467 research outputs found

    Particle swarm optimization for routing and wavelength assignment in next generation WDM networks.

    Get PDF
    PhDAll-optical Wave Division Multiplexed (WDM) networking is a promising technology for long-haul backbone and large metropolitan optical networks in order to meet the non-diminishing bandwidth demands of future applications and services. Examples could include archival and recovery of data to/from Storage Area Networks (i.e. for banks), High bandwidth medical imaging (for remote operations), High Definition (HD) digital broadcast and streaming over the Internet, distributed orchestrated computing, and peak-demand short-term connectivity for Access Network providers and wireless network operators for backhaul surges. One desirable feature is fast and automatic provisioning. Connection (lightpath) provisioning in optically switched networks requires both route computation and a single wavelength to be assigned for the lightpath. This is called Routing and Wavelength Assignment (RWA). RWA can be classified as static RWA and dynamic RWA. Static RWA is an NP-hard (non-polynomial time hard) optimisation task. Dynamic RWA is even more challenging as connection requests arrive dynamically, on-the-fly and have random connection holding times. Traditionally, global-optimum mathematical search schemes like integer linear programming and graph colouring are used to find an optimal solution for NP-hard problems. However such schemes become unusable for connection provisioning in a dynamic environment, due to the computational complexity and time required to undertake the search. To perform dynamic provisioning, different heuristic and stochastic techniques are used. Particle Swarm Optimisation (PSO) is a population-based global optimisation scheme that belongs to the class of evolutionary search algorithms and has successfully been used to solve many NP-hard optimisation problems in both static and dynamic environments. In this thesis, a novel PSO based scheme is proposed to solve the static RWA case, which can achieve optimal/near-optimal solution. In order to reduce the risk of premature convergence of the swarm and to avoid selecting local optima, a search scheme is proposed to solve the static RWA, based on the position of swarm‘s global best particle and personal best position of each particle. To solve dynamic RWA problem, a PSO based scheme is proposed which can provision a connection within a fraction of a second. This feature is crucial to provisioning services like bandwidth on demand connectivity. To improve the convergence speed of the swarm towards an optimal/near-optimal solution, a novel chaotic factor is introduced into the PSO algorithm, i.e. CPSO, which helps the swarm reach a relatively good solution in fewer iterations. Experimental results for PSO/CPSO based dynamic RWA algorithms show that the proposed schemes perform better compared to other evolutionary techniques like genetic algorithms, ant colony optimization. This is both in terms of quality of solution and computation time. The proposed schemes also show significant improvements in blocking probability performance compared to traditional dynamic RWA schemes like SP-FF and SP-MU algorithms

    Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services

    Get PDF
    This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated

    Architectures and protocols for sub-wavelength optical networks: contributions to connectionless and connection-oriented data transport

    Get PDF
    La rĂ pida evoluciĂł d’Internet i l’àmplia gamma de noves aplicacions (per exemple, multimĂšdia, videoconferĂšncia, jocs en lĂ­nia, etc.) ha fomentat canvis revolucionaris en la manera com ens comuniquem. A mĂ©s, algunes d’aquestes aplicacions demanden grans quantitats de recursos d’ample de banda amb diversos requeriments de qualitat de servei (QoS). El desenvolupament de la multiplexaciĂł per divisiĂł de longitud d’ona (WDM) en els anys noranta va fer molt rendible la disponibilitat d’ample de banda. Avui dia, les tecnologies de commutaciĂł ĂČptica de circuits sĂłn predominants en el nucli de la xarxa, les quals permeten la configuraciĂł de canals (lightpaths) a travĂ©s de la xarxa. No obstant aixĂČ, la granularitat d’aquests canals ocupa tota la longitud d’ona, el que fa que siguin ineficients per a proveir canals de menor ample de banda (sub-longitud d’ona). Segons la comunitat cientĂ­fica, Ă©s necessari augmentar la transparĂšncia dels protocols, aixĂ­ com millorar l’aprovisionament d’ample de banda de forma dinĂ mica. Per tal de fer aixĂČ realitat, Ă©s necessari desenvolupar noves arquitectures. La commutaciĂł ĂČptica de rĂ fegues i de paquets (OBS/OPS), sĂłn dues de les tecnologies proposades. Aquesta tesi contribueix amb tres arquitectures de xarxa destinades a millorar el transport de dades sub-longitud d’ona. En primer lloc, aprofundim en la naturalesa sense connexiĂł en OBS. En aquest cas, la xarxa incrementa el seu dinamisme a causa de les transmissions a rĂ fega. A mĂ©s, les col·lisions entre rĂ fegues degraden el rendiment de la xarxa fins i tot a cĂ rregues molt baixes. Per fer front a aquestes col·lisions, es proposa un esquema de resoluciĂł de col·lisions pro actiu basat en un algorisme d’encaminament i assignaciĂł de longitud d’ona (RWA) que balanceja de forma automĂ tica i distribuĂŻda la cĂ rrega en la xarxa. En aquest protocol, el RWA i la transmissiĂł de rĂ fegues es basen en l’explotaciĂł i exploraciĂł de regles de commutaciĂł que incorporen informaciĂł sobre contencions i encaminament. Per donar suport a aquesta arquitectura, s’utilitzen dos tipus de paquets de control per a l’encaminament de les rĂ fegues i l’actualitzaciĂł de les regles de commutaciĂł, respectivament. Per analitzar els beneficis del nou algorisme, s’utilitzen quatre topologies de xarxa diferents. Els resultats indiquen que el mĂštode proposat millora en diferents marges la resta d’algorismes RWA en funciĂł de la topologia i sense penalitzar altres parĂ metres com el retard extrem a extrem. La segona contribuciĂł proposa una arquitectura hĂ­brida sense i orientada a connexiĂł sobre la base d’un protocol de control d’accĂ©s al medi (MAC) per a xarxes OBS (DAOBS). El MAC ofereix dos mĂštodes d’accĂ©s: arbitratge de cua (QA) per a la transmissiĂł de rĂ fegues sense connexiĂł, i pre-arbitratge (PA) per serveis TDM orientats a connexiĂł. Aquesta arquitectura permet una Ă mplia gamma d’aplicacions sensibles al retard i al bloqueig. Els resultats avaluats a travĂ©s de simulacions mostren que en l’accĂ©s QA, les rĂ fegues de mĂ©s alta prioritat tenen garantides zero pĂšrdues i latĂšncies d’accĂ©s molt baixes. Pel que fa a l’accĂ©s PA, es reporta que la duplicaciĂł de la cĂ rrega TDM augmenta en mĂ©s d’un ordre la probabilitat de bloqueig, perĂČ sense afectar en la mateixa mesura les rĂ fegues sense connexiĂł. En aquest capĂ­tol tambĂ© es tracten dos dels problemes relacionats amb l’arquitectura DAOBS i el seu funcionament. En primer lloc, es proposa un model matemĂ tic per aproximar el retard d’accĂ©s inferior i superior com a conseqĂŒĂšncia de l’accĂ©s QA. En segon lloc, es formula matemĂ ticament la generaciĂł i optimitzaciĂł de les topologies virtuals que suporten el protocol per a l’escenari amb trĂ fic estĂ tic. Finalment, l’Ășltima contribuciĂł explora els beneficis d’una arquitectura de xarxa ĂČptica per temps compartit (TSON) basada en elements de cĂ lcul de camins (PCE) centralitzats per tal d’evitar col·lisions en la xarxa. Aquesta arquitectura permet garantir l’aprovisionament orientat a connexiĂł de canals sub-longitud d’ona. En aquest capĂ­tol proposem i simulem tres arquitectures GMPLS/PCE/TSON. A causa del enfocament centralitzat, el rendiment de la xarxa depĂšn en gran mesura de l’assignaciĂł i aprovisionament de les connexions. Amb aquesta finalitat, es proposen diferents algorismes d’assignaciĂł de ranures temporals i es comparen amb les corresponents formulacions de programaciĂł lineal (ILP) per al cas estĂ tic. Per al cas de trĂ fic dinĂ mic, proposem i avaluem mitjançant simulaciĂł diferents heurĂ­stiques. Els resultats mostren els beneficis de proporcionar flexibilitat en els dominis temporal i freqĂŒencial a l’hora d’assignar les ranures temporals.The rapid evolving Internet and the broad range of new data applications (e.g., multimedia, video-conference, online gaming, etc.) is fostering revolutionary changes in the way we communicate. In addition, some of these applications demand for unprecedented amounts of bandwidth resources with diverse quality of service (QoS). The development of wavelength division multiplexing (WDM) in the 90's made very cost-effective the availability of bandwidth. Nowadays, optical circuit switching technologies are predominant in the core enabling the set up of lightpaths across the network. However, full-wavelength lightpath granularity is too coarse, which results to be inefficient for provisioning sub-wavelength channels. As remarked by the research community, an open issue in optical networking is increasing the protocol transparency as well as provisioning true dynamic bandwidth allocation at the network level. To this end, new architectures are required. Optical burst/packet switching (OBS/OPS) are two such proposed technologies under investigation. This thesis contributes with three network architectures which aim at improving the sub-wavelength data transport from different perspectives. First, we gain insight into the connectionless nature of OBS. Here, the network dynamics are increased due to the short-lived burst transmissions. Moreover, burst contentions degrade the performance even at very low loads. To cope with them, we propose a proactive resolution scheme by means of a distributed auto load-balancing routing and wavelength assignment (RWA) algorithm for wavelength-continuity constraint networks. In this protocol, the RWA and burst forwarding is based on the exploitation and exploration of switching rule concentration values that incorporate contention and forwarding desirability information. To support such architecture, forward and backward control packets are used in the burst forwarding and updating rules, respectively. In order to analyze the benefits of the new algorithm, four different network topologies are used. Results indicate that the proposed method outperforms the rest of tested RWA algorithms at various margins depending on the topology without penalizing other parameters such as end-to-end delay. The second contribution proposes a hybrid connectionless and connection-oriented architecture based on a medium access control (MAC) protocol for OBS networks (DAOBS). The MAC provides two main access mechanisms: queue arbitrated (QA) for connectionless bursts and pre-arbitrated (PA) for TDM connection-oriented services. Such an architecture allows for a broad range of delay-sensitive applications or guaranteed services. Results evaluated through simulations show that in the QA access mode highest priority bursts are guaranteed zero losses and very low access latencies. Regarding the PA mode, we report that doubling the offered TDM traffic load increases in more than one order their connection blocking, slightly affecting the blocking of other connectionless bursts. In this chapter, we also tackle two of the issues related with the DAOBS architecture and its operation. Firstly, we model mathematically the lower and upper approximations of the access delay as a consequence of the connectionless queue arbitrated access. Secondly, we formulate the generation of the virtual light-tree overlay topology for the static traffic case.Postprint (published version

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    Experimental comparison of impairment-aware RWA algorithms in a GMPLS-controlled dynamic optical network

    Get PDF
    The European research project DICONET proposed and implemented a multi-plane impairment-aware solution for flexible, robust and cost-effective core optical networks. The vision of DICONET was realized via a set of cross-layer optimization algorithms designed to serve the network during planning and operation. The cross-layer modules were incorporated in a common software platform forming a planning and operation tool that takes into account physical-layer impairments in the decision making. The overall solution relies on a GMPLS-based control plane that was extended to disseminate the physical layer information required by the cross-layer modules. One of the key activities in DICONET concerns the routing and wavelength assignment of traffic demands that arrive dynamically during the network operation. Identifying the important role of dynamic lightpath provisioning, in this work we focused on the performance of routing algorithms in dynamic optical networks. We tested the suitability and performance of two different online IA-RWA algorithms in a 14-node experimental test-bed that employed centralized control-plane architecture under the same network and traffic conditions. The parameters used to evaluate the two routing engines included the lightpath setup time and the blocking ratio in a traffic scenario where connections arrive and depart from the network dynamically. Results for different traffic loads showed that optimum impairment-aware decisions are made at the expense of higher lightpath setup times.Postprint (published version
    • 

    corecore