
u n i ve r s i t y o f co pe n h ag e n

Weak heaps and friends

recent developments

Edelkamp, Stefan; Elmasry, Amr; Katajainen, Jyrki; Weiß, Armin

Published in:
Combinatorial Algorithms

DOI:
10.1007/978-3-642-45278-9_1

Publication date:
2013

Document version
Peer reviewed version

Document license:
Other

Citation for published version (APA):
Edelkamp, S., Elmasry, A., Katajainen, J., & Weiß, A. (2013). Weak heaps and friends: recent developments. In
T. Lecroq, & L. Mouchard (Eds.), Combinatorial Algorithms: 24th International Workshop, IWOCA 2013, Rouen,
France, July 10-12, 2013, Revised Selected Papers (pp. 1-6). Springer. Lecture notes in computer science, Vol..
8288 https://doi.org/10.1007/978-3-642-45278-9_1

Download date: 08. Apr. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Copenhagen University Research Information System

https://core.ac.uk/display/269237037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-45278-9_1
https://doi.org/10.1007/978-3-642-45278-9_1

Weak Heaps and Friends: Recent Developments

Stefan Edelkamp1, Amr Elmasry2, Jyrki Katajainen3, and Armin Weiß4

1 Faculty 3—Mathematics and Computer Science, University of Bremen
PO Box 330 440, 28334 Bremen, Germany

2 Department of Computer Engineering and Systems, Alexandria University
Alexandria 21544, Egypt

3 Department of Computer Science, University of Copenhagen
Universitetsparken 5, 2100 Copenhagen East, Denmark

4 Institute for Formal Methods in Computer Science, University of Stuttgart
Universitätstraße 38, 70569 Stuttgart, Germany

Abstract. A weak heap is a variant of a binary heap where, for each
node, the heap ordering is enforced only for one of its two children.
In 1993, Dutton showed that this data structure yields a simple worst-
case-efficient sorting algorithm. In this paper we review the refinements
proposed to the basic data structure that improve the efficiency even
further. Ultimately, minimum and insert operations are supported in
O(1) worst-case time and extract-min operation in O(lgn) worst-case
time involving at most lgn+O(1) element comparisons. In addition, we
look at several applications of weak heaps. This encompasses the creation
of a sorting index and the use of a weak heap as a tournament tree leading
to a sorting algorithm that is close to optimal in terms of the number of
element comparisons performed. By supporting insert operation in O(1)
amortized time, the weak-heap data structure becomes a valuable tool in
adaptive sorting leading to an algorithm that is constant-factor optimal
with respect to several measures of disorder. Also, a weak heap can be
used as an intermediate step in an efficient construction of binary heaps.
For graph search and network optimization, a weak-heap variant, which
allows some of the nodes to violate the weak-heap ordering, is known to
be provably better than a Fibonacci heap.

1 Weak Heaps

In its elementary form, a priority queue is a data structure that stores a col-
lection of elements and supports the operations construct , minimum, insert ,
and extract-min [4]. In applications where this set of operations is sufficient,
the priority queue that the users would select is a binary heap [29] or a weak
heap [7]. Both of these data structures are known to perform well, and in typical
cases the difference in performance is marginal. Most library implementations
are based on a binary heap. However, one reason why a user might vote for a
weak heap over a binary heap is that weak heaps are known to perform less
element comparisons in the worst case: Comparing binary heaps vs. weak heaps
for construct we have 2n vs. n− 1 and for extract-min we have 2dlg ne vs. dlg ne

1

32

65

0

5

11
98

4

7

2 3
7

4

8

96

1

a)

1

3

9 8

4 5 6
56

7

1

2

4

11

8 9
7

3

0

2

b)

Fig. 1. a) An input of 10 integers and b) a weak heap constructed by the standard
algorithm (reverse bits are set for grey nodes, small numbers above the nodes are the
actual array indices.) Source: [11, 12]

element comparisons, where n denotes the number of elements stored in the data
structure prior to the operation. Moreover, minimum and insert have matching
complexities 0 and dlg ne element comparisons, respectively.

More formally, a weak heap (see Fig. 1) is a binary tree that has the following
properties:

1. The root of the entire tree has no left child.
2. Except for the root, the nodes that have at most one child are at the last

two levels only. Leaves at the last level can be scattered, i.e. the last level is
not necessarily filled from left to right.

3. Each node stores an element that is smaller than or equal to every element
stored in its right subtree.

From the first two properties we can deduce that the height of a weak heap that
has n elements is dlg ne + 1. The third property is called weak-heap ordering
or half-tree ordering. In particular, this property does not enforce any relation
between an element in a node and those stored in the left subtree of that node.
If perfectly balanced, weak heaps resemble heap-ordered binomial trees [27].
Binomial-tree parents are distinguished ancestors in the weak-heap setting.

In an array-based implementation, besides the element array a, an array r
of reverse bits is used, i.e. ri ∈ {0, 1} for i ∈ {0, . . . , n − 1}. The array index of
the left child of ai is 2i + ri, the array index of the right child is 2i + 1 − ri,
and the array index of the parent is bi/2c (assuming that i 6= 0). Using the fact
that the indices of the left and right children of ai are reversed when flipping ri,
subtrees can be swapped in constant time by setting ri ← 1− ri. In a compact
representation of a bit array on a w-bit computer dn/we words are used.

In a pointer-based implementation, the bits are no more needed, but the
children and the parent of a node are accessed by following pointers, and the
children are reversed by swapping pointers. Pointer-based weak heaps can be
used to implement addressable priority queues, which also support delete and
decrease operations [1, 9, 10].

2 Constant-Factor-Optimal Sorting

Dutton [7] showed that to sort n elements WeakHeapSort, a Heapsort
variant that uses a weak heap, requires at most ndlg ne − 2dlgne + n − 1 ≤
n lg n + 0.089n element comparisons in the worst case. Algorithms, for which
the constant in the leading term in the bound expressing the number of elem-
ent comparisons performed is the best possible, are called constant-factor op-
timal. Since the early attempts [23], many people have tried to close the gap
to the lower bound and to derive constant-factor-optimal algorithms for which
the number of primitive operations performed is in O(n lg n). Other members
in the exclusive group of constant-factor-optimal Heapsort algorithms include
UltimateHeapsort [21] and MDRHeapsort [25] (analysed by Wegener [28]);
the former is fully in-place whereas the latter needs 2n extra bits, but for the
in-place algorithm the constant α in the bound n lg n+ αn is larger. Knuth [23]
showed that MergeInsertion is a sorting algorithm which performs at most
n lg n−(3− lg 3)n+n(φ+1−2φ)+O(lg n) element comparisons, where 3− lg 3 ≈
1.41 and 0 ≤ φ ≤ 1. However, when implemented with an array, a quadratic
number of element moves may be needed to accomplish the task.

Edelkamp and Wegener [15] gave the worst-case and best-case examples for
WeakHeapSort, which match the proved upper bounds. Experimentally they
showed that in the average case the number of element comparisons performed
is about n lg n+βn with β ∈ [−0.46,−0.42]. Edelkamp and Stiegeler [14] showed
that for sorting indices (as required in many database applications) WeakHeap-
Sort can be implemented so that it performs at most n lg n − 0.91n element
comparisons, which is only off by about 0.53n from the lower bound [23].

Recently, in [16], the idea of QuickHeapsort [2, 5] was generalized to the
notion of QuickXsort: Given some black-box sorting algorithm X, QuickX-
sort can be used to speed X up provided that X satisfies certain natural con-
ditions. QuickWeakHeapsort and QuickMergesort were described as two
examples of this construction. QuickMergesort performs n lg n−1.26n+o(n)
element comparisons on the average and the worst case of n lg n+O(n) element
comparisons can be achieved without affecting the average case. Furthermore,
a weak-heap tournament tree yields an efficient implementation of Merge-
Insertion for small values of n. Taking it as a base case for QuickMerge-
sort, a worst-case-efficient constant-factor-optimal sorting algorithm can be es-
tablished, which performs n lg n − 1.3999n + o(n) element comparisons on an
average. QuickMergesort with constant-size base cases showed the best per-
formance [16]: When sorting integers it was only 15% slower than Introsort
[26] taken from a C++ standard-library implementation.

In [8], two variations of weak heaps were described: The first one uses an
array-based weak heap and the other, a weak queue, is a collection of pointer-
based perfect weak heaps. For both, insert requires O(1) amortized time and
extract-min O(lg n) worst-case time including at most lg n+O(1) element com-
parisons, n being the number of elements stored. In both, the main idea is to
temporarily store the inserted elements in a buffer and, once it becomes full,
to move the buffer elements to the main queue using an efficient bulk-insertion

procedure. By employing the new priority queues in AdaptiveHeapsort [24],
the resulting algorithm was shown to be constant-factor optimal with respect to
several measures of disorder. Unlike some previous constant-factor-optimal adap-
tive sorting algorithms [17–19], AdaptiveHeapsort relying on the developed
priority queues is practically workable.

3 Relaxed Weak Heaps and Relaxed Weak Queues

In [1], experimental results on the practical efficiency of three addressable priority
queues were reported. The data structures considered were a weak heap, a weak
queue, and a run-relaxed weak queue that extends a weak queue by allowing
some nodes to violate the half-heap ordering; a run-relaxed weak queue is a
variant of a run-relaxed heap [6] that uses binary trees instead of multiary trees.
All the studied data structures support delete and extract-min in logarithmic
worst-case time. A weak queue reduces the worst-case running time of insert to
O(1), and a run-relaxed weak queue that of both insert and decrease to O(1). As
competitors to these structures, a binary heap, a Fibonacci heap, and a pairing
heap were considered. Generic programming techniques were heavily used in the
code development. For benchmarking purposes several component frameworks
were developed that could be instantiated with different policies.

In [9, 10], two new relaxed priority-queue structures, a run-relaxed weak heap
and a rank-relaxed weak heap, were introduced. The relaxation idea originates
from [6], but here it is applied in a single-tree context. In contrast to run
relaxation, rank relaxation provides good amortized performance. Since rank-
relaxed weak heaps are simpler and faster, they are better suited for network-
optimization algorithms. For a request sequence of n insert , m decrease, and n
extract-min operations, it can be shown that a rank-relaxed weak heap performs
at most 2m+1.5ndlg ne element comparisons [9, 10]. When considering the same
sequence of operations, this bound improves over the best bounds known for dif-
ferent variants of a Fibonacci heap, which may require 2m+2.89ndlg ne element
comparisons in the worst case.

4 Heap Construction and Optimal In-Place Heaps

In [11, 12], different options for constructing a weak heap were studied. Start-
ing from a straightforward algorithm, the authors ended up with a catalogue of
algorithms that optimize the standard algorithm in different ways. As the opti-
mization criteria, it was considered how to reduce the number of instructions,
branch mispredictions, cache misses, and element moves. An approach relying
on a non-standard memory layout was fastest, but the outcome is a weak heap
where the element order is shuffled.

A binary heap can be built on top of a previously constructed a navigation
pile [22] with at most 0.625n element comparisons. In [3], it was shown how
this transformation can be used to build binary heaps in-place by performing at
most 1.625n + o(n) element comparisons. The construction of binary heaps via

weak heaps is equally efficient, but this transformation requires a slightly higher
number of element moves.

In contrast to binary heaps, n repeated insert operations (starting from
an empty structure) can be shown to require at most 3.5n + O(lg2 n) elem-
ent comparisons [11, 12] (but Θ(n lg n) time in the worst case). In addition,
with constant memory overhead, O(1) amortized time per insert can be im-
proved to O(1) worst-case time [12], while preserving O(1) worst-case time for
minimum and O(lg n) worst-case time with at most lg n + O(1) element com-
parisons for extract-min. This result was previously achieved only for more com-
plicated structures like multipartite priority queues [19]. Still, none of the known
constant-factor-optimal worst-case solutions can be claimed to be practical.

As a culmination, in [13], an in-place priority queue was introduced that
supports insert in O(1) worst-case time and extract-min in O(lg n) worst-case
time involving at most lg n+O(1) element comparisons, n being the current size
of the data structure. These upper bounds surpass the lower bounds known for
a binary heap [20]. The designed priority queue is similar to a binary heap with
two significant exceptions:

– To bypass the lower bound for extract-min, at the bottom levels a stronger
invariant is enforced: For any node, the element at its left child should never
be larger than the element at its right child.

– To bypass the lower bound for insert , O(lg2 n) nodes are allowed to violate
the binary-heap ordering in relation to their parents.

It is necessary to execute several background processes incrementally in order to
achieve the optimal worst-case bounds on the number of element comparisons.

References

1. Bruun, A., Edelkamp, S., Katajainen, J., Rasmussen, J.: Policy-based benchmark-
ing of weak heaps and their relatives. In: Festa, P. (ed.) SEA 2012. LNCS, vol.
6049, pp. 459–435. Springer, Heidelberg (2010)

2. Cantone, D., Cinotti, G.: QuickHeapsort, an efficient mix of classical sorting algo-
rithms. Theoret. Comput. Sci. 285(1), 25–42 (2002)

3. Chen, J., Edelkamp, S., Elmasry, A., Katajainen, J.: In-place heap construction
with optimized comparisons, moves, and cache misses. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 259–270. Springer,
Heidelberg (2012)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
The MIT Press, 3th edn. (2009)

5. Diekert, V., Weiß, A.: QuickHeapsort: Modifications and improved analysis. In:
Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 24–35. Springer,
Heidelberg (2013)

6. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: An al-
ternative to Fibonacci heaps with applications to parallel computation. Commun.
ACM 31(11), 1343–1354 (1988)

7. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)

8. Edelkamp, S., Elmasry, A., Katajainen, J.: Two constant-factor-optimal realiza-
tions of adaptive heapsort. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011.
LNCS, vol. 7056, pp. 195–208. Springer, Heidelberg (2011)

9. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap family of priority queues
in theory and praxis. In: Mestre, J. (ed.) CATS 2012. Conferences in Research and
Practice in Information Technology, vol. 128, pp. 103–112. Australian Computer
Society, Inc., Adelaide (2012)

10. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap data structure: Variants
and applications. J. Discrete Algorithms 16, 187–205 (2012)

11. Edelkamp, S., Elmasry, A., Katajainen, J.: A catalogue of algorithms for building
weak heaps. In: Arumugam, S., Smyth, W.F. (eds.) IWOCA 2012. LNCS, vol.
7643, pp. 249–262. Springer, Heidelberg (2012)

12. Edelkamp, S., Elmasry, A., Katajainen, J.: Weak heaps engineered. J. Discrete
Algorithms (to appear)

13. Edelkamp, S., Elmasry, A., Katajainen, J.: Optimal in-place heaps (submitted)
14. Edelkamp, S., Stiegeler, P.: Implementing Heapsort with n logn− 0.9n and Quick-

sort with n logn+0.2n comparisons. ACM J. Exp. Algorithmics 7, Article 5 (2002)
15. Edelkamp, S., Wegener, I.: On the performance of Weak-Heapsort. In: Reichel, H.,

Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 254–266. Springer, Heidelberg
(2000)

16. Edelkamp, S., Weiß, A.: QuickXsort: Efficient sorting with n logn− 1.399n + o(n)
comparisons on average. E-print arXiv:1307.3033, arXiv.org, Ithaca (2013)

17. Elmasry, A., Fredman, M.L.: Adaptive sorting: An information theoretic perspec-
tive. Acta Inform. 45(1), 33–42 (2008)

18. Elmasry, A., Hammad, A.: Inversion-sensitive sorting algorithms in practice. ACM
J. Exp. Algorithmics 13, Article 1.11 (2009)

19. Elmasry, A., Jensen, C., Katajainen, J.: Multipartite priority queues. ACM Trans.
Algorithms 5(1), Article 14 (2008)

20. Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM J. Comput. 15(4), 964–971
(1986)

21. Katajainen, J.: The ultimate heapsort. In: Lin, X. (ed.) CATS 2012. Australian
Computer Science Communications, vol. 20, pp. 87–96. Springer-Verlag Singapore
Pte. Ltd., Singapore (1998)

22. Katajainen, J., Vitale, F.: Navigation piles with applications to sorting, priority
queues, and priority deques. Nordic J. Comput. 10(3), 238–262 (2003)

23. Knuth, D.E.: Sorting and Searching, The Art of Computer Programming, vol. 3.
Addison Wesley Longman, Reading, 2nd edn. (1998)

24. Levcopoulos, C., Petersson, O.: Adaptive heapsort. J. Algorithms 14(3), 395–413
(1993)

25. McDiarmid, C.J.H., Reed, B.A.: Building heaps fast. J. Algorithms 10(3), 352–365
(1989)

26. Musser, D.R.: Introspective sorting and selection algorithms. Software Pract. Ex-
per. 27(8), 983–993 (1997)

27. Vuillemin, J.: A data structure for manipulating priority queues. Commun. ACM
21(4), 309–315 (1978)

28. Wegener, I.: Bottom-up-Heapsort, a new variant of Heapsort beating, on an aver-
age, Quicksort (if n is not very small). Theoret. Comput. Sci. 118(1), 81–98 (1993)

29. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964)

