356 research outputs found

    High-speed PAM4-based Optical SDM Interconnects with Directly Modulated Long-wavelength VCSEL

    Full text link
    This paper reports the demonstration of high-speed PAM-4 transmission using a 1.5-{\mu}m single-mode vertical cavity surface emitting laser (SM-VCSEL) over multicore fiber with 7 cores over different distances. We have successfully generated up to 70 Gbaud 4-level pulse amplitude modulation (PAM-4) signals with a VCSEL in optical back-to-back, and transmitted 50 Gbaud PAM-4 signals over both 1-km dispersion-uncompensated and 10-km dispersion-compensated in each core, enabling a total data throughput of 700 Gbps over the 7-core fiber. Moreover, 56 Gbaud PAM-4 over 1-km has also been shown, whereby unfortunately not all cores provide the required 3.8 ×\times 10 −3^{-3} bit error rate (BER) for the 7% overhead-hard decision forward error correction (7% OH HDFEC). The limited bandwidth of the VCSEL and the adverse chromatic dispersion of the fiber are suppressed with pre-equalization based on accurate end-to-end channel characterizations. With a digital post-equalization, BER performance below the 7% OH-HDFEC limit is achieved over all cores. The demonstrated results show a great potential to realize high-capacity and compact short-reach optical interconnects for data centers.Comment: 7 pages, accepted to publication in 'Journal of Lightwave Technology (JLT

    Visible Light Communications towards 5G

    Get PDF
    5G networks have to offer extremely high capacity for novel streaming applications. One of the most promising approaches is to embed large numbers of co-operating small cells into the macro-cell coverage area. Alternatively, optical wireless based technologies can be adopted as an alternative physical layer offering higher data rates. Visible light communications (VLC) is an emerging technology for future high capacity communication links (it has been accepted to 5GPP) in the visible range of the electromagnetic spectrum (~370–780 nm) utilizing light-emitting diodes (LEDs) simultaneously provide data transmission and room illumination. A major challenge in VLC is the LED modulation bandwidths, which are limited to a few MHz. However, myriad gigabit speed transmission links have already been demonstrated. Non line-of-sight (NLOS) optical wireless is resistant to blocking by people and obstacles and is capable of adapting its’ throughput according to the current channel state information. Concurrently, organic polymer LEDs (PLEDs) have become the focus of enormous attention for solid-state lighting applications due to their advantages over conventional white LEDs such as ultra-low costs, low heating temperature, mechanical flexibility and large photoactive areas when produced with wet processing methods. This paper discusses development of such VLC links with a view to implementing ubiquitous broadcasting networks featuring advanced modulation formats such as orthogonal frequency division multiplexing (OFDM) or carrier-less amplitude and phase modulation (CAP) in conjunction with equalization techniques. Finally, this paper will also summarize the results of the European project ICT COST IC1101 OPTICWISE (Optical Wireless Communications - An Emerging Technology) dealing VLC and OLEDs towards 5G networks

    Outage Probability of Multi-hop Networks with Amplify-and-Forward Full-duplex Relaying

    Get PDF
    abstract: Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates. When a relay in a multi-hop full-duplex system amplifies and forwards its received signals, due to the presence of self-interference, the input-output relationship is determined by recursive equations. This thesis introduces a signal flow graph approach to solve the problem of finding the input-output relationship of a multi-hop amplify-and-forward full-duplex relaying system using Mason's gain formula. Even when all links have flat fading channels, the residual self-interference component due to imperfect self-interference cancellation at the relays results in an end-to-end effective channel that is an all-pole frequency-selective channel. Also, by assuming the relay channels undergo frequency-selective fading, the outage probability analysis is performed and the performance is compared with the case when the relay channels undergo frequency-flat fading. The outage performance of this system is performed assuming that the destination employs an equalizer or a matched filter. For the case of a two-hop (single relay) full-duplex amplify-and-forward relaying system, the bounds on the outage probability are derived by assuming that the destination employs a matched filter or a minimum mean squared error decision feedback equalizer. For the case of a three-hop (two-relay) system with frequency-flat relay channels, the outage probability analysis is performed by considering the output SNR of different types of equalizers and matched filter at the destination. Also, the closed-form upper bounds on the output SNR are derived when the destination employs a minimum mean squared error decision feedback equalizer which is used in outage probability analysis. It is seen that for sufficiently high target rates, full-duplex relaying with equalizers is always better than half-duplex relaying in terms of achieving lower outage probability, despite the higher RSI. In contrast, since full-duplex relaying with MF is sensitive to RSI, it is outperformed by half-duplex relaying under strong RSI.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Pré-codificação e equalização para sistemas SC-FDMA heterogéneos

    Get PDF
    Mestrado em Engenharia ElectrĂłnica e TelecomunicaçÔesMobile traffic in cellular networks is increasing exponentially. Small-cells are considered as a key solution to meet these requirements. Under the same spectrum the small-cells and the associated macro-cell (forming the so called heterogeneous systems) must cooperate so that one system can adapt to the other. If no cooperation is considered then the small-cells will generate harmful interference at the macro-cell. Interference alignment (IA) is a precoding technique that is able to achieve the maximum degrees of freedom of the interference channel, and can efficiently deal with inter-systems interference. Single carrier frequency division multiple access (SC-FDMA) is a promising solution technique for high data rate uplink communications in future cellular systems. Conventional linear equalizers are not efficient to remove the residual inter-carrier interference of the SC-FDMA systems. For this reason, there has been significant interest in the design of nonlinear frequency domain equalizers in general and decision feedback equalizers in particular, with the iterative block decision feedback equalizer (IB-DFE) being the most promising nonlinear equalizer. In this dissertation we propose and evaluate joint interference alignment precoding at the small cell user terminals with iterative non-linear frequency domain equalizer at the receivers (macro base station and central unit) for SC-FDMA based heterogeneous networks. The small-cell precoders are designed by enforcing that all generated interference at the macro-cell is aligned in an orthogonal subspace to the macro-cell received signal subspace. This enforces that no performance degradation is observed at the macro cell. Then, we design an iterative nonlinear frequency domain equalizer at the macro-cell receiver that is able to recover the macro-cell spatial streams, in the presence of both small-cell and inter-carrier interferences. The results show that the proposed transmitter and receiver structures are robust to the inter-system interferences and at the same time are able to efficient separate the macro and small cells spatial streams.O trafego mĂłvel nas redes celulares tem aumentado exponencialmente. As pico- cĂ©lulas sĂŁo consideradas como a solução chave para cumprir estes requisitos. Dentro do mesmo espectro, as pico-cĂ©lulas e as macro-cĂ©lulas (formando os chamados sistemas heterogĂ©neos) precisam de colaborar de modo a que um sistema possa adaptar-se ao outro. Se nĂŁo for considerada a cooperação, entĂŁo as pico-cĂ©lulas irĂŁo gerar interferĂȘncia prejudicial na macro-cĂ©lula. Interference alignment (IA) Ă© uma tĂ©cnica de prĂ©codificação que Ă© capaz de atingir o grau mĂĄximo de liberdade do canal de interferĂȘncia, e consegue lidar eficazmente com interferĂȘncia entre sistemas. Single carrier frequency division multiple access (SC-FDMA) Ă© uma solução tĂ©cnica promissora para transmissĂŁo de dados em uplink, para sistemas celulares futuros. Equalizadores lineares convencionais nĂŁo sĂŁo eficientes a remover a interferĂȘncia residual entre portadoras dos sistemas SC-FDMA. Por este motivo, tem havido interesse significativo no desenho de equalizadores nĂŁo lineares no domĂ­nio da frequĂȘncia em geral e em equalizadores baseados em decisĂŁo por feedback em particular, tendo o iterative block decision feedback equalizer (IB-DFE) como o equalizador nĂŁo linear mais promissor. Nesta dissertação propomos e avaliamos prĂ©codificação de alinhamento de interferĂȘncia nos terminais das pico-cĂ©lulas em conjunto com equalizadores nĂŁo lineares no domĂ­nio da frequĂȘncia nos recetores (estação base da macro-cĂ©lula e unidade central de processamento) para redes heterogĂ©neas baseadas em SC-FDMA. Os prĂ©codificadores das pico-cĂ©lulas sĂŁo desenhados de maneira a obrigar a que toda a interferĂȘncia gerada na macro-cĂ©lula esteja alinhada num subespaço ortogonal em relação ao subespaço do sinal recebido na macro- cĂ©lula. Isto obriga a que nĂŁo seja observada degradação de desempenho na macro-cĂ©lula. Em seguida, desenhamos um equalizador nĂŁo linear no domĂ­nio da frequĂȘncia no recetor da macro-cĂ©lula capaz de recuperar os fluxos de dados da macro-cĂ©lula, na presença de interferĂȘncia tanto entre portadoras como das pico-cĂ©lulas. Os resultados mostram que as estruturas de transmissĂŁo e receção propostas sĂŁo robustas contra a interferĂȘncia entre sistemas e ao mesmo tempo capaz de separar eficientemente os dados da macro e das pico cĂ©lulas

    Radio hardware virtualization for software-defined wireless networks

    Get PDF
    Software-Defined Network (SDN) is a promising architecture for next generation Internet. SDN can achieve Network Function Virtualization much more efficiently than conventional architectures by splitting the data and control planes. Though SDN emerged first in wired network, its wireless counterpart Software-Defined Wireless Network (SDWN) also attracted an increasing amount of interest in the recent years. Wireless networks have some distinct characteristics compared to the wired networks due to the wireless channel dynamics. Therefore, network controllers present some extra degrees of freedom, such as taking measurements against interference and noise, or adapting channels according to the radio spectrum occupation. These specific characteristics bring about more challenges to wireless SDNs. Currently, SDWN implementations are mainly using customized firmware, such as OpenWRT, running on an embedded application processor in commercial WiFi chips, and restricted to layers above lower Media Access Control. This limitation comes from the fact that radio hardware usually require specific drivers, which have a proprietary implementation by various chipset vendors. Hence, it is difficult, if not impossible, to achieve virtualization on the radio hardware. However, this status has been changing as Software-Defined Radio (SDR) systems open up the entire radio communication stack to radio hobbyists and researchers. The bridge between SDR and SDN will make it possible to bring the softwarization and virtualization of wireless networks down to the physical layer, which will unlock the full potential of SDWN. This paper investigates the necessity and feasibility of extending the virtualization of wireless networks towards the radio hardware. A SDR architecture is presented for radio hardware virtualization in order to facilitate SDWN design and experimentation. We do believe that by adopting the virtualization-oriented hardware accelerator design presented here, an all-layer end-to-end high performance SDWN can be achieved

    Técnicas de igualização adaptativas com estimativas imperfeitas do canal para os futuros sistemas 5G

    Get PDF
    Wireless communication networks have been continuously experiencing an exponential growth since their inception. The overwhelming demand for high data rates, support of a large number of users while mitigating disruptive interference are the constant research focus and it has led to the creation of new technologies and efficient techniques. Orthogonal frequency division multiplexing (OFDM) is the most common example of a technology that has come to the fore in this past decade as it provided a simple and generally ideal platform for wireless data transmission. It’s drawback of a rather high peak-to-average power ratio (PAPR) and sensitivity to phase noise, which in turn led to the adoption of alternative techniques, such as the single carrier systems with frequency domain equalization (SC-FDE) or the multi carrier systems with code division multiple access (MC-CDMA), but the nonlinear Frequency Domain Equalizers (FDE) have been of special note due to their improved performance. From these, the Iterative Block Decision Feedback Equalizer (IB-DFE) has proven itself especially promising due to its compatibility with space diversity, MIMO systems and CDMA schemes. However, the IB-DFE requires the system to have constant knowledge of the communication channel properties, that is, to have constantly perfect Channel State Information (CSI), which is both unrealistic and impractical to implement. In this dissertation we shall design an altered IB-DFE receiver that is able to properly detect signals from SC-FDMA based transmitters, even with constantly erroneous channel states. The results shall demonstrate that the proposed equalization scheme is robust to imperfect CSI (I-CSI) situations, since its performance is constantly close to the perfect CSI case, within just a few iterations.Redes sem fios tĂȘm crescido de maneira contĂ­nua e exponencial desde a sua incepção. A tremenda exigĂȘncia para altas taxas de dados e o suporte para um elevado nĂșmero de utilizadores sem aumentar a interferĂȘncia disruptiva originada por estes sĂŁo alguns dos focos que levaram ao desenvolvimento de tĂ©cnicas de compensação e novas tecnologias. “Orthogonal frequency division multiplexing” (OFDM) Ă© um dos exemplos de tecnologias que se destacaram nesta Ășltima dĂ©cada, visto ter fornecido uma plataforma para transmissĂŁo de dados sem-fio eficaz e simples. O seu maior problema Ă© a alta “peak-to-average power ratio” (PAPR) e a sua sensibilidade a ruĂ­do de fase que deram motivo Ă  adoção de tĂ©cnicas alternativas, tais como os sistemas “single carrier” com “frequency domain equalization” (SC-FDE) ou os sistemas “multi-carrier” com “code division multiple access” (MC-CDMA), mas equalizadores nĂŁo lineares no domĂ­nio de frequĂȘncia tĂȘm sido alvo de especial atenção devido ao seu melhor desempenho. Destes, o “iterative block decision feedback equalizer” (IB-DFE) tem-se provado especialmente promissor devido Ă  sua compatibilidade com tĂ©cnicas de diversidade no espaço, sistemas MIMO e esquemas CDMA. No entanto, IB-DFE requer que o sistema tenha constante conhecimento das propriedades dos canais usados, ou seja, necessita de ter perfeito “channel state information” (CSI) constantemente, o que Ă© tanto irrealista como impossĂ­vel de implementar. Nesta dissertação iremos projetar um recetor IB-DFE alterado de forma a conseguir detetar sinais dum transmissor baseado em tecnologia SC-FDMA, mesmo com a informação de estado de canal errada. Os resultados irĂŁo entĂŁo demonstrar que o novo esquema de equalização proposto Ă© robusto para situaçÔes de CSI imperfeito (I-CSI), visto que o seu desempenho se mantĂ©m prĂłximo dos valores esperados para CSI perfeito, em apenas algumas iteraçÔes.Mestrado em Engenharia EletrĂłnica e TelecomunicaçÔe
    • 

    corecore