜋2
)

𝐶𝑠𝑅𝑠𝑖𝑉𝑏
2

𝐿𝑠𝑐+𝐶𝑠𝑅𝑠𝑖
2 𝑠𝑖𝑛

2 (
𝛽

2
)                                        (10-7) 

𝛿𝑝0 = −sin−1 (
𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖CsRsiVb sin(

β

2
)

MγVdc(Lsc+CsRsi
2) sin(

α

2
)
)                                 (10-8) 

 

10.3.2 Reactive Power-Flow Criteria 

Due to the harmonics effect, the system consumes more reactive power than that is 

able to inject. This effect makes the actual system deviates from the fact that at δ=±90o, the 
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reactive power is zero, as indicated in Figure 10.3. This deviation of reactive power (Qs0) 

is stated in Equation (10-9). The value of δ that achieves zero reactive power (unity power 

factor) operation (δQ0) can be calculated from Equation (10-10). 

𝑄𝑠0 =
𝑉𝑏

2

𝜔𝑟𝐿𝑠𝑖
(0.03 𝑠𝑖𝑛2 (

3𝛽

2
) + 0.0065 𝑠𝑖𝑛2 (

5𝛽

2
))                              (10-9) 

𝛿𝑄0 = cos−1 (
𝐿𝑝𝑖𝑉𝑏[0.037 𝑠𝑖𝑛

2(
3𝛽

2
)+0.008 𝑠𝑖𝑛2(

5𝛽

2
)]

𝑀𝛾𝑉𝑑𝑐 𝑠𝑖𝑛(
𝛼

2
) 𝑠𝑖𝑛(

𝛽

2
)

)                              (10-10) 

 

10.3.3 Verification for the Power-Flow Criteria  

It can be noticed that the power-flow criteria formulas (10-7)-(10-10) are functions 

of the design and control parameters. For the system parameters presented in Table 5.23, 

these criteria are evaluated at different control conditions (α and 𝛽), as shown in Figure 

10.4. Figure 10.4(a) shows the active power at δ=0 or 180o (Ps0), this value does not depend 

on α, and increases gradually as increasing 𝛽, showing the worst (maximum) at 𝛽 = 180o. 

Figure 10.4(b) describes the criterion δQ0, which rises as increasing 𝛽, and decreases as α 

increases. The reactive power at maximum active power operation (Qs0) is given in Figure 

10.4(c). It shows fluctuating performance against 𝛽, due to the strong coupling between 

the shape of the inverter voltage (which is controlled by 𝛽) and the harmonic contents in 

the system. The maximum value of Qs0 occurs also at 𝛽 = 180o. The criterion of UPF 

operation (δP0) is given in Figure 10.4(d). At low power level (𝛽 < 80o), it shows large 

deviation from 90o, but at 𝛽 > 80o, δQ0 becomes closer to 90o, and the worst value appears 

at 𝛽 = 180o. This deviation is getting worse as α decreases. Based on these analysis, the 
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worst criteria almost appear at the full capacity operation (α=𝛽 =180o), which can be 

considered as design limitations. The worst values of these criteria are estimated for the 

LCL BIWPTS and presented in Table 10.2. 

 

 

Figure 10.4. Power flow criteria with different control parameters (Vdc=60 V). 

 

 

Table 10.2. Worst Power-Flow Criteria (α=𝛽=180o) for LCL BIWPTS. 

Criterion Value Criterion Value 

Ps0 1.8 W Qs0 16.94 VAR 

δP0 -0.985o δQ0 80.67o 
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By applying the criteria presented in Table 10.2 on the system, four different power-

flow modes of operation are obtained: 1) maximum active power (MAP), 2) unity power 

factor (UPF), 3) maximum reactive power (MRP) and 4) zero power factor operation 

(ZPF). The four modes are investigated and compared in Table 10.3.  

 

Table 10.3. Different Modes of Power-Flow (α=𝛽=180o) in BIWPTS. 

Mode Direction APMP FAPMP RPMQ ARPMQ 

(1) MAP 

G2V (δ=-90o) -102.5 -102.7 21.3 17 

V2G (δ=90o) 106.4 106.3 21.3 17 

(2) UPF 

G2V (δ=-δQ0=-80.67o) -101.1 -101.3 4.4 0 

V2G (δ= δQ0=80.67o) 105 104.9 4.4 0 

(3) MRP 

V2G (δ=0o) 1.9 1.8 -83.3 -87.6 

G2V (δ=180o) 1.9 1.8 126 121.4 

(4) ZPF 

V2G (δ= δP0=-0.985o) 0.14 0 -83.3 -87.5 

G2V (δ=180o- δQ0=180.985o) 0.14 0 126 121.3 

 

 

In MAP mode, the system shows the maximum active power-flow in both G2V and 

V2G operation (-102.7 and 106.3 W, respectively), but consumes a small amount of 

reactive power due to the harmonic contents (17 VAR), which means that the power factor 

is less than unity. By applying δQ0 instead of 90o (UPF mode), the active power slightly 

drops and the reactive power almost vanishes, which means that the UPF operation is 
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realized. In the MRP mode, the system supplies or absorbs the maximum reactive power, 

with absorbing a tiny amount of active power (1.8 W) to feed the losses. This small amount 

can be avoided by applying δP0 criterion, to provide zero power factor operation [ZPF 

mode]. Moreover, by comparing the peak power value, during V2G and G2V operation, 

the asymmetry operation can be observed. The choice between the four modes of operation 

depends on the applications and the operator’s priority. For example, if the operator is 

interested in the magnitude of the power only, thus modes (1) and (3) are the best choice. 

However, if the interest was for the system’s power factor, then modes (2) and (4) are 

preferred. Anyway, regardless of the mode of operation, these limitations must be 

considered, while designing the power-flow control system, as discussed in the next 

sections. 

 

 Proposed Two-Layer Predictive Active Power-Flow Controller  

The proposed controller is located on the vehicle side to manage the magnitude and 

direction of the power-flow between the EV and power grid. The power-flow control is 

achieved by implementing the phase shift modulation technique in both the primary and 

the secondary sides. The proposed predictive controller is responsible for generating the 

control parameters (α, 𝛽 and δ), to accomplish the desired power-flow magnitude and 

direction. It consists of two control layers, as indicated in Figure 10.5. The first control 

layer is responsible for gathering data from the BMS, EV’s driver/operator desire, charging 

station and power grid. Then, it decides the mode of operation [discharge (V2G), charge 

(G2V) or abstain], and estimates the required rate of discharge or charge. 
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Figure 10.5. The proposed two-layer predictive active power-flow control. 

 

 

The outcomes from this layer are passed to the second layer PAPF control. This 

controller predicts the phase-shift modulation parameters (α, 𝛽 and δ), for both the primary 

and secondary sides, which are responsible for generating the switching activities of the 

two resonant converters (primary and secondary). The generated signals are boosted 

through the driving circuits to the gate’s voltage and power level of the power 

semiconductor switch. 

 

10.4.1 Control Parameters’ Design 

The proposed two-layer control is designed based on the power-flow models and 
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criteria presented in sections 10.2 and 10.3. These analytical models are utilized to predict 

the control parameters (α, 𝛽 and δ), which are responsible for achieving the desired power-

flow. The parameter (δ) is utilized to provide the wanted power-flow direction and mode 

of operation (V2G or G2V). A negative δ provides G2V (charging) operation, but a positive 

δ allows V2G (discharging) service. The value of δ is decided according to the operator’s 

priority, whether it is the power magnitude or power factor. Keeping δ=±90o will achieve 

maximum active power-flow (MAP) operation, while putting δ=±δQ0 [given in Equation 

(10-10)] will accomplish UPF operation, as discussed in section 10.3. 

The other two control parameters (α and 𝛽) are decided to provide the desired rate of 

charge or discharge (active power magnitude). These parameters are predicted based on 

PFAPM in Equation (10-3). By assuming that both the HF converters will be driven by the 

same parameter (i.e α=𝛽) to control the active power-flow magnitude, the two parameters 

are estimated using Equation (10-11) [198]. 

𝛼 = 𝛽 = cos−1[1 − (2𝑃𝑟𝑒𝑓 𝑃𝑚𝑎𝑥⁄ )]                 

𝑃𝑚𝑎𝑥 = (
8

𝜋2
)
𝑀𝛾𝑉𝑑𝑐𝑉𝑏

𝜔𝑟𝐿𝑝𝑖𝐿𝑠𝑖
𝑠𝑖𝑛(𝛿) + (

8

𝜋2
)

𝐶𝑠𝑅𝑠𝑖𝑉𝑏
2

𝐿𝑠𝑐+𝐶𝑠𝑅𝑠𝑖
2

                         (10-11) 

where, Pref  is the desired active power, which is estimated during the first control layer and 

passed to the second one.  

 

10.4.2 Online Mutual Inductance Estimation 

As indicated in the previous section, the control parameters are functions of the 

system’s design parameters. For the controller to be able to achieve the proper prediction, 

the system’s parameters need to be known. The LCL BIWPTS under consideration is 
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designed for fixed resonant frequency (ωr) operation, on both the primary and secondary 

sides. Also, the compensation capacitors (Cp, Cs) are tuned to resonate with the self-

inductance of the coils (Lpc, Lsc), which are identified after the design stage, and are 

relatively fixed [184]. Therefore, the compensation capacitors are fixed as well. Under 

these constraints, only the mutual inductance (M) varies in light of the vehicle position and 

the misalignment between the power pads. Thus, this parameter needs to be adaptively 

estimated, before applying the control algorithm. In this work, a modified online mutual 

inductance estimation technique has been proposed. It depends on utilizing the developed 

analytical model besides one direct measurement on the vehicle side. A known value for 

the primary control parameter (α) is applied to the primary converter, while the secondary 

circuit is left open, by opening the ideal switches S1 and S2 in Figure 10.5. The open circuit 

secondary voltage (Es) is measured, and the primary coil current at open circuit secondary 

(Ipc_OCS) is calculated, using Equation (10-12). Using these two recognized values, the 

mutual inductance is estimated based on Equation (10-13) [199]. 

𝐼𝑝𝑐_𝑂𝐶𝑆 = −𝑗𝑉𝑝𝑖_1 [𝜔𝑟(𝐿𝑝𝑐 + 𝐶𝑝𝑅𝑝𝑐𝑅𝑝𝑖)]⁄                                (10-12)     

 𝑀 = 𝐸𝑠 (𝜔𝑟𝐼𝑝𝑐_𝑂𝐶𝑆)⁄                                           (10-13) 

 

10.4.3 First Control Layer  

As depicted in Figure 10.5, the first control layer receives the BMS’s data, EV’s 

driver desire and the open circuit voltage (Es) measurement, directly from the vehicle side. 

Also, it receives information about the grid retail price (Ŕ) and the charging station, through 

the wireless communication link. Based on these data, it generates the reference active 
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power (Pref) to be passed to the second control layer (PAPF). The charging and discharging 

decision and rate is defined, by comparing the EV’s psychological price (R) with the grid 

retail price of the wireless charging (Ŕ) [200]. The EV’s psychological price depends on 

the battery’s SOC, and is defined in this work using the first-order polynomial cost 

function, as indicated in Figure 10.6(a). The EV’s psychological price, in terms of the 

battery SOC, is stated mathematically in Equation (10-14). 

𝑅 =
𝑅𝑚𝑖𝑛− 𝑅𝑚𝑎𝑥

𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑚𝑖𝑛
𝑆𝑂𝐶 + 𝑅𝑚𝑎𝑥 +

𝑅𝑚𝑎𝑥− 𝑅𝑚𝑖𝑛

𝑆𝑂𝐶𝑚𝑎𝑥−𝑆𝑂𝐶𝑚𝑖𝑛
𝑆𝑂𝐶𝑚𝑖𝑛                    (10-14) 

where, SOCmin and SOCmax are the limits of the linear operating region of the EV’s battery, 

which is typically 20-80%; Rmin and Rmax are the limits of EV psychological price, which 

are chosen to cover the range of variation of the wireless charger retail price changes (Ŕ), 

as depicted in Figure 10.6(a). The retail price for wireless charging of a road is available 

for the EV’s drivers based on the current traffic information systems of Intelligent 

Transportation Systems (ITSs) [200]. 

The charging and discharging benefit is evaluated, as ∆R=Ŕ-R. The reference power-

flow direction and rate (Pref) is assessed in terms of ∆R, as described in Figure 10.6(b) and 

Equation (10-15). 

𝑃𝑟𝑒𝑓 =

{
 

 
𝑃𝑚𝑎𝑥,𝑑                                    ∆𝑅 ≥ ∆𝑅𝑚𝑎𝑥,𝑑
𝑚𝑑∆𝑅 + 𝑘𝑑                   0 < ∆𝑅 < ∆𝑅𝑚𝑎𝑥,𝑑
𝑚𝑐∆𝑅 + 𝑘𝑐                   ∆𝑅𝑚𝑎𝑥,𝑐 < ∆𝑅 ≤ 0

𝑃𝑚𝑎𝑥,𝑐                                     ∆𝑅 ≤ ∆𝑅𝑚𝑎𝑥,𝑐

                         (10-15) 

where, 𝑚𝑑 =
𝑃𝑚𝑎𝑥,𝑑−𝑃𝑚𝑖𝑛,𝑑 

∆𝑅𝑚𝑎𝑥,𝑑
, 𝑘𝑑 = 𝑃𝑚𝑖𝑛,𝑑, 𝑚𝑐 =

𝑃𝑚𝑎𝑥,𝑐−𝑃𝑚𝑖𝑛,𝑐 

∆𝑅𝑚𝑎𝑥,𝑐
, 𝑘𝑐 = 𝑃𝑚𝑖𝑛,𝑐.  

Pmax,c and Pmax,d are the maximum rate of charge and discharge, respectively, which 

are  estimated from PFAPM in Equation (10-11), by applying α=𝛽=180o. Pmin,c and Pmin,d are 
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the minimum rate of charge and discharge, respectively, which are defined based on the 

EV’s battery manufactures and charging system’s limits. 
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Figure 10.6. First layer control principle. (a) EV psychological price and grid retail price. 

(b) Reference power vs. cost benefits. 

 

 

Over SOCmax, the benefit is maximum (∆Rmax,d=Ŕ-Rmin), and the EV will discharge 

at the maximum limit (Pmax,d), in order to avoid overcharging situation.  Below SOCmin, the 

EV will keep charging at the maximum capacity (Pmax,c), to help the vehicle to reach its 
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destination. In this case, the benefit is maximum with negative sign (∆Rmax,c=Ŕ-

Rmmax).When the two prices (Ŕ and R) match, i.e ∆R=0, the EV will charge at the minimum 

limit (Pmin,c). When ∆R lies between 0 and ∆Rmax,d, the EV will discharge following a linear 

profile with a slop md. When ∆R ranges between 0 and ∆Rmax,c, the EV will charge through 

another linear profile with a slop mc. 

If the EV’s driver has some restrictions, during the integration with the power grid, 

the controller allows him/her to introduce these limitations, in terms of the desired final 

SOC (SOCf), integration (connection) time (tc) and required operation (Mode). Then, it 

calculates the required rate (Pres) to satisfy these limitations using Equation (10-16).            

                         𝑃𝑟𝑒𝑠 = ∓
𝑆𝑂𝐶𝑓 . 𝑄𝑛

 𝜂𝑏 . 𝑡𝑐
                                                   (10-16) 

where, Qn is the nominal  battery capacity, and ηb is the charging and discharging efficiency 

[201], [202]. 

The proposed first control layer provides five different modes of operation:  

Mode I means abstain (no interaction); 

Mode II provides restricted operation by manually entering Mode, SOCf and tc; 

Mode III allows charge only service, without considering the grid price; 

Mode IV enables charge only, with considering the grid price; and  

Mode V activates the interaction operation, in which the system will be able to charge and 

discharge automatically, based on the grid price and EV’s psychological price.  

The sequence of the algorithm implementation linked with the available wireless 

communication system is indicated in Figure 10.7 and described as follows: 
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Figure 10.7. The proposed first layer control algorithm. 

 

- A vehicle enters the coverage area of the wireless communication system, and receives 

a notification that there is a WPT service available in the area. 

- If the vehicle wants to interact, it will send a request of service to the grid side unit, 

otherwise it will ignore the notification. 

- Based on the driver’s desire, EV battery SOC, grid price and the BIWPTS’s 

specifications, the first control layer checks the grid resources availability, estimates the 

mutual inductance, decides the mode of operation (among modes I to V), and calculates 

Pref, depending on Figures 10.6 and 10.7, and using Equations (10-12)-(10-16). 
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- The first layer updates the variables M and Pref, and passes them to the second control 

layer (PAPF), which predicts the phase-shift parameters (α, 𝛽 and δ), as is explained in 

the next section. 

 

10.4.4 Second Control Layer  

This control layer receives the reference power from the first stage, and predicts the 

modulation parameters (α, 𝛽 and δ) that direct the system to transfer this power. The 

operation procedure of this control layer is explained in Figure 10.8. The control gets M, 

Pmax and Pref, from the first stage, and checks the sign of Pref. If Pref=0, then it keeps the 

control parameters as zero. In this case, there is no power transfer, which can be due to 

many reasons, such as limited resources, the grid does not need extra power, the driver 

does not want to sell energy, while the EV fully charged or ∆R>0, or the driver does not 

want to interact with the grid at all [199]. On the other hand, if Pref is positive, the controller 

sets δ=-δQ0 or -90o, to charge the battery; and if it is negative, the controller assigns δ=δQ0 

or 90o, for discharging operation. Finally, the controller checks the charger limit (Pmax), if 

Pref is exceeding of this limit, then α, 𝛽  will be set to the maximum, i.e α=𝛽=180o, 

otherwise they will be estimated, using Equation (10-11). Finally, the controller updates 

the new parameters, and passes δ and 𝛽 to the secondary PPM system, and sends α to the 

primary PPM, through the wireless communication, as indicated in Figure 10.5. The PPM 

generates the switching signals for both the primary and secondary inverters, which are 

boosted through the driving circuits to the gate voltage and power level of the 

semiconductor switch. 



 

235 

 

Pref = 0?

YES NO

Abstain

Discharge

end

YES
set  α=β=δ=0o

 

NO

start

get Pref, Pmax & M 

from 1st control layer 

Pref > 0? Charge

predict α & β 

using (10-11)

update α, β, δ

YES
ǀPref ǀ≥ǀPmaxǀ?

NO

set  α=β=180o
 

set δ=δQ0 for UPF

 or δ=90o for MAP 

operation

set δ=-δQ0 for UPF

 or δ=-90o for MAP 

operation

 

Figure 10.8. The proposed second control layer algorithm. 

 

 Control Implementation and Results  

The prototype for LCL BIWPTS, shown in Figure 8.13 with the parameters in Table 

8.2, is driven by the developed controller and analyzed by means of simulation and 

experimental tests. The proposed control is implemented using Cmod S6 FPGA board, 

shown in Figure 10.9. The implementation of the PPM inside the FPGA board for both 

inverters is depicted in Figure 10.10. The figure shows that the dead-time between the 

switches in the same legs are digitally implemented inside the board, using logic AND 

gates. The signals from the FPGA are boosted up to the MOSFETs’ voltage and power 

level, using FAN7391 ICs. The proposed PAPF controller is implemented and its 

performance is compared with a PI controller, for verification purposes. 
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Figure 10.9. Cmod S6 FPGA board. 
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Figure 10.10. Implementation of FPGA-based PPM including the dead-time and the driver. 
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Figure 10.11. Mutual inductance estimation performance (Vdc=60V). (a) Es and Ipc_OCS. (b) 

Mutual inductance. 

 

10.5.1 Testing the Proposed Mutual Inductance Estimation  

The performance of the proposed mutual inductance estimation procedure is 

described in Figure 10.11. The parameter α is set to 180o, and the open circuit secondary 

voltage (Es) is measured, as indicated by the green dashed line in Figure 10.11(a). The 

primary coil current is calculated, using Equation (10-12), and also measured for 

comparison purpose. As can be seen in Figure 10.11(a), the estimated and the measured 

values show good agreement. Depend on Equation (10-13), the mutual inductance is 

estimated and compared with the real actual value in Figure 10.11(b). It can be noted that 

the proposed technique could reach to the correct value of M accurately, in less than 5 

msec, which proves the real-time implementation of this technique. 
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10.5.2 Verifying the Proposed Controller Performance 

The proposed PAPF control is enforced and tested in this section. The LCL 

BIWPTS’s performance, during the Abstain and Discharging operation, is described in 

Figure 10.12. The system starts with the Abstain mode, and switches to the Discharge mode 

at 0.04 sec. During the Abstain operation, all the control parameters were set to zero, and 

no power transfer occurs. In the wake of applying the Discharge, δ was changed in 

accordance with 90o to accomplish V2G service, while α and β were adjusted to match with 

the desired power (Pref), as shown in Figure 10.12(a) and 10.12(b). At 0.08 sec, Pref exceeds 

the power limits, accordingly the controller conforms α and β to 180o to provide the 

maximum available power. Then, at 0.12 sec, the required power diminished, and the 

control framework takes after the new value. During these transitions of power-flow, the 

variation of Vsi can be seen in Figure 10.12(c) and 10.12(d). 

 

 

Figure 10.12. PAPF control performance during Abstain and Discharge modes. (a) Control 

parameters. (b) Secondary power. (c) Secondary voltage. (d) Zoomed secondary voltage. 
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The performance of the proposed controller is compared with the classical 

proportional integral (PI) control, as delineated in Figure 10.13. The figure demonstrates 

the reference active power, and the actual system power-flow due to both the proposed 

PAPF and PI controllers. During the Abstain mode, the PI controller couldn’t keep the 

power at zero, which prompts to unwanted inverters’ switching. Additionally, it shows 

noisy performance, during both the transient and steady-state response. Also, a large delay 

is experienced in the PI transient response (at 0.12 sec). The proposed controller shows 

more precise and faster tracking performance for the reference power. 

 

 

Figure 10.13. Comparison between the performance of PI and the proposed PAPF control 

during Abstain and Discharge modes. 
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The behavior of the proposed controller, during the transition from Discharge to 

Charge modes, is examined in Figure 10.14. In this test, the controller changes the 

framework from discharging (V2G) to charging (G2V) operation at 0.06 sec, by adjusting 

δ from 90o to -90o [see Figure 10.14(a)]. As a result of δ variation, the power-flow is reversed 

from positive to negative, following the new reference value. The system remains working 

in the Charging mode the rest of the time with various power levels. The inverter secondary 

voltage variations, due to the control actions, are indicated in Figure 10.14(c) and 10.14(d). 

  

 

Figure 10.14. PAPF control performance during Discharge and Charge modes. (a) Control 

parameters. (b) Secondary power. (c) Secondary voltage. (d) Zoomed secondary voltage. 
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During the entire period of operation, the controller succeeded to follow the reference 

power value, and the system was capable of transferring the required power. A similar test 

is applied, while utilizing the PI controller, and compared with the proposed PAPF control, 

as indicated in Figure 10.15. The proposed controller demonstrates fast transient response, 

with accurate steady-state attitude, compared with the PI controller. 

 

 

Figure 10.15. Comparison between the performance of PI and the proposed PAPF control 

during Discharge and Charge modes. 
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stationary and quasi-dynamic interaction between the EV and power grid. It allows the EV’s 

driver to choose among five different modes of operation. Also, it considers the grid retail 

price to achieve the maximum profits for the EVs’ owners. The proposed controller is based 

on the system analytical modeling, and it has the ability to predict the modulation parameters 

for both the primary and secondary inverters, to achieve the desired active power-flow. 

Moreover, it considers the misalignment in WPT system, by adaptively estimating the 

mutual inductance before applying the proposed algorithm. The practical implementation 

of the proposed controller evidenced its performance’s accuracy and fast response, during 

both the transient and steady-state operation, compared to the available controller in the 

literature. 
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 Introduction 

Wireless charging methods present a new revolution in the EV industry [203]. Unlike 

conventional plug-in EVs tethered to a charger, no power connection is needed. Two 

different visions for implementing wireless charging in EVs’ applications are intensively 

investigated in the literature: stationary and dynamic. In both modes, a primary coil is 

buried in the ground underneath the vehicle, where in stationary mode, the energy is 

transferred to a parked vehicle using a single coil, while in dynamic mode, the energy is 

transferred to a moving vehicle using a series of coils. The removal of cables, autonomy 

for the driver, and relatively low maintenance has improved the practicality of this 

technology. Stationary system topologies were demonstrated as early as the General 

Motors EV1 in 1998 through the implementation of IPT [204]. In [83], a review is 

presented noting that current stationary applications are beginning to reach their maturity, 

as the SAE has already established industry-wide specification guidelines in the SAE 

J2954A standard [149]. Current research has focused on the optimization and design of 

coupled coils, which have a profound impact on the system’s efficiency. Despite the ability 

to transfer energy more efficiently using stationary WPT since it offers better alignment 

between pads, it is still limited by its requirement for the EV to park in a specific position. 

As wireless charging technology continues to grow, dynamic (online) WPT (DWPT) 

charging has been introduced accompanied by a number of new advantages [205]. An 

online EV has already been tested at the Korea Advanced Institute of Science and 
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Technology demonstrating a commercially available DWPT charging system for busses 

[206]. A review of DWPT technologies was conducted in [82], identifying that it could 

provide the foundation for mass market penetration of EVs regardless of the battery 

technology. In 2015, a comprehensive study was conducted evaluating the feasibility of 

installing DWPT charging lanes on UK roadways [207]. Through the introduction of WPT 

in EVs, concerns associated with traditional plug-in EVs including charging duration and 

range limitations could be alleviated. 

DWPT is not limited to benefiting the EV’s driver, but can also provide enhanced 

V2G services as well. In [73], a bi-directional WPT (BWPT) V2G scheme was proposed 

including the potential inclusion of mobile EVs. The inclusion of DWPT added flexibility 

to V2G schemes but despite a number of advantages, several high level challenges exist in 

its deployment where cost becomes the center of attention [208]. Charging EVs consumes 

a large amount of energy and with the inclusion of mobile loads at this magnitude, the 

economic toll is unclear, which has incited feasibility studies on this topic [209]. In [200], 

the authors quantified some of these issues through the development of an analytical model, 

predicting variations in the locational marginal price of energy. However, massive initial 

cost associated with constructing a robust embedded coil network along the road was a 

serious concern. Furthermore, reliable, high speed bi-directional communications are 

required to handle the control. However, this is the most practical solution to support 

highway driving. 

For city driving, an intermediate solution could provide a balance between the 

infrastructure costs while still enabling a majority of the same advantages dynamic 

charging has to offer. For city driving, an alternative, such as a quasi (semi)-DWPT 
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(QDWPT) system, could provide a balance between the advantages seen in the stationary 

versus a dynamic system. Using QDWPT, an EV could charge during transient stops on 

the city roads, such as bus stops for electric buses and traffic signals for EVs. Little work 

has been presented in the literature that analyzes the QDWPT concept. In [97], the effect 

of implementing QDWPT over one driving cycle with different profiles was briefly 

studied. To the author’s knowledge, detailed modeling with comprehensive performance 

and feasibility analysis based on the J2954A standardized power levels have not yet been 

studied for a QDWPT system. 

In this chapter, the feasibility of implementing the QDWPT system at traffic signals 

is explored. The comprehensive charging and EV system architecture has been modeled 

and exercised, through the integration of multiple driving scenarios. The novelties of this 

work are as follows: 1) modeling analysis has been conducted for the entire wirelessly 

connected EV, including BIWPTS, EV’s battery, and traction system with experimental 

verification, 2) feasibility assessments in implementing a QDWPT system at traffic signals 

is investigated under three distinct WPT scenarios: fixed power charging, variable power 

charging and fixed power charging and discharging , 3) a comparative analysis over the 

maximum driving range and duration per cycle has been examined, 4) quantification of the 

additional distance gained over all charging scenarios for each consumed kWh is 

calculated, and 5) the effect of coil misalignment in the WPT system over the driving 

performance is investigated. 

 

 Quasi-Dynamic BIWPTS Description 

The implementation of a QDWPT system at traffic signals could provide a promising 
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solution for EV charging. This concept can not only take advantage of dynamic charging 

features, but would also significantly reduce the cost of infrastructure, simplify control 

complexity, and potentially increase the transfer efficiency by enabling better alignment. 

As shown in Figure 11.1, the primary wireless string of pads are placed beneath the 

pavement in each travel lane at each direction of the intersection and are depicted in blue. 

Each pad can be driven by an independent power converter or one converter can be utilized 

to drive a few of them, while controlling the current in each pad. Thus, the primary pads 

can be selectively excited based on the EV’s position, such that the energized pads are 

covered by the vehicle [82]. To determine the optimal number of WPT coils to support 

each lane, a traffic-flow analysis can be conducted to define the minimum coverage 

distance. In this system, it is assumed that over the course of a full traffic light cycle across 

all directions, wireless coils are available for all stopped traffic (under a red signal). While 

stopped, authentication with a charging controller can activate either V2G or G2V services. 

Conversely, the wireless coils fixed in directions with a green signal will have their coils 

de-energized. Apart from the upfront installation cost to the system, BIWPTSs’ activation 

can be coordinated with existing traffic light controllers and installed in combination with 

common inductive loops used for traffic detection [210]. 

The integration between EVs and the surrounding infrastructures at traffic signal can 

be represented by the DC-bus configuration shown in Figure 1.1. In this structure, the AC 

grid connection is established using a bi-directional grid-tied converter responsible for 

regulating a common DC-bus voltage. Each EV at the traffic signal is then connected to 

the DC-bus through its own BIWPTS to facilitate charging or discharging operations. As 

an added benefit, the introduction of a localized DC-bus at the traffic signal would help 
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ease the integration of RESs, such as PV generations, as shown in Figures 1.1 and 11.1. In 

this case, the PV panels can be distributed along the road sides, and coupled with the DC-

bus through a unidirectional DC-DC converter. In addition, external DC loads in and 

around the traffic signal area can be connected to the same DC-bus through another DC-

DC converter. Through the inclusion of renewable energy, the bulk load demand can 

reduce grid stress when EVs are in G2V mode, while in V2G mode, the EV battery can aid 

in smoothening the PV generation. 

 

 

 

Figure 11.1. The proposed implementation of Quasi-dynamic WPT system at traffic signal. 
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 Modeling of Wirelessly Connected Light-Duty EV 

A block diagram of the wirelessly connected EV configuration is indicated in Figure 

11.2 [92]. The structure consists of three main parts: a BIWPTS, EV’s battery and EV’s 

drive system. The system has two isolated sides: the grid and vehicle. The two sides are 

talking to each other through radio communication. The power-flow between these sides 

is managed by the secondary controller. The modeling of each part in the system is 

described in this section. 
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Figure 11.2. Block diagram of a wirelessly connected EV through the BIWPTS. 

 

 

11.3.1 Lithium-Ion EV’s Battery Model 

Present-day EVs are subjected to heavy power and energy demands, which are not 

limited to high transient discharge currents, but also sporadic regenerative braking charge 

currents. Furthermore, with the inclusion of QDWPT, a battery model accounting for 

multiple time-constants is needed to accurately depict the dynamic response of the battery 



 

249 

 

system. Simulation of the EV requires an advanced battery model capable of depicting 

precise SOC, I-V characteristics, and accurate dynamic behavior. In this study, a 21 Ah 

lithium-ion base module has been utilized to represent the EV’s battery pack, as depicted 

in Figure 11.3(a). This module contains 14 PL8048168 cells in series at a nominal voltage 

of 51.8 V, as shown in Figure 11.3(b) [211]. In this section, a model is developed for 

simulation purposes, where seven modules are placed in series and three in parallel to reach 

a standard EV pack voltage and capacity of 362.6 V and 63 Ah, respectively. 

 

 

(b)(a)

 

Figure 11.3. Lithium-ion test battery. (a) Battery Module. (b) PL8048168 battery cell. 

 

 

In [212], a procedure for obtaining a 3rd order dynamic battery model for EV 

simulations was presented, where a series of standardized charge and discharge current 

pulses are administered throughout the full SOC range. High charge and discharge C-rates 

are utilized to push the battery out of equilibrium highlighting its dynamic response. To 

differentiate between the voltage recovery governed by multiple time constants, test pulses 
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are administered over second, minute, and hour ranges. An analysis of the voltage deviation 

and an exponential curve fit of the voltage recovery extracts the ohmic resistance 𝑅0 and 

the associated impulse response components. The driving profile and quasi-dynamic 

wireless charging simulations fall within the second and minute response periods, thus the 

hour time constant was omitted, reducing the model to 2nd order, as shown in Figure 11.4. 

To obtain the open circuit voltage (OCV) 𝑉𝑜𝑐, long rest periods were featured between each 

SOC step, during the charging and discharging cycles. Following a comprehensive test, 

final measurements for each component were plotted over the full SOC range and curve 

fitted, as shown in Figure 11.5. 

 

 

Figure 11.4.  2nd order dynamic battery equivalent circuit model with EV traction system. 
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are shown in blue and discharging in red. 𝑅0 does not significantly vary between charging 

and discharging, thus the dataset was combined. The closest fit is consistent with a 4th order 

polynomial given in Equation (11-1). 

𝑅0(𝑆𝑂𝐶) = 𝑎1𝑆𝑂𝐶
4 + 𝑎2𝑆𝑂𝐶

3 + 𝑎3𝑆𝑂𝐶
2 + 𝑎4𝑆𝑂𝐶 + 𝑎5                   (11-1) 

where, a1-a5 are the R0 equation’s coefficients, which are the same for both charging and 

discharging modes. 

 

 

Figure 11.5.  Curve fitted battery model coefficients. (a) OCV (Voc). (b) R0. (c) Rsec. (d) 

Csec. (e) Rmin. (f) Cmin. 
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For the OCV, the SOC to voltage relationship complexity warrants the need of a 5th 

order polynomial, as given in Equation (11-2). 

𝑉𝑜𝑐(𝑆𝑂𝐶) = 𝑎6𝑆𝑂𝐶
5 + 𝑎7𝑆𝑂𝐶

4 + 𝑎8𝑆𝑂𝐶
3 + 𝑎9𝑆𝑂𝐶

2 + 𝑎10𝑆𝑂𝐶 + 𝑎11        (11-2) 

where, 𝑎6-𝑎11 represent the Voc’s equation’s coefficients, which have different values in 

both the charging and discharging operation. 

The curve fits of the remaining impulse response parameters over the second and 

minute time spans are accomplished through the formulas given in Equations (11-3)-(11-

6). 

𝑅𝑠𝑒𝑐(𝑆𝑂𝐶) =  𝑎12𝑆𝑂𝐶
3 + 𝑎13𝑆𝑂𝐶

2 + 𝑎14𝑆𝑂𝐶 + 𝑎15                        (11-3) 

𝐶sec(𝑆𝑂𝐶) =  𝑎16𝑆𝑂𝐶
3 + 𝑎17𝑆𝑂𝐶

2 + 𝑎18𝑆𝑂𝐶 + 𝑎19                         (11-4) 

𝑅min(𝑆𝑂𝐶) =  𝑎20𝑆𝑂𝐶
3 + 𝑎21𝑆𝑂𝐶

2 + 𝑎22𝑆𝑂𝐶 + 𝑎23                      (11-5) 

𝐶min(𝑆𝑂𝐶) =  𝑎24𝑒
𝑎25𝑆𝑂𝐶 + 𝑎26𝑒

𝑎27𝑆𝑂𝐶                                            (11-6) 

where, 𝑎12-𝑎27 represent the parameters’ coefficients, which are different between 

charging and discharging operation. 

The model’s coefficients (a1-a27) are extracted by curve fitting the measured data, 

during both the charging and discharging operation, as indicated in Figure 11.5. The 

extracted coefficients for the chosen li-ion battery module are presented in Table 11.1. The 

battery module’s model shown in Figure 11.4, is implemented in MATLAB Simulink, 

where dynamic values for each of the components are passed to variable resistances, 

capacitances, and a controlled voltage-source. The SOC input to each is calculated through 



 

253 

 

the combination of the traditional current integration technique and an adjustment factor 

for the discharge rate 𝑓𝑟𝑎𝑡𝑒, as described in Equation (11-7). This factor accounts for the 

adjusted capacity, as a result of the internal losses observed at high discharge currents. 

 

 

Table 11.1. Charging and Discharging Coefficients of the Battery Module’s Analytical 

Model. 

Coefficient Charge Discharge Coefficient Charge Discharge 

𝑎1 0.29500 𝑎15 0.01895 0.02218 

𝑎2 -0.5399 𝑎16 -69.94 63.22 

𝑎3 0.35810 𝑎17 121 -113.6 

𝑎4 -0.09226 𝑎18 -81.3 66 

𝑎5 0.22350 𝑎19 40.12 15.64 

𝑎6 78.99 70.98 𝑎20 0.3397 -0.1734 

𝑎7 -237.5 -202.2 𝑎21 -0.4096 0.3648 

𝑎8 266.3 218.2 𝑎22 0.1516 -0.1666 

𝑎9 -133.2 -107.3 𝑎23 0.05377 0.09134 

𝑎10 34.03 27.89 𝑎24 2.184x10-6 720.8 

𝑎11 49.24 49.36 𝑎25 19.25 0.6925 

𝑎12 0.01715 -0.04911 𝑎26 928.7 419.6 

𝑎13 0.01964 0.09523 𝑎27 0.5496 -2.012 

𝑎14 -0.0251 -0.05824 - - - 
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) − ∫
𝑓
𝑟𝑎𝑡𝑒
 [𝐼𝑏(𝜏)]

3600𝐶𝑏
𝑑𝜏

𝑡

0
                                    (11-7) 

where, Cb is the nominal battery capacity (Ah).  

The final terminal voltage at the battery (𝑉𝑏) is estimated as in Equation (11-8). 

𝑉𝑏 = 𝑉𝑜𝑐 ± 𝐼𝑏(𝑡) [𝑅0 + 𝑅𝑠𝑒𝑐 (1 − 𝑒
−𝑡

𝜏𝑠𝑒𝑐) + 𝑅𝑚𝑖𝑛 (1 − 𝑒
−𝑡

𝜏𝑚𝑖𝑛)]                  (11-8) 

where, 𝜏𝑠𝑒𝑐 = 𝑅𝑠𝑒𝑐𝐶𝑠𝑒𝑐, is the seconds time-constant, and  𝜏𝑚𝑖𝑛 = 𝑅𝑚𝑖𝑛𝐶𝑚𝑖𝑛, is the 

minutes time-constant. 

To verify the accuracy of the model, short (1.5 s) and long (6 min) charge and 

discharge current pulses were applied and compared at four different SOC levels, where 

the results are shown in Figure 11.6. The top plots depict the voltage response during and 

following discharge current pulses of 0.75C, where the measured values at multiple SOC 

levels are shown in black solid lines compared to the simulation in colored dotted lines. 

The model reveals a close match to the experimental values, where the most variation is 

observed when charging from a low SOC or discharging from a high SOC. In the case of 

the EV, the practical SOC operating range is between 20-80% SOC to preserve the lifespan, 

thus extremely low and high SOC levels are avoided in this simulation. 

Using the single module model as a reference, the final configuration is expanded to 

the EV testing level placing seven models in series and three in parallel. Two versions were 

developed for simulation: one for conducting in real-time and a second time-scaled version 

(0.001x) to assist in reducing processing times for longer driving simulations. The time-

scaled version includes a scaling of the capacitance to scale the time constants 𝜏𝑠𝑒𝑐, 𝜏𝑚𝑖𝑛, 

as well as a revised time base for the SOC calculation. 
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Figure 11.6. Battery model verification tests. (a) Long discharge. (b) Short discharge. (c) 

Long charge. (d) Short charge. 

 

 

11.3.2 EV’s Drive System Model 

In this section, the specifications of the EV under test are discussed, as well as the 

selected driving cycles and powertrain model used to calculate the power exchange in the 

EV’s battery system. The EV modeled in this study aligns to provisions published by the 

US National Highway Traffic Safety Administration (NHTSA) classified as a medium 

passenger car similar to the small-sized sedan with a curb weight of 1680 kg.  
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To evaluate the strength of the proposed EV BIWPT architecture, the Federal Test 

Procedure (FTP-72) dynamometer driving profile was selected for use in simulation. FTP-

72, sometimes referred to as LA4, represents a typical city driving test conditions [213]. A 

7.5 mile commute is run over an approximately 22 minute period, at an average speed of 

19.6 mi/h and is shown in Figure 11.7(a). The FTP-72 consists of two phases: 1) 505 sec 

“cold start cycle” taking the vehicle up to a high speed (56.7 mi/h), and 2) an 867 sec 

“transient” phase representing stop-and-go city driving. In the case of the EV, phase 1 

presents the greatest challenge tests on the battery pack in terms of power and energy 

output, as the high speed driving portion reduces the availability of quasi-dynamic WPT. 

Phase 2 subjects the EV to frequent stop-and-go at traffic signals, where WPT will be 

initiated. The FTP-72 speed profile is then passed to the EV powertrain model to produce 

the power profile. 

The EV under test is modeled to include both drive power applied to the motor, as 

well as account for regenerative braking recovery power. First, the resistance force 𝐹𝑣 of 

the EV at speed 𝑣(𝑡) can be calculated by the summation of aerodynamic drag, rolling 

resistance, and grading resistance at angle 𝜗, as given in Equation (11-9) [214]. 

𝐹𝑣(𝑣(𝑡)) =  
1

2
𝜌𝑎𝑐𝐷𝐴𝑓𝑣(𝑡)

2 + 𝐹𝑅(𝑣(𝑡)) + 𝑔𝑚𝑡 sin 𝜗                         (11-9) 

where, 𝜌𝑎, 𝑐𝐷, 𝐴𝑓, and  𝑚𝑡 represent the air density (1.205 kg/m³), drag coefficient (0.32), 

frontal EV area (2.31 m²), and vehicle mass, respectively. 

The rolling resistance function [𝐹𝑅(𝑣(𝑡))] is derived from a fifth order polynomial 

function, which can be found in detail with a complete list of its associated coefficients in 

[214]. To calculate the motor torque and speed, the wheel resistance and dynamic torque 
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for acceleration are passed through the gearbox 𝐺𝑟 (6.45), as given in Equation (11-10). 

𝜏𝑚(𝑡) =  
𝑟𝑤ℎ𝐹𝑣(𝑡)

𝐺𝑟
+

𝜃𝑣

𝐺𝑟𝑟𝑤ℎ

𝑑𝑣(𝑡)

𝑑𝑡
 

𝜔𝑚(𝑡) =
𝑣(𝑡)

𝑟𝑤ℎ𝐺𝑟
                            

                                     (11-10) 

where, 𝑟𝑤ℎ and 𝜃𝑣 represent the radius of the wheels (0.29 m) and total vehicle inertia (145 

kg·m²), respectively.  

The resulting bi-directional battery power (PE) (see Figure 11.2) is then calculated as 

in Equation (11-11). 

𝑃𝐸(𝑡) =  {
𝜏𝑚𝜔𝑚/𝜂𝑚(𝑡),             𝜏𝑚(𝑡) ≥ 0

𝜏𝑚𝜔𝑚𝜂𝑚(𝑡),               otherwise
                                 (11-11) 

where, 0 < 𝜂𝑚(𝑡) < 1 is the motor-inverter efficiency, which is a function of the motor 

speed and torque interpolated from [214]. 

 

 

Figure 11.7.  FTP-72 Driving profile. (a) Speed. (b) Electric power. 
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The FTP-72 Driving profile is passed through the traction system’s model given in 

Equations (11-9)-(11-11) to generate the resulting motoring and regenerated power profile 

indicated in Figure 11.7(b). This power profile is divided by the battery voltage (Vb) to 

estimate the reference battery current (Ib,ref), as depicted in Figure 11.4. The reference 

battery current is utilized as a control signal to manage a controlled current-source that 

emulates the EV’s traction system. 

 

11.3.3 Model Verification 

The Simulink model of an LCL BIWPTS presented in Figure 5.25 is utilized and 

linked with the battery and the drive system models presented above, to form a 

comprehensive simulation platform for the wirelessly connected EV shown in Figure 11.2. 

The small-scale LCL BIWPTS prototype shown in Figure 5.23 is utilized to verify the 

proposed simulation platform. The prototype contains one module of the 51.8 V 21 Ah 

lithium-ion battery pack to emulate the EV’s behavior, which is the same module that is 

considered in the model. The system is analyzed in both charging (G2V) and discharging 

(V2G) operation and compared with the simulated model where the results are presented 

in Figures 5.25-5.27. 

The experimental and simulated models of the BIWPTS are designed and analyzed 

for 40 kHz resonant frequency, which is different from the defined frequency in the SAE 

J2954A standard (81.38-90 kHz) [149]. However, this study focused on the impact of 

implementing a QDWPT system on the driving performance in terms of driving miles and 

hours. This performance is affected only by the power level of charging and discharging. 

As long as the WPT system was able to transfer the required power level, at any frequency, 
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these results will not change. A different resonant frequency for the same power level leads 

to different design parameters. In order to clarify this point, a simulation-based analysis is 

conducted. The analysis compares between the performances of two LCL BIWPTSs with 

two different resonance frequencies: 40 kHz and 85 kHz. The two systems are designed to 

supply the same power level (11.1 kW). As can be noticed in Table 11.2, the two systems 

have different design parameters, in order to be able to transfer the same amount of power.  

  

 

Table 11.2. Design Parameters of an 11.1 kW LCL BIWPTS at 40 and 85 kHz. 

40 kHz design 85 kHz design 

Parameter Value Parameter Value 

sc=Lsi=Lpi=LpcL  25.5 µH sc=Lsi=Lpi=LpcL 12 µH 

Rpc=Rpi=Rsi=Rsc 30 mΩ Rpc=Rpi=Rsi=Rsc 20 mΩ 

Cp=Cs  0.62 µF Cp=Cs 0.292 µF 

 

 

The higher frequency system (85 kHz) provides simpler passive components’ design 

(lower pad self-inductances, filter inductances and compensation capacitors). The 

performance of both designs (40 kHz and 85 kHz) is analyzed during G2V operation and 

compared in Figures 11.8 and 11.9, respectively. As can be observed, the two systems show 

very similar voltage and current waveforms. Thus, it can be concluded that using the 40 

kHz system’s design to evaluate the simulation platform is applicable since the amount of 

power-transfer is only matter. 
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Figure 11.8. BIWPTS’s performance at 40 kHz resonant frequency, during G2V operation 

(α=β=180o, δ=-90o). 

 

Figure 11.9. BIWPTS’s performance at 85 kHz resonant frequency, during G2V operation 

(α=β=180o, δ=-90o). 
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 Feasibility Analysis of Implementing QDWPT Systems at Traffic Signals 

After modeling and verification of the small scale prototype of the wirelessly 

connected EV, a large scale model has been used to evaluate the effectiveness of 

implementing the QDWPT system at traffic signals. This implementation will allow EVs 

to charge and discharge during the stop time. The feasibility of this project from the driving 

performance and the consumed energy point of view is presented in this section. The FTP-

72 driving profile is considered in this analysis. Three different charging scenarios have 

been investigated: fixed power charging, variable power charging, and fixed power 

charging and discharging operation. 

 

11.4.1 Fixed Power Charging Scenario 

In this scenario, it is assumed that the EV charging will start automatically once the 

vehicle stops at the traffic signal. The charging power is kept fixed by the power-flow 

controller of the BIWPTS. The control system incrementally adjusts the battery current to 

maintain the target power, while keeping the system power factor very close to unity due 

to the resonance operation. Four different standard charging levels are analyzed: 

WPT1=3.7 kVA, WPT2=7.7 kVA, WPT3=11.1 kVA, and WPT4=22 kVA, based on the 

SAE J2954A international standard. The whole driving performance during the WPT2 

charging level is indicated in Figure 11.10. As can be noticed, the charging operation is 

initiated during the stop time of the vehicle only (zero speed period). In this level, the 

charging power is about 7.7 kW [Figure 11.10(c)]. The behavior of the EV’s battery SOC 

during the entire driving profile is indicated in Figure 11.10(d). The EV starts with 80% 

initial SOC (SOCi), which decreases with driving. Due to the charging energy during the 
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stops, the reduction in the SOC is less than what is expected, as will be indicated later. The 

EV’s battery current, including the motoring, regenerated and charging current is shown in 

Figure 11.10(e). Both the charging and the regenerative currents are negative, while the 

motoring current is positive. 

A second test is analyzed for a fixed charging scenario with WPT4 (22 kW) power 

transfer, and the results are indicated in Figure 11.11. The figure shows the speed profile, 

battery voltage, WPT charger current, WPT charger power and SOC, over the entire FTP-

72 driving cycle. Also, a zoom of all fields, during a 25-second traffic intersection stop 

occurring between 1005 and 1030 seconds, is depicted in the same figure. It can be noticed 

that the battery voltage steadily rising, while the current is being incrementally reduced to 

maintain a constant power charging level of 22 kW. Also, the figure shows that after a 

driving cycle, the reduction in the SOC is less than the case of WPT2 level in Figure 11.10. 

 

Figure 11.10. Driving performance under fixed power charging WPT2 (SOCi =80%). (a) 

Speed. (b) Vehicle power. (c) Charger power. (d) SOC. (e) Battery current. 
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Figure 11.11. Driving performance under fixed power charging WPT4 (SOCi =80%). (a) 

Speed. (b) Battery voltage. (c) Charger current. (c) Charger power. (d) SOC. 

 

 

Similar to the analyses in Figures 11.10 and 11.11, this test has been conducted for 

the other standard charging levels, and the driving performance is compared with the case 

while there is no QDWPT charging, as shown in Figure 11.12. The figure shows the EV’s 

battery SOC through the driving period without and with implementing the WPT charger 

at the traffic signal. It can be observed that through the utilization of QDWPT charging, 

the driving range is extended as a function of the charging power level for the same stop 

time. All charging levels exhibit a shallower reduction in the SOC, where WPT4 results in 

only a 3% SOC reduction at the end of the driving cycle. WPT4 and higher levels appear 

promising for these applications since the vehicle may recover the initial SOC by the end 

of the driving profile. 
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Figure 11.12. Driving performance at different charging levels (SOCi =70%). 
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𝑃𝑚𝑎𝑥 is supplied while above 𝑆𝑂𝐶𝑚𝑎𝑥, charging is deactivated. This behavior would help 

aid in limiting utility grid stress, while simultaneously prioritizing charging amongst EVs 

and preserving their battery lifetimes, by greatly reducing the charging rate when the 

battery approaches the maximum SOC level [215]. 

 

Pc

0  

SOC

SOCmax 100%

Pmax

Pmin

SOCmin
 

Figure 11.13. Charging rate decision based on SOC. 

 

 

In this study, we have considered a safe linear SOC operating range of 𝑆𝑂𝐶𝑚𝑖𝑛 =

30% to 𝑆𝑂𝐶𝑚𝑎𝑥 = 80%, where 𝑃𝑚𝑎𝑥 is set to the WPT4 level, and the minimum supported 

charging level (𝑃𝑚𝑖𝑛) is set to 30% of 𝑃𝑚𝑎𝑥. WPT4 is chosen since it has shown promising 

performance in this application, as was indicated in Figure 11.12. The charging rate 

adjustment is achieved by the secondary side controller shown in Figure 11.2. The driving 

performance under this scenario is indicated in Figure 11.14. In this case, the FTP-72 
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profile is extended by multiple repetitions to cover the full operating SOC range (80-20%). 

It can be noticed that the charging rate starts with 𝑃𝑚𝑖𝑛 at 80% SOC increasing linearly as 

the SOC decreases. Once the SOC reaches 30%, the charger supplies 𝑃𝑚𝑎𝑥 for the 

remaining period. By applying this algorithm, the driving time is extended by more than 5 

hours. 

 

 

Figure 11.14. Driving performance under variable power charging level (SOCi = SOCmax 

=80%, SOCmin =30%). (a) Speed. (b) Charger power. (c) Battery SOC. 
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and G2V operation. In this case, the EV can charge and discharge during the stop time at 

the traffic signal with a fixed level of WPT4. The charging and discharging decision is 

made by comparing the EV’s psychological price (R) (the maximum acceptable price) with 

the grid retail price of the wireless charger (R’), where R depends on the EV’s battery SOC, 

as was presented in Figure 10.6(a) and Equation (10-14).  

The wireless charger retail price (R’), should be more than that of the base load, 

which is 4 cents/kWh [200]. Thus, R’ is set to change from 4.5 to 6.5 cents/kWh. The retail 

price for wireless charging of a road is available for the EV owners based on the current 

traffic information systems of Intelligent Transportation Systems (ITS) [200]. The 

switching between charging and discharging operation is achieved by the vehicle-side 

controller after the EV’s driver accepts. The controller compares the psychological price 

with the retail price of the road. If R is higher than R’, the EV charges the battery; and if R 

is less than R’, the EV discharges the battery. This procedure is applied using the same 

SOC range as was established in the previous section. Over 80%, the EV will discharge in 

order to avoid overcharging, and below 30% the EV will keep charging. 

The driving performance during this scenario is indicated in Figure 11.15. These 

results are obtained by assuming the retail price R’=5.5 cents/kWh, and the maximum and 

the minimum accepted EV psychological price is 6.5 and 4.5 cents/kWh, respectively. It 

can be noticed, at high SOC (≥55%), R> R’, thus the vehicle discharges and the SOC drops 

dramatically [Figure 11.15(c)]. When the SOC goes below a certain value, R becomes less 

than R’ and the BIWPTS starts to charge the battery. These results will vary dynamically 

as the retail price changes. 
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Figure 11.15. Driving performance under charging and discharging operation (WPT4, 

SOCi =80%, Ƥ’=5.5 cents/kWh). (a) Speed. (b) Charger power. (c) SOC. 

 

 

11.4.4 Driving Cycle Performance Evaluation 

For a more clear driving performance assessment, the driving range for all the 

different scenarios are evaluated and compared with the case where there is no charging at 
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continuous driving time per battery cycle (80-20%)], and miles per cycle (mpc) (maximum 
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implementing the QDWPT technology at the traffic signal extends the driving range (time 

and distance) for the whole range of SOCi. Using the WPT4 fixed charging level, the 

driving range is tripled compared to the no-charging case. The automatic variable charging 

(WPTAC) and the automatic charging and discharging (WPTACD) scenarios show 

significant improvement in the driving range as well. This analysis is achieved under the 

assumption that the WPT system is working with perfect alignment between the two power 

pads, and the system is able to transfer the full power capacity. 

 

 

Figure 11.16. Driving range for all different scenarios. (a) Full cycle time (FCT). (b) 

Maximum miles per cycle (mpc). 
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Thus, for fair evaluation among the different scenarios, a performance index is introduced 

in this work. A benefit measure factor has been deduced (b.f) for all scenarios. This factor 

evaluates the extra mpc that the wireless charging adds to the no-charging case over the 

average consumed energy per cycle (kWh), as given in Equation (11-12). 

𝑏. 𝑓 =
𝑚𝑝𝑐ǀ𝑤𝑖𝑡ℎ 𝑐ℎ𝑎𝑟𝑔𝑒𝑟−𝑚𝑝𝑐ǀ𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐ℎ𝑎𝑟𝑔𝑒𝑟

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
     (miles/kWh)                   (11-12) 

This factor is estimated for all scenarios and compared at different SOCi, as presented 

in Table 11.3.  

 

Table 11.3. Benefit Factor Evaluation for all Scenarios (miles/kWh). 

Scenario 

 80%

iSOC 

 70%

iSOC 

 60%

iSOC 

50%  

iSOC 

40%  

iSOC 

30%  

iSOC 

Average  

(mile/kWh) 

WPT1 6.5583 7.5684 9.7528 7.4983 3.4248 1.2626 90.0.6 

WPT2 7.1885 7.2134 7.1898 7.3160 5.7584 1.3605 6.0044 

WPT3 6.8806 6.8902 6.9911 7.7204 6.4914 3.1659 6.3566 

WPT4 7.1200 6.8886 6.8183 6.6669 6.6056 6.5272 6.7711 

WPTAC 6.7995 6.7651 7.0121 6.6713 6.7812 6.4574 6.7478 

WPTACD 6.1799 6.4199 6.6774 6.6357 6.5294 6.4116 6.4755 

 

 

For WPT1, WPT2 and WPT3, b.f changes dramatically with different SOCi. Smaller 

benefits are observed at low SOCi, and high benefits at high SOCi. On the other hand, 
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WPT4, WPTAC, and WPTACD show flat and high benefits over the entire SOCi range. 

By calculating the average b.f, these three scenarios provide the highest benefits, regardless 

of SOCi. Notice the benefit factor in the case of WPTACD is dynamic based on the retail 

price, which is 5.5 cents/kWh in this case. These results can be supplied to the power-flow 

controller to decide the most beneficial scenario based on the initial SOC. 

 

 Impact of Misalignment on the Feasibility Analysis  

One of the main practical limitations of the WPT system is the alignment between 

the two sides, which is significantly dependent on the primary pad structure. Based on the 

literature [82], there are two main visions for implementing the primary pad in dynamic 

WPT systems. The first vision is by burying a long track coupler in the road, in which an 

EV is running along with the track and continues power is transferred, as shown in Figure 

11.17 [216]. The problem of the long track design is that the pickup coil only covers a 

small portion of the track, which makes the coupling coefficient very small. Poor coupling 

generates efficiency and EMI concerns. In addition, this structure shows serious issues 

related to the safety of the creatures crossing the road, while the primary circuit is being 

energized. 

The second vision is to implement a string of pads near to each other similar to the 

one utilized in the stationary charging, as depicted in Figure 11.18 [217]. Each pad can be 

driven by an independent power converter, or one converter can be utilized to drive a 

number of pads, with controlling the current in each pad. Thus, the primary pads can be 

selectively excited without a high-frequency common current. Also, the energized primary 

pads are covered by the vehicle, thus safer operation is experienced. The efficiency and 
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EMI performance can be as good as that in a stationary charging application, however, with 

a tradeoff in higher cost.  

 

 

 

Figure 11.17. Long track primary coupler. 

 

 

 

 

Figure 11.18. String of pads primary coupler. 
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The author believes that the second vision is more appropriate for the quasi-dynamic 

WPT system, since it can handle both the stationary and dynamic operation. By considering 

the second vision, it can be concluded that different sizes and geometries of the vehicle 

should not introduce significant misalignment effect. The expected misalignments will 

result from the stop position, which can be minimized by implementing an automatic 

guiding system. 

Therefore, during the transient stops, it is expected that the EV will experience some 

misalignments, during charging and discharging operation, resulting in a considerable 

deviation from the ideal case that is assumed in the previous feasibility analysis. This 

phenomenon has been considered and presented in this section. The misalignment range is 

defined based on the J2954A standard, in which the accepted range of variation of coupling 

factor in the Z2 class is defined as 0.082 to 0.215 [149]. A reflection of this range on the 

power transfer is evaluated using the system model to be from approximately 40% to 100% 

of the associated power level capacity. Therefore, the misalignment is expected to vary 

randomly within this range. 

The driving performance considering the misalignment is investigated during fixed 

power charging at the WPT4 level in Figure 11.19. This figure shows the charging power 

and the battery SOC over the whole driving profile for three cases: (1) Aligned, when the 

two sides are perfectly aligned and Pc=22kW, (2) Worst Misalignment, when the EV 

experiences the maximum misalignment and Pc=0.4x22kW, and (3) Random 

Misalignment, in which the degree of misalignment is haphazardly assigned at each stop, 

based on a uniform distribution random variable. As can be noticed, the misalignment 

negatively affects the driving performance. For clear evaluation of this effect, the FTC, 
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mbc and b.f are estimated for all previously mentioned scenarios at SOCi=80%, as 

presented in Table 11.4. Considering the misalignment, WPT1 is revealed to be impractical 

in terms of performance for FTC and mbc, since it gives similar results to the case with no 

charging. With WPT4, a significant drop is experienced in the driving range, however, it 

still provides almost double the case without charging. With implementing an automatic 

guiding system, it is expected that the driving performance to be very similar to the perfect 

alignment case. 

 

 

Figure 11.19. Driving performance considering a misalignment (WPT4, SOCi =80%). (a) 

Charging power. (b) Battery SOC. 
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Table 11.4. Driving Performance Considering Misalignment. 

Scenario 

Aligned Worst Misalignment Random Misalignment 

FCT 

(hr) 

mpc 

(miles) 

b.f 

FCT 

(hr) 

mpc 

(miles) 

b.f 

FCT  

(hr) 

mpc 

(miles) 

b.f 

WPT1 2.82 110.5 6.56 2.71 106.2 6.14 2.72 106.7 6.44 

WPT2 3.33 130.5 7.18 2.77 108.64 6.21 3.1 121.14 7.81 

WPT3 3.87 151.84 6.88 3.01 117.88 7.73 3.375 132.25 7.28 

WPT4 7.67 300.4 7.12 3.492 136.8 6.814 4.99 195.37 7.01 

WPTAC 5.375 210.6 6.7995 3.164 124 6.78 3.994 156.5 6.79 

WPTACD 4.98 195.3 6.18 2.872 112.54 6.04 3.48 136.3 6.13 

 

 

 

 Conclusion 

This chapter proposed, modeled, and analyzed the feasibility of installing the qusi-

dynamic WPT systems at traffic signals to improve the range and driving time constraints 

present in the EV. A precise model for wirelessly connected EV, including BIWPTS, a 

lithium-ion battery array and drive system was developed and verified by means of 

simulation and experimentally. Three different scenarios of QDWPT system 

implementation were evaluated based on the FTP-72 city driving profile. Under the first 

scenario, the EV charges at fixed power levels during stops at the traffic intersections. As 

expected, driving range is increased as the charging rate increases until reaching WPT4, 

where energy recovery from charging is close to that of which was consumed by the electric 
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motor. In the second scenario, a variable power charging profile is applied to reduce the 

grid stress, while dramatically extending the driving range. In the final scenario, V2G and 

G2V operation was tested considering the grid retail price and EV’s psychological price. 

The performance of these scenarios were evaluated based on the continuous driving time 

per battery cycle and miles per cycle. A benefit measure factor was introduced to quantify 

the tradeoff between energy consumption and extra miles added, due to QDWPT charging. 

At fixed charging rates below WPT4, the benefit measure factor changed dramatically 

when driving started at different initial SOC values, revealing that starting at a low SOC 

yielded less benefit than starting at a high SOC. However, at WPT4, WPTAC and 

WPTACD, high benefits were revealed regardless of the initial SOC. Finally, the effect of 

coil misalignment during WPT system operation was investigated for all scenarios 

questioning the feasibility of WPT1 charging given a misalignment. This study concluded 

that QDWPT at traffic signals could provide a promising solution to dramatically extend 

the driving range of EVs, while increasing the operating time between traditional charging 

cycles, especially with high power levels. 
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This dissertation presented modeling, design and control analyses for wirelessly 

connected electric vehicles with the power grid to accomplish grid-to-vehicle and vehicle-

to-grid services, in the presence of Photovoltaic generation. Developing accurate analytical 

and physics-based models that are able to predict the system’s dynamics, during transient 

and steady-state operation, utilizing these models to design and optimize the system’s 

components, and then evaluating the entire system’s performance, is the general goal of 

this research. How to choose the wireless power pads and optimize their design parameters; 

how to choose, design and build the appropriate resonant converter topology; and how to 

design and implement the appropriate controller that is able to manage the bidirectional 

power-flow in the system, are the central questions that drive most of these research 

activities. 

In this work, the power conversion systems that integrate the EVs, PV generations 

and power grid through a common DC-bus, to achieve G2V and V2G services, are 

researched. First, the coupling between the PV power system and the DC-link is 

investigated. An accurate nonlinear dynamic model for the grid-connected PV system is 

developed and utilized to predict the system’s performance during the different dynamics. 

Then, this model is linearized to obtain the small signal model for the same system. Based 

on this model, clear design considerations for the maximum power point tracking algorithm 

in the system are stated and applied for the different MPPT algorithms. In addition, an 

advanced intelligent MPPT algorithm based on fuzzy logic is proposed and its design 

parameters are optimized using both the developed small signal model and genetic 
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algorithm search technique. The proposed intelligent MPPT algorithm is simulated and 

experimentally tested under fast variation of irradiance and temperature conditions, and 

compared with the P&O and INC algorithms. The proposed controller shows faster 

transient response, less steady state error and robust tracking performance. 

Another part in the V2G system that is researched in this work is the bidirectional 

wireless integration between the EV and DC-bus. In this topic, many aspects have been 

explored, analyzing practical issues in the system. The themes that have been examined in 

this area are summarized as follows: 

- Developing accurate mathematical and physics-based models for the bidirectional 

inductive wireless power transfer system in EVs applications. The models were able to 

predict the system’s performance and power-flow, and novel practical limitations for 

active and reactive power-flow during G2V and V2G operations are stated.  

- Designing, building and testing experimental prototypes and computer based models for 

the BIWPTS to verify the proposed theoretical analyses. 

- Performing comparative and assessment analyses for the main compensation topologies 

in the symmetrical BIWPTS: LC-series, LC-parallel and LCL topology. The BIWPTSs’ 

performance is evaluated by studying the active and reactive power-flow, efficiency, 

power factor, physical installation, design and control complexity, and sensitivity to the 

misalignment. The results demonstrate that LCL-topology is more appropriate for EVs 

applications and in the situations where the inverter is a long way from the pad. This 

topology shows current-source characteristics, power factor correction capability, 

simple design and control, high overall efficiency and power factor, and more 

robustness to misalignment.  
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- Building an accurate physics-based co-simulation platform for the LCL BIWPTS that 

links the circuit model of the power electronic converters and controllers in Simulink, 

with the finite-element model of the electro-magnetic coupler. The effectiveness of the 

platform is clarified by investigating the nonlinearities in the system’s performance due 

to the magnetic material and power electronics converters, in terms of error and 

harmonics analysis. 

- Proposing a clear design methodology for the different components of the LCL 

BIWPTS in EVs applications. The proposed strategy depends on electromagnetic field 

computations, joined with analytical models. A 3-D finite-element model for an 8-kW 

polarized double-D power pad was modeled, optimized, and built. Moreover, the choice 

of the power factor correction and the impedance matching elements was investigated. 

- Accomplishing an automatic magnetic design multi-objective optimization for the 

double-D power pad’s parameters. The design parameters are chosen, such that the 

system shows the best coupling performance under different misalignments with 

minimum cost. The optimization analysis is achieved by linking the efficient improved 

Tabu search algorithm in the MATLAB environment with a 2D FEM in Maxwell. For 

verification purposes, the system coupling performance and cost are investigated using 

the optimum design parameters and compared with three other designs presented in the 

literature. The proposed optimized design shows the best coupling performance with 

moderate cost.  

- Developing a new two-layer predictive power-flow controller to manage the 

bidirectional power-flow between the EV and power grid, during the long-term parking 

(stationary) and transient stops at traffic signals (quasi-dynamic). The controller is 
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designed to be placed on the vehicle’s side to allow the autonomous charging and 

discharging operation for the EV’s battery. It gives the capability to the EV’s operator 

to choose among five different modes of operation, considering the grid’s retail price and 

EV’s battery SOC. The proposed controller is able to predict the control parameters for 

both the primary and secondary converters based on the system’s analytical model. 

Moreover, it considers the misalignment in the system, by adaptively estimating the 

mutual inductance before applying the proposed algorithm. The practical 

implementation of the proposed controller evidenced its performance’s accuracy and 

fast response, during both the transient and steady-state operation, compared to the 

available controller in the literature. 

- Building a comprehensive simulation model for a light-duty wirelessly connected EV, 

including BIWPTS, EV’s battery and the traction system. The model was utilized to 

investigate the feasibility of implementing the quasi-dynamic wireless charging systems 

at the traffic signals on the road, to charge the EV during the transient stops at the 

intersections. This study demonstrated that implementing the quasi-dynamic wireless 

charging systems at the traffic signals could provide a promising solution to 

dramatically extend the driving range of EVs while increasing the operating time 

between traditional charging cycles, especially with high power levels. 
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The main focus of this dissertation is to present modeling, design and control 

analyses for the power conversion systems between the EVs, PV generations and power-

grid, to accomplish G2V and V2G services. More focus was provided to the bidirectional 

wireless power transfer system between each EV and the DC-bus. However, to further 

improve the quality of the power conversion systems, the following recommendations are 

stated: 

- Utilizing the wide-band gap switching devices for building the HF resonance converters. 

- Considering the switching frequency range recommended by the J2954A standard 

(81.38-90 kHz) in the prototype design instead of 40 KHz. 

- Performing EMI and EMC analysis for both the wireless coupler and the power 

electronics converters. 

- Investigating the design of the aluminum shield and its impact on the system’s 

performance. 

- Including the wireless data communication between the two sides of the BIWPTS and 

exploring its impact on the autonomous controller’s performance. 

- Modifying the physics-based co-simulation platform to represent the BIWPTS in 

dynamic and quasi-dynamic WPT operation besides the stationary situation. 

Following the presented study, several future research works can be performed, as 

follows: 

- Developing and optimizing new power pad structures for high-power inductive 
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stationary, dynamic and quasi-dynamic charging systems for EVs.  

- Proposing new arrangements for the compensation networks in the inductive charger 

that provide interoperable and in-sensitive power-flow operation. 

- Researching the high frequency resonant power converters for the wireless charger, 

involving the wide-band gap switching devices, such as SiC and GaN. 

- Developing intelligent and adaptive controllers for managing the bidirectional active 

and reactive power-flow operation. 

- Building an accurate simulation platform to test and evaluate the different 

implementation visions of inductive power charging for EVs (stationary, dynamic and 

quasi-dynamic).  

-  Developing autonomous and centralized high-level intelligent controllers that achieve 

the integration among a fleet of EVs, RESs and power grid based on EV’s operator 

desire, energy price, EV’s psychological price, grid voltage and frequency. 

-  Implementing the wireless data communication for the inductive charging system and 

investigating the cyber and physical security issues in both power and data transfer. 

- Investigating the rule of implementing different energy storage technologies, such as 

Li-ion battery, super-capacitor and flywheel, in the EV’s power train, with the 

wirelessly connected EVs. 
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