20 research outputs found

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Path deviations outperform approximate stability in heterogeneous congestion games

    Get PDF
    We consider non-atomic network congestion games with heterogeneous players where the latencies of the paths are subject to some bounded deviations. This model encompasses several well-studied extensions of the classical Wardrop model which incorporate, for example, risk-aversion, altruism or travel time delays. Our main goal is to analyze the worst-case deterioration in social cost of a perturbed Nash flow (i.e., for the perturbed latencies) with respect to an original Nash flow. We show that for homogeneous players perturbed Nash flows coincide with approximate Nash flows and derive tight bounds on their inefficiency. In contrast, we show that for heterogeneous populations this equivalence does not hold. We derive tight bounds on the inefficiency of both perturbed and approximate Nash flows for arbitrary player sensitivity distributions. Intuitively, our results suggest that the negative impact of path deviations (e.g., caused by risk-averse behavior or latency perturbations) is less severe than approximate stability (e.g., caused by limited responsiveness or bounded rationality). We also obtain a tight bound on the inefficiency of perturbed Nash flows for matroid congestion games and homogeneous populations if the path deviations can be decomposed into edge deviations. In particular, this provides a tight bound on the Price of Risk-Aversion for matroid congestion games

    Efficient computation of approximate pure Nash equilibria in congestion games

    Get PDF
    Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general {\sf PLS}-complete. We present a surprisingly simple polynomial-time algorithm that computes O(1)-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes (2+ϵ)(2+\epsilon)-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and 1/ϵ1/\epsilon. It also applies to games with polynomial latency functions with constant maximum degree dd; there, the approximation guarantee is dO(d)d^{O(d)}. The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium; the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing ρ\rho-approximate equilibria is {\sf PLS}-complete for any polynomial-time computable ρ\rho

    Efficiency of Restricted Tolls in Non-atomic Network Routing Games

    Full text link
    An effective means to reduce the inefficiency of Nash flows in non- atomic network routing games is to impose tolls on the arcs of the network. It is a well-known fact that marginal cost tolls induce a Nash flow that corresponds to a minimum cost flow. However, despite their effectiveness, marginal cost tolls suffer from two major drawbacks, namely (i) that potentially every arc of the network is tolled, and (ii) that the imposed tolls can be arbitrarily large. In this paper, we study the restricted network toll problem in which tolls can be imposed on the arcs of the network but are restricted to not exceed a predefined threshold for every arc. We show that optimal restricted tolls can be computed efficiently for parallel-arc networks and affine latency functions. This generalizes a previous work on taxing subnetworks to arbitrary restrictions. Our algorithm is quite simple, but relies on solving several convex programs. The key to our approach is a characterization of the flows that are inducible by restricted tolls for single-commodity networks. We also derive bounds on the efficiency of restricted tolls for multi-commodity networks and polynomial latency functions. These bounds are tight even for parallel-arc networks. Our bounds show that restricted tolls can significantly reduce the price of anarchy if the restrictions imposed on arcs with high-degree polynomials are not too severe. Our proof is constructive. We define tolls respecting the given thresholds and show that these tolls lead to a reduced price of anarchy by using a (\lambda,\mu)-smoothness approach

    Computing Approximate Equilibria in Weighted Congestion Games via Best-Responses

    Full text link
    We present a deterministic polynomial-time algorithm for computing dd+o(d)d^{d+o(d)}-approximate (pure) Nash equilibria in weighted congestion games with polynomial cost functions of degree at most dd. This is an exponential improvement of the approximation factor with respect to the previously best deterministic algorithm. An appealing additional feature of our algorithm is that it uses only best-improvement steps in the actual game, as opposed to earlier approaches that first had to transform the game itself. Our algorithm is an adaptation of the seminal algorithm by Caragiannis et al. [FOCS'11, TEAC 2015], but we utilize an approximate potential function directly on the original game instead of an exact one on a modified game. A critical component of our analysis, which is of independent interest, is the derivation of a novel bound of [d/W(d/ρ)]d+1[d/\mathcal{W}(d/\rho)]^{d+1} for the Price of Anarchy (PoA) of ρ\rho-approximate equilibria in weighted congestion games, where W\mathcal{W} is the Lambert-W function. More specifically, we show that this PoA is exactly equal to Φd,ρd+1\Phi_{d,\rho}^{d+1}, where Φd,ρ\Phi_{d,\rho} is the unique positive solution of the equation ρ(x+1)d=xd+1\rho (x+1)^d=x^{d+1}. Our upper bound is derived via a smoothness-like argument, and thus holds even for mixed Nash and correlated equilibria, while our lower bound is simple enough to apply even to singleton congestion games
    corecore