202 research outputs found

    QuickXsort: Efficient Sorting with n log n - 1.399n +o(n) Comparisons on Average

    Full text link
    In this paper we generalize the idea of QuickHeapsort leading to the notion of QuickXsort. Given some external sorting algorithm X, QuickXsort yields an internal sorting algorithm if X satisfies certain natural conditions. With QuickWeakHeapsort and QuickMergesort we present two examples for the QuickXsort-construction. Both are efficient algorithms that incur approximately n log n - 1.26n +o(n) comparisons on the average. A worst case of n log n + O(n) comparisons can be achieved without significantly affecting the average case. Furthermore, we describe an implementation of MergeInsertion for small n. Taking MergeInsertion as a base case for QuickMergesort, we establish a worst-case efficient sorting algorithm calling for n log n - 1.3999n + o(n) comparisons on average. QuickMergesort with constant size base cases shows the best performance on practical inputs: when sorting integers it is slower by only 15% to STL-Introsort

    Strengthened Lazy Heaps: Surpassing the Lower Bounds for Binary Heaps

    Full text link
    Let nn denote the number of elements currently in a data structure. An in-place heap is stored in the first nn locations of an array, uses O(1)O(1) extra space, and supports the operations: minimum, insert, and extract-min. We introduce an in-place heap, for which minimum and insert take O(1)O(1) worst-case time, and extract-min takes O(lgn)O(\lg{} n) worst-case time and involves at most lgn+O(1)\lg{} n + O(1) element comparisons. The achieved bounds are optimal to within additive constant terms for the number of element comparisons. In particular, these bounds for both insert and extract-min -and the time bound for insert- surpass the corresponding lower bounds known for binary heaps, though our data structure is similar. In a binary heap, when viewed as a nearly complete binary tree, every node other than the root obeys the heap property, i.e. the element at a node is not smaller than that at its parent. To surpass the lower bound for extract-min, we reinforce a stronger property at the bottom levels of the heap that the element at any right child is not smaller than that at its left sibling. To surpass the lower bound for insert, we buffer insertions and allow O(lg2n)O(\lg^2{} n) nodes to violate heap order in relation to their parents

    Weak heaps and friends:recent developments

    Get PDF

    Memory-Adjustable Navigation Piles with Applications to Sorting and Convex Hulls

    Get PDF
    We consider space-bounded computations on a random-access machine (RAM) where the input is given on a read-only random-access medium, the output is to be produced to a write-only sequential-access medium, and the available workspace allows random reads and writes but is of limited capacity. The length of the input is NN elements, the length of the output is limited by the computation, and the capacity of the workspace is O(S)O(S) bits for some predetermined parameter SS. We present a state-of-the-art priority queue---called an adjustable navigation pile---for this restricted RAM model. Under some reasonable assumptions, our priority queue supports minimum\mathit{minimum} and insert\mathit{insert} in O(1)O(1) worst-case time and extract\mathit{extract} in O(N/S+lgS)O(N/S + \lg{} S) worst-case time for any SlgNS \geq \lg{} N. We show how to use this data structure to sort NN elements and to compute the convex hull of NN points in the two-dimensional Euclidean space in O(N2/S+NlgS)O(N^2/S + N \lg{} S) worst-case time for any SlgNS \geq \lg{} N. Following a known lower bound for the space-time product of any branching program for finding unique elements, both our sorting and convex-hull algorithms are optimal. The adjustable navigation pile has turned out to be useful when designing other space-efficient algorithms, and we expect that it will find its way to yet other applications.Comment: 21 page

    Modular smoothed analysis

    Get PDF
    Spielman’s smoothed complexity - a hybrid between worst and average case complexity measures - relies on perturbations of input instances to determine where average-case behavior turns to worst-case. The paper proposes a method supporting modular smoothed analysis. The method, involving a novel permutation model, is developed for the discrete case, focusing on randomness preserving algorithms. This approach simplifies the smoothed analysis and achieves greater precession in the expression of the smoothed complexity, where a recurrence equation is obtained as opposed to bounds. Moreover, the approach addresses, in this context, the formation of input instances–an open problem in smoothed complexity. To illustrate the method, we determine the modular smoothed complexity of Quicksort
    corecore