21,191 research outputs found

    On the p-Connectedness of Graphs – a Survey

    Get PDF
    A graph is said to be p-connected if for every partition of its vertices into two non-empty, disjoint, sets some chordless path with three edges contains vertices from both sets in the partition. As it turns out, p-connectedness generalizes the usual connectedness of graphs and leads, in a natural way, to a unique tree representation for arbitrary graphs. This paper reviews old and new results, both structural and algorithmic, about p-connectedness along with applications to various graph decompositions

    A Survey of Best Monotone Degree Conditions for Graph Properties

    Full text link
    We survey sufficient degree conditions, for a variety of graph properties, that are best possible in the same sense that Chvatal's well-known degree condition for hamiltonicity is best possible.Comment: 25 page

    Some local--global phenomena in locally finite graphs

    Full text link
    In this paper we present some results for a connected infinite graph GG with finite degrees where the properties of balls of small radii guarantee the existence of some Hamiltonian and connectivity properties of GG. (For a vertex ww of a graph GG the ball of radius rr centered at ww is the subgraph of GG induced by the set Mr(w)M_r(w) of vertices whose distance from ww does not exceed rr). In particular, we prove that if every ball of radius 2 in GG is 2-connected and GG satisfies the condition dG(u)+dG(v)≥∣M2(w)∣−1d_G(u)+d_G(v)\geq |M_2(w)|-1 for each path uwvuwv in GG, where uu and vv are non-adjacent vertices, then GG has a Hamiltonian curve, introduced by K\"undgen, Li and Thomassen (2017). Furthermore, we prove that if every ball of radius 1 in GG satisfies Ore's condition (1960) then all balls of any radius in GG are Hamiltonian.Comment: 18 pages, 6 figures; journal accepted versio

    Connectedness of graphs and its application to connected matroids through covering-based rough sets

    Full text link
    Graph theoretical ideas are highly utilized by computer science fields especially data mining. In this field, a data structure can be designed in the form of tree. Covering is a widely used form of data representation in data mining and covering-based rough sets provide a systematic approach to this type of representation. In this paper, we study the connectedness of graphs through covering-based rough sets and apply it to connected matroids. First, we present an approach to inducing a covering by a graph, and then study the connectedness of the graph from the viewpoint of the covering approximation operators. Second, we construct a graph from a matroid, and find the matroid and the graph have the same connectedness, which makes us to use covering-based rough sets to study connected matroids. In summary, this paper provides a new approach to studying graph theory and matroid theory

    On certain families of planar patterns and fractals

    Full text link
    This survey article is dedicated to some families of fractals that were introduced and studied during the last decade, more precisely, families of Sierpi\'nski carpets: limit net sets, generalised Sierpi\'nski carpets and labyrinth fractals. We give a unifying approach of these fractals and several of their topological and geometrical properties, by using the framework of planar patterns.Comment: survey article, 10 pages, 7 figure

    Forbidden subgraphs that imply Hamiltonian-connectedness

    Get PDF
    It is proven that if GG is a 33-connected claw-free graph which is also Z3Z_3-free (where Z3Z_3 is a triangle with a path of length 33 attached), P6P_6-free (where P6P_6 is a path with 66 vertices) or H1H_1-free (where H1H_1 consists of two disjoint triangles connected by an edge), then GG is Hamiltonian-connected. Also, examples will be described that determine a finite family of graphs L\cal{L} such that if a 3-connected graph being claw-free and LL-free implies GG is Hamiltonian-connected, then L∈LL\in\cal{L}. \u
    • …
    corecore