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On the p-connectedness of graphs – a survey
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Abstract

A graph is said to be p-connected if for every partition of its vertices into two non-empty,
disjoint, sets some chordless path with three edges contains vertices from both sets in the parti-
tion. As it turns out, p-connectedness generalizes the usual connectedness of graphs and leads,
in a natural way, to a unique tree representation for arbitrary graphs.
This paper reviews old and new results, both structural and algorithmic, about p-connectedness

along with applications to various graph decompositions. ? 1999 Elsevier Science B.V. All
rights reserved.

1. Introduction and motivation

A number of concepts in graph theory �nd their roots in various areas of in-
vestigation. It is often the case that only after they have been de�ned one realizes
how naturally these concepts bring and tie together seemingly unrelated topics, blend-
ing them in a more uniform body of knowledge. Such is the case – we strongly
believe – with the concept of p-connectedness of graphs to which we devote this
survey.
Quite often, real-life applications suggest the study of graphs that feature some local

density properties, traditionally equated with the absence of chordless paths with four
vertices and three edges, also known as P4’s. In particular, graphs that are unlikely to
have more than a few P4’s appear in examination scheduling and semantic clustering
of index terms [16,18,19]. In examination scheduling, for example, a conict graph
is readily constructed: the vertices represent di�erent courses o�ered, while courses
x and y are linked by an edge if, and only if, some student takes both of them. In

∗ Corresponding author.
E-mail address: olariu@cs.odu.edu (S. Olariu)
1 Supported by the Deutsche Forschungsgemeinschaft (DFG).
2 Supported in part by NSF grant CCR-95-22093 and by ONR grant N00014-97-1-0526

0166-218X/99/$ - see front matter ? 1999 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00062 -1



12 L. Babel, S. Olariu /Discrete Applied Mathematics 95 (1999) 11–33

the weighted version, the weight of edge xy stands for the number of students taking
both x and y. Clearly, in any coloring of the conict graph, vertices that are assigned
the same color correspond to courses whose examinations can be held concurrently.
It is usually anticipated that very few paths of length three will occur in the conict
graph. These applications have motivated both the theoretical and algorithmic study
of the class of cographs [16,18,19] which contain no induced P4’s. Later, in a series
of papers, Jamison and Olariu have studied the classes of P4-reducible, P4-sparse,
P4-extendible, and P4-lite graphs obtained by relaxing in various ways the stringent
requirement imposed by the absence of P4’s [34–37]. In all the classes mentioned above
the P4’s interact with one another in very interesting, albeit straightforward, ways. In
particular, either every vertex belongs to at most one P4, as in the P4-reducible graphs,
or no set of �ve vertices induces more than one P4, as is the case for the P4-sparse
graphs, or no set of six or more vertices form interacting P4’s as is the case for
P4-extendible graphs.
A powerful tool for obtaining e�cient solutions to graph problems is the divide-and-

conquer paradigm, one of whose manifestations is graph decomposition. A very desir-
able form of graph decomposition involves associating with a given graph G a rooted
tree T (G) whose leaves are subgraphs of G (e.g. vertices, edges, cliques, stable sets,
cutsets) and whose internal nodes correspond to certain prescribed graph operations.
Of a particular interest are classes of graphs G for which the following conditions
hold:
• T (G) can be obtained e�ciently, that is, in time polynomial in the size of G;
• T (G) is unique up to labeled tree isomorphism.
Tree representations satisfying the conditions mentioned above have been obtained

for several classes including the cographs, P4-reducible graphs, P4-extendible graphs,
and P4-sparse graphs, among many others. A well-known form of graph decomposition
is the modular decomposition (also called substitution decomposition). The modular
decomposition has been discovered independently by researchers in many areas. The
reader is referred to M�ohring and Rademacher [50] where some applications are dis-
cussed.
A classic result of Lov�asz [47] asserts that a graph is perfect in the sense of Berge

[24] whenever its complement is. This important result motivated Chv�atal [12] to ask
for a succinct certi�cate of perfection: Lov�asz’s result suggested, in quite obvious terms,
that a very desirable such certi�cate should apply both to the graph and to its com-
plement. More generally, this suggests investigating graph properties that are invariant
under complementation. It is a simple observation that the P4 is self-complementary
and, consequently, graph properties that are expressed in terms of P4’s only must
also be invariant under complementation. Chv�atal [12] proposed to call two graphs
P4-isomorphic if there exists a bijection between their vertices in such a way that a set
of four vertices induces a P4 in the �rst graph if and only if its image induces a P4 in
the second. Chv�atal [12] conjectured and Reed [52] proved that a graph P4-isomorphic
to a perfect graph is also perfect. For various other related results the interested reader
is referred to [13–15,25,27–29,32,51].
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As it turns out, the concept of p-connectedness �nds its original inspiration and
motivation in all of the issues discussed above. In addition, it can be de�ned, at the
elementary level, as an extension of the well-known connectedness in graphs. This is
the approach we take in this survey although p-connectedness could have been, just
as well, introduced in many other similar ways. The theory of p-connectedness was
introduced by Jamison and Olariu in [40]. Since then it has developed into a rich body
of knowledge with surprising rami�cations both structural and algorithmic. Perhaps
one of the most startling result that one derives from the concept of p-connectedness
is a structure theorem for general graphs which, in turn, suggests a unique tree rep-
resentation for arbitrary graphs: the leaves of this tree are the p-connected compo-
nents along with weak vertices, that is, vertices of the graph that belong to no proper
p-connected component. By re�ning this �rst result one obtains the homogeneous de-
composition and the separable-homogeneous decomposition of arbitrary graphs. Like
the modular decomposition, these decompositions produce a unique decomposition tree
for arbitrary graphs; however, both the homogeneous and the separable-homogeneous
decompositions go substantially beyond the modular decomposition in the sense that
they decompose graphs that are prime with respect to the modular decomposition.
This survey is organized as follows: Section 2 presents basic de�nitions and estab-

lishes terminology used throughout this work; Section 3 discusses one of the main struc-
tural results pertaining to p-connectedness – a key ingredient in many of the subsequent
results – along with a simple and natural decomposition for arbitrary graphs termed the
primeval decomposition; Section 4 takes a new look at p-connectedness viewed from
the perspective of p-chains, a natural analogue of paths; Section 5 introduces the con-
cept of p-articulation-vertices, a natural analogue of articulation-vertices, and discusses
the structure of those graphs all of whose vertices are p-articulation-vertices; Section
6 looks at two graph operations that allow us to construct new p-connected graphs out
of old ones; Section 7 takes the opposite view, presenting two p-connectedness pre-
serving graph operations along with a decomposition theorem for p-connected graphs
that will be crucial in our subsequent decomposition schemes. Section 8 discusses the
homogeneous decomposition and the separable-homogeneous decomposition of graphs;
then several graph classes are analyzed whose p-connected components have a simple
and intuitive structure; Section 9 investigates the concept of p-trees which are a natural
analogue of trees; Section 10 deals with graphs which, in some local sense, contain
only a restricted number of P4’s; �nally, Section 11 o�ers a brief survey of known
algorithmic results related to the concept of p-connectedness.

2. p-connected graphs

Before introducing the concept of p-connectedness, we present some basic de�nitions
and establish notation that will be used throughout this survey. We consider �nite
graphs with no loops nor multiple edges. In addition to standard graph-theoretical
terminology, compatible with [11], we need several new terms that we de�ne next.
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Let G=(V; E) be a graph with vertex-set V and edge-set E. In the context of trees,
vertices will be called nodes. We denote by n the cardinality of V . For a vertex v
of G let N (v) denote the set of all vertices adjacent to v, also called neighbors of v.
If U ⊆V then G(U ) stands for the graph induced by U . Occasionally, to simplify the
exposition, we shall blur the distinction between sets of vertices and the subgraphs
they induce, using the same notation for both. The complement of G is denoted by
G. A clique is a set of pairwise adjacent vertices, a stable set is a set of pairwise
nonadjacent vertices. G is termed a split graph if its vertices can be partitioned into a
clique and a stable set.
We say that two sets X and Y of vertices of G are nonadjacent if no edge has one

endpoint in X and the other in Y . X and Y are totally adjacent if every vertex in X
is adjacent to all vertices in Y . Finally, sets X and Y that are neither nonadjacent nor
totally adjacent are termed partially adjacent.
A vertex v is said to distinguish a set U of vertices if v is partially adjacent to U .

A subset H of V with 1¡ |H |¡ |V | is termed a homogeneous set if no vertex out-
side H distinguishes H , i.e. each vertex outside H is either nonadjacent or totally
adjacent to H . A homogeneous set H is maximal if no other homogeneous set prop-
erly contains H . The graph obtained from a p-connected graph G by shrinking ev-
ery maximal homogeneous set to a single vertex is called the characteristic graph
of G.
As usual, we let Pk stand for the chordless path with k vertices and k − 1 edges.

The length of a path Pk is k−1. Ck is the chordless cycle with k vertices and k edges.
The P4 with vertices u; v; w; x and edges uv; vw; wx will be denoted by uvwx; v and
w are the midpoints whereas u and x are the endpoints of the P4.
The concept of p-connectedness was introduced by Jamison and Olariu in [40]. They

de�ne a graph G = (V; E) to be P4-connected, or p-connected for short, if for every
partition of V into nonempty disjoint sets V1 and V2 there exists a crossing P4, that is,
a P4 containing vertices from both V1 and V2. The p-connected components of a graph
are the maximal induced subgraphs which are p-connected. Note that a p-connected
component consists either of a single vertex or of at least four vertices. It is easy to
see that
• each graph has a unique partition into p-connected components;
• the p-connected components are closed under complementation;
• every p-connected component is a connected subgraph of G and G.
Vertices which do not belong to p-connected components of size at least four are
referred to as weak vertices.
A p-connected graph is termed separable if its vertex-set can be partitioned into

two nonempty disjoint sets V1 and V2 in such a way that every crossing P4 has its
midpoints in V1 and its endpoints in V2. We say that (V1; V2) is a separation of G. It
is obvious that
• the complement of a separable p-connected graph is also separable.
The separation (V1; V2) of G becomes (V2; V1) in G. Fig. 1 features a separable
p-connected graph along with its characteristic graph. Separable p-connected
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Fig. 1. A separable p-connected graph and its characteristic graph.

components play a crucial role in the theory of p-connectedness. The next three results
summarize some of their most important properties.

Theorem 2.1 (Jamison and Olariu [40]). Every separable p-connected graph has a
unique separation. Furthermore; every vertex belongs to a crossing P4 with respect
to the separation.

The next statement gives more detailed information about the structure of separable
p-connected graphs.

Theorem 2.2 (Jamison and Olariu [40]). Let G be separable p-connected with sep-
aration (V1; V2). The subgraph of G (respectively G) induced by V2 (respectively
V1) is disconnected. Furthermore; every connected component of the subgraph of
G (respectively G) induced by V2 (respectively V1) with at least two vertices is a
homogeneous set in G.

This immediately implies the following simple and useful result.

Corollary 2.3 (Jamison and Olariu [40]). A p-connected graph is separable if and
only if its characteristic graph is a split graph.

3. Structure theorem and primeval decomposition

The introduction and the study of p -connected and separable p-connected graphs
is justi�ed by the following general result that provides the foundation of several
decomposition schemes.

Theorem 3.1 (Structure Theorem Jamison and Olariu [40]). For an arbitrary graph G
exactly one of the following conditions is satis�ed:
1: G is disconnected.
2: G is disconnected.
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Fig. 2. A graph and the associated primeval tree.

3: There is a unique proper separable p-connected component H of G with a partition
(H1; H2) such that every vertex outside H is adjacent to all vertices in H1 and to
no vertex in H2.

4: G is p-connected.

As pointed out in [40], this theorem implies, in a natural way, a decomposition
scheme for arbitrary graphs, called the primeval decomposition. In order to be more
speci�c, we now de�ne a number of graph operations.
Let G1 = (V1; E1) and G2 = (V2; E2) be disjoint graphs. The disjoint union and the

disjoint sum of G1 and G2 are the graphs which result, respectively, from the operations
• G1 G2 = (V1 ∪ V2; E1 ∪ E2) and
• G1 G2 = (V1 ∪ V2; E1 ∪ E2 ∪ {xy | x ∈ V1; y ∈ V2}).
Obviously, operations and reect the �rst two cases of the Structure Theorem.
Let G1 = (V1; E1) be separable p-connected with separation (V 11 ; V

2
1 ) and G2 = (V2; E2)

be an arbitrary graph disjoint from G1. The third case of the Structure Theorem is
captured by the operation
• G1 G2 = (V1 ∪ V2; E1 ∪ E2 ∪ {xy | x ∈ V 11 ; y ∈ V2}).
As shown in [40], each graph can be obtained uniquely from its p-connected com-

ponents and its weak vertices by a �nite sequence of operations , and . Fur-
thermore, the Structure Theorem suggests, in a natural way, a tree representation for
arbitrary graphs which turns out to be unique up to isomorphism. The tree associated
with a graph G is called the primeval tree of G. The internal nodes of the tree are la-
beled by integers i ∈ {0; 1; 2}, where an i-node indicates that the graph associated with
the subtree rooted at this node is obtained from the graphs corresponding to its chil-
dren by an operation. The leaves of the tree are the p-connected components of G.
Fig. 2 features a graph along with its associated primeval tree.
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Fig. 3. Some examples of p-chains.

4. p-chains

Clearly, the p-connectedness generalizes the usual connectedness of graphs since a
graph is connected if for every partition of the vertex-set into two nonempty, disjoint,
sets some edge in the graph has endpoints in both sets of the partition. An equivalent
and, perhaps, more common de�nition states that a graph is connected if and only
if each pair of vertices is connected by a path, i.e. a sequence of vertices such that
any two consecutive vertices induce an edge. Somewhat surprisingly, there is a very
similar characterization of p-connected graphs in terms of p-chains, a natural analogue
of paths in the context of p-connectedness.
Consider a graph G = (V; E) and two vertices x and y in V . A p-chain of length

k − 1 connecting x and y is a sequence of distinct vertices (v1; v2; : : : ; vk) such that
• x = v1; y = vk , and
• for all i; (16i6k − 3); Xi := {vi; vi+1; vi+2; vi+3} induces a P4.
Two vertices are said to be p-connected if they coincide or else there exists a p-chain
connecting them. Occasionally, a p-chain consisting of a single P4 is termed a trivial
p-chain. Furthermore, we say that vertices x and y are connected by a unique p-chain
whenever the sequence of sets X1; X2; : : : ; Xk−3 is unique. Some of the simplest examples
of p-chains include the chordless paths Pk and their complements Pk for k¿4. Several
further examples are depicted in Fig. 3.
It is an important and useful property that p-chains are invariant under complemen-

tation, i.e. a p-chain in G is also a p-chain in G. Thus, two vertices are p-connected in
G if and only if they are p-connected in G. We are now ready for the characterization
of p-connected graphs by means of p-chains.

Theorem 4.1 (Babel and Olariu [7]). A graph is p-connected if and only if every pair
of vertices in the graph is p-connected.

It is easy to show that p-connectedness of vertices in an arbitrary graph G is an
equivalence relation on the vertex-set of G. The equivalence classes correspond pre-
cisely to the p-connected components of the graph.
Finally, it is worth mentioning that the task of checking whether or not a given

graph is p-connected can be performed in time linear in the size of the graph [7]. At
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the same time, Babel and Olariu [7] have shown that given two arbitrary vertices in
a graph, the task of �nding a p-chain connecting them, if such a p-chain exists, can
also be performed in time linear in the size of the graph.

Theorem 4.2 (Babel and Olariu [7]). It can be tested in linear time whether a graph
is p-connected. Moreover; for every pair of vertices in a p-connected graph; a con-
necting p-chain can be constructed in linear time.

5. Minimally p-connected graphs

A vertex v in a p-connected graph G is called a p-articulation-vertex if G−v is not
p-connected. Obviously, a p-articulation-vertex in G is also a p-articulation-vertex in
its complement G. The following theorem presents equivalent conditions for a vertex
to be a p-articulation-vertex.

Theorem 5.1 (Babel [4]). Let G = (V; E) be p-connected and v ∈ V . The following
statements are equivalent:
1: v is a p-articulation-vertex.
2: There exist vertices x and y di�erent from v such that every p-chain connecting
x and y contains v.

3: There exists a partition V1; V2 of V −{v} such that for every two vertices x ∈ V1
and y ∈ V2; every p-chain connecting x and y contains v.

A p-connected graph G = (V; E) is said to be minimally p-connected if for ev-
ery choice of a vertex v; G − v is not p-connected, i.e. every vertex in G is a
p-articulation-vertex. It is obvious that a P4 is minimally p-connected. Surprisingly,
there are further graphs with this property.
A graph G = (V; E) is termed a spider if its vertex-set V can be partitioned into

disjoint sets S and K such that
• |S|= |K |¿2, S is a stable set, K is a clique;
• there exists a bijection f : S → K such that either

N (s) = {f(s)} for all vertices s ∈ S
or else

N (s) = K − {f(s)} for all vertices s ∈ S:
The smallest spider is the P4, spiders with more than four vertices are referred to as

proper spiders. If G has more than four vertices then, if the �rst of the two alternatives
in the de�nition above holds, G is said to be a thin spider, otherwise G is a thick
spider, as illustrated in Fig. 4. Obviously, the complement of a thin spider is a thick
spider and vice versa. Furthermore, it is an easy observation that spiders are separable
p-connected graphs with separation (K; S).
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Fig. 4. The spiders with eight vertices.

It is easy to verify that spiders are minimally p-connected. Somewhat surprisingly,
as the following theorem shows, they are the only graphs with this property.

Theorem 5.2 (Babel [4] and Babel and Olariu [6]). Let G= (V; E) be a p-connected
graph. Then the following statements are equivalent:
1: G is minimally p-connected;
2: G contains only trivial p-chains;
3: G is a spider.

It is folklore that every non-trivial connected graph contains two vertices such that
the removal of either of them does not disconnect the graph. The following result
extends the above result for p-connected graphs.

Theorem 5.3 (Babel [4]). A p-connected graph which is not minimally p-connected
contains at least two vertices which are not p-articulation-vertices.

An immediate consequence of Theorem 5:2 is the following simple but important
observation.

Corollary 5.4 (Babel and Olariu [6]). If a graph G is p-connected then there is an
ordering (vn; vn−1; : : : ; v1) of its vertices and an integer k ∈ {4; 5; : : : ; n} such that
G({vi; vi−1 : : : ; v1}) is p-connected for i = n; n− 1; : : : ; k + 1 and a spider for i = k.

In other words, given a p-connected graph, we can repeatedly remove a vertex such
that p-connectedness of the graph is preserved until we obtain a spider. In particular,
this observation allows one to determine lower bounds on the number of P4’s which
occur in a p-connected or an arbitrary graph.

Corollary 5.5 (Babel [4]). A graph with s nontrivial p-connected components and t
weak vertices contains at least n − 3s − t P4’s. In particular; a p-connected graph
contains at least n− 3 P4’s.

The study of graphs which contain precisely this number of P4’s leads to the classes
of p-forests and p-trees that will be discussed in Section 9.
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6. Reconstructing p-connected graphs

Two vertices u and v of a graph G are said to be partners if for some set S of
three vertices in G, both S ∪{u} and S ∪{v} induce a P4 in G. Occasionally, we shall
say that v has a partner in a set U if v has a partner in a P4 contained in U . Given a
subset U of V , we denote by T (U ) and I(U ) the set of vertices in V −U which are
totally adjacent and nonadjacent to U , respectively. If U is separable p-connected with
separation (U1; U2) then P(U ) denotes the set of vertices which are adjacent exactly
to the vertices from U1. Let X be a set inducing a P4 in G. It is a simple observation
that a vertex v has a partner in X if and only if v 6∈ T (X )∪ I(X )∪ P(X ) holds. More
generally, we have the following result.

Theorem 6.1 (Babel and Olariu [8]). Let G=(V; E) be an arbitrary graph and let U
be a proper subset of V such that G(U ) is p-connected. For every vertex v in V −U
the following statements are equivalent:
1: G(U ∪ {v}) is p-connected.
2: v does not belong to T (U ) ∪ I(U ) and; if G(U ) is separable; also not to
P(U ).

3: There is a set X of vertices in U such that X induces a P4 and v has a partner
in X .

This result motivates to study the following extension procedure which starts with
the vertex-set of a P4 and adds a vertex whenever it has a partner in this set.

Procedure PARTNER ADDITION(G;X )
Input: A set X inducing a P4 in an arbitrary graph G.
Output: A p-connected subgraph U of G.
begin
Let U :=X ;
while there exists a vertex v ∈ V − U
with a partner in some P4 in U
do U :=U ∪ {v};

return(U );
end.

Theorem 6:1 implies that the set U returned by the above procedure, induces a
p-connected graph. If U 6= V then no vertex v outside U has a partner in some P4
in U . This means that G(U ∪ {v}) is not p-connected and every vertex v ∈ V − U
belongs either to one of the sets T (U ) and I(U ) or, if U is separable, to P(U ). If U
is not separable or if P(U ) is empty, then U is homogeneous. Otherwise, we are in the
situation where U is separable and P(U ) is nonempty. A set U with these properties is
called a separable-homogeneous set (for an illustration of this concept see Fig. 5). In
other words, a set U is separable-homogeneous whenever U is separable p-connected
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Fig. 5. A separable-homogeneous set U .

Fig. 6. A spider-like graph and its characteristic graph.

and V =U ∪T (U )∪ I(U )∪P(U ) holds with P(U ) 6= ∅. Using this notation we obtain
the following result.

Lemma 6.2 (Babel and Olariu [8]). Procedure PARTNER ADDITION returns a set
U that induces a p-connected graph. If U is a proper subset of V then U is either
homogeneous or separable-homogeneous.

We shall say that a P4 with vertex-set X extends to U by partner addition if for
a suitable choice of vertices v, procedure PARTNER ADDITION, starting with X ,
returns U . Next, we characterize the graphs which contain a P4 that extends to the
whole vertex-set V .
Clearly, a nontrivial spider does not contain a P4 that extends to V . Actually, this

holds for a more general class of graphs. Note that, if G is a thin spider then the
removal of all edges in the clique disconnects the graph leaving at least three connected
components. Similarly, a graph G is called thin-spider-like if
• G is separable p-connected with separation (V1; V2);
• the removal of all edges in V1 disconnects the graph leaving at least three connected
components.
A graph is thick-spider-like if its complement is thin-spider-like. We shall refer to a

graph that is thick-spider-like or thin-spider-like simply as spider-like. For an example
of a spider-like graph see Fig. 6. The importance of spider-like graphs is exhibited in
the following statement.
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Theorem 6.3 (Babel and Olariu [8]). For a graph G=(V; E) the following statements
are equivalent:
1: Some P4 in G extends to V by partner addition.
2: G is p-connected and not spider-like.
3: Every vertex in G belongs to a P4 that extends to V by partner addition.

As seen before, partner addition is not a su�cient tool in order to reconstruct a
p-connected graph (in the sense that p-connectedness is preserved after the addition
of each vertex). Hence we have to extend the procedure by adding two vertices and
proceeding with partner addition or by adding even three vertices and proceeding with
partner addition. If partner addition gets stuck in a homogeneous set H , then three
vertices must be added in order to extend H to a larger p-connected graph (since
each P4 which is crossing between H and V − H has precisely one vertex in H). If
it gets stuck in a separable-homogeneous set S then either two vertices (namely two
adjacent vertices from P(S) and I(S) or two nonadjacent vertices from P(S) and T (S))
or, in case S ∪ P(S) is a homogeneous set, again three vertices must be added. It is
straightforward to verify that each p-connected graph can be reconstructed in this way.

7. Decomposing p-connected graphs

Let G be an arbitrary graph and let S be a separable-homogeneous set in G. We say
that G∗ results from G by shrinking S to a P4 if S is replaced by a P4 in the obvious
way, i.e. a vertex v in G∗ is either totally adjacent, nonadjacent or adjacent to the
midpoints of the P4, according to whether v belongs to T (S); I(S) or P(S) in G. As
the next result shows, the operations of shrinking a homogeneous set to a single vertex
and that of shrinking a separable-homogeneous set to a P4 preserve p-connectedness.

Theorem 7.1 (Babel and Olariu [8]). Let G be a p-connected graph and let H and
S be a homogeneous respectively a separable-homogeneous set in G. The following
statements are satis�ed:
(a) The graph obtained from G by shrinking H to a single vertex is p-connected.
(b) The graph obtained from G by shrinking S to a P4 is p-connected.

The next statement describes properties of separable-homogeneous sets in arbitrary,
not necessarily p-connected graphs.

Theorem 7.2 (Babel and Olariu [8]). Let G be an arbitrary graph and S; S ′ be
separable-homogeneous sets in G with nonempty intersection such that no set contains
the other. The following statements hold:
(a) S ∪ S ′ induces a spider-like graph.
(b) If S ∪ S ′ 6= V then S ∪ S ′ is homogeneous or separable-homogeneous.

The previous theorem elucidates the way in which the separable-homogeneous sets
relate to each other in an arbitrary graph. These results have been extended to reveal the
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interaction of maximal separable-homogeneous sets in a p-connected graph. Namely,
if a p-connected graph G contains no homogeneous sets and is not spider-like, then
any two maximal separable-homogeneous sets in G either coincide or are disjoint.
The previous results imply a decomposition theorem for p-connected graphs which

will be stated next. For this purpose, call a graph prime if it contains no homogeneous
set and no proper separable-homogeneous set, i.e. no separable-homogeneous set with
more than four vertices.

Theorem 7.3 (Decomposition Theorem, Babel and Olariu [8]). Let G be a p-con-
nected graph. Exactly one of the following statements is satis�ed:
1: G is thin-spider-like.
2: G is thick-spider-like.
3: There is a maximal prime p-connected subgraph Y of G and a unique partition
P of V such that for each U ∈ P either

• |U |= 1 and |U ∩ Y |= 1 holds or
• U is homogeneous and |U ∩ Y |= 1 holds or
• U is separable-homogeneous and U ∩ Y induces a P4.

This theorem will be exploited in the next section to obtain a new graph decom-
position that extends the modular decomposition in the sense that it goes further in
decomposing graphs which are prime with respect to the modular decomposition.

8. Homogeneous and separable-homogeneous decomposition

The primeval decomposition described in Section 3 lays the foundation of the
homogeneous decomposition [40], which additionally involves the homogeneous sets
of the graph. Given the primeval tree, it constructs a new tree representation by intro-
ducing a graph operation which, loosely speaking, replaces homogeneous sets by single
vertices (this operation will also occur in our new decomposition). The homogeneous
decomposition properly extends the modular or substitution decomposition [49,50], a
well-investigated and extremely useful technique to decompose a graph G into certain
subgraphs, called modules. A module M is a set of vertices in G which cannot be
distinguished from vertices in V −M , i.e. each vertex outside M is either totally ad-
jacent or nonadjacent to M . In particular, the graph itself and each single vertex is
considered to be a module. In this sense, homogeneous sets are precisely the nontrivial
modules of a graph. The result of the modular decomposition is a tree that describes
the submodules of G.
By virtue of Theorem 7.3 we are able to go substantially further and decompose

graphs which are prime with respect to the modular and to the homogeneous decom-
position. For this purpose, we now introduce several graph operations which are meant
to capture the decomposition of spider-like graphs and which reect the substitution of
homogeneous and separable-homogeneous sets by single vertices and P4’s, respectively.
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Fig. 7. Decomposing a thin-spider-like graph.

In a thin-spider-like graph G, the removal of the edges in the �rst set of the
associated separation leaves at least three connected components. Let Gi; i=1; 2; : : : ; t,
denote the subgraphs of G which are induced by the vertex-sets of these components.
Note that, since the characteristic graph of G is a split graph, the characteristic graph
of each subgraph Gi is a split graph, too. The reverse of the decomposition of G into
the subgraphs G1; : : : ; Gt is reected by the following operation.
Let Gi=(Vi; Ei); i=1; 2; : : : ; t, denote disjoint graphs with t¿3 and let Vi=V 1i ∪V 2i .

The graph G = (V; E) is said to arise from G1; : : : ; Gt by a operation if
• V =⋃ t

i=1 Vi and
• E =⋃ t

i=1 Ei ∪ {xy | x ∈ V 1i ; y ∈ V 1j ; 16i¡ j6t}.
Similarly, G = (V; E) arises from G1; : : : ; Gt by a operation if
• V =⋃ t

i=1 Vi and
• E =⋃ t

i=1 Ei ∪ {xy | x ∈ V 2i ; y ∈ Vj; 16i¡ j6t}.
Clearly, a thin-spider-like graph results from a operation applied to certain in-
duced subgraphs, a thick-spider-like graph results from a operation. We refer the
reader to Fig. 7 illustrating the decomposition tree associated with a thin spider-like
graph.
The reverse of shrinking homogeneous sets to single vertices and separable-

homogeneous sets to P4’s is established by the following operation. Let G0 = (V0 ∪
{y1; y2; : : : ; ys} ∪ Xs+1 ∪ · · · ∪ Xt; E0) be a graph such that each of the sets Xj induces
a P4. Let further Gi = (Vi; Ei); i = 1; : : : ; s, be arbitrary and Gj = (Vj; Ej) be separable
p-connected graphs with separation (V 1j ; V

2
j ); j = s + 1; : : : ; t. The graph G = (V; E)

arises from G0; G1; : : : ; Gt by means of a operation if G is obtained by replacing
every vertex yi in G0 by the graph Gi and each set Xj by the separable p-connected
graph Gj in the obvious way, i.e.
• V =⋃ t

i=0 Vi and
• E =⋃ t

i=0 Ei − E′ ∪ E′′ ∪ E′′′,
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Fig. 8. Decomposing a p-connected graph.

where E′ denotes the edges in G0 which are incident to a vertex yi or to a vertex from
a set Xj, the set E′′ arises by joining each vertex in Vi to every neighbor of yi, and E′′′

arises by joining each vertex from Vj to every vertex which is totally adjacent to Xj
and every vertex from V 1j to every vertex which is adjacent precisely to the midpoints
of the P4 induced by Xj (see also the example in Fig. 8).
As the following result shows, all graphs are constructible from certain atomic sub-

graphs by means of the operations de�ned above. More precisely, we have the following
result.

Theorem 8.1 (Babel and Olariu [8]). Every graph can be obtained uniquely from
prime p-connected subgraphs by a �nite sequence of operations ; ; : : : ; .

Theorems 3.1 and 7.3 suggest, in a natural way, a tree representation for arbitrary
graphs which is unique up to isomorphism. The tree T (G) belonging to a graph G will
be called the separable-homogeneous tree of G. The internal nodes of T (G) are labeled
with integers i ∈ {0; 1; : : : ; 5}, where an i-node means that the subgraph associated with
this node as a root is constructed from the subgraphs associated with its children by
an operation. The leaves of the tree are the prime p-connected subgraphs of G (for
recursive procedures which describe the formal construction of the homogeneous and
the separable-homogeneous tree of an arbitrary graph G we refer to [40,8]).

9. p-trees

A di�erent line of research tries to �nd new graph classes which constitute the
analogue of known graph classes in the context of p-connectedness. For example, a
p-cycle denotes a graph where each vertex belongs to at least two P4’s and which
is minimal with this property, i.e. every proper induced subgraph has a vertex which
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Fig. 9. Some examples of p-cycles.

belongs to at most one P4. Obviously, p-cycles are p-connected graphs and do not
contain any p-end-vertices (a vertex is a p-end-vertex if it belongs to exactly one P4).
Important examples of p-cycles are the chordless cycles Ck of length k¿5 and their
complements, and spiders with six vertices. Some further examples are depicted in
Fig. 9.
A p-forest is a graph which does not contain an induced p-cycle. The p-connected

components of a p-forest are called p-trees. Thus, a p-tree is a p-connected graph
without induced p-cycles. The smallest p-tree is the P4 which occasionally is called
the trivial p-tree.
p-forests and p-trees have been introduced and investigated by Babel in [2,4,32].

Among others, it has been shown that p-forests properly contain the classes of cographs
and P4-reducible graphs. On the other hand, p-forests are weakly triangulated and even
brittle graphs.
As it turns out, p-trees are provided with structural properties which can be expressed

in a quite analogous way to the numerous characterizations of ordinary trees. Here is
the main result, the beauty of which gives an additional motivation to thoroughly
explore this class of graphs.

Theorem 9.1 (Babel [4]). For a graph G = (V; E) the following statements are equiv-
alent:
1: G is a p-tree.
2: G is p-connected and every p-connected induced subgraph of G contains at least
one p-end-vertex.

3: G is p-connected; contains no proper induced spider and has exactly n − 3
P4’s.

4: G contains no induced p-cycle and has exactly n− 3 P4’s.
5: G is p-connected; contains no proper induced spider and each vertex of a p-
connected induced subgraph H of G is either a p-end-vertex or a p-articulation-
vertex in H .

6: G contains no proper induced spider and each pair of vertices is connected either
by a unique nontrivial p-chain or by trivial p-chains only.

The next result points out a further interesting property of p-trees which also cor-
responds to a well-known property of trees.
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Lemma 9.2 (Babel [4]). A p-tree G contains at least two p-end-vertices u and v.
Furthermore; if G is a nontrivial p-tree; then u and v do not belong to a common P4.

The previous structural results lay the foundation for the study of algorithmic prop-
erties of p-trees and p-forests. At the same time, homogeneous sets play an important
role in the design of e�cient algorithms. Fortunately, as asserted by the �rst part of
the next statement, these sets are of a very simple nature.

Lemma 9.3 (Babel [2,32]). Let G be a p-tree. Then the following holds:
(a) Each homogeneous set of G induces a cograph;
(b) G contains no separable-homogeneous sets.

Based on the extension procedure presented in Section 6, Babel developed in [3] an
e�cient method for traversing a p-tree such that p-connectedness is preserved in each
step and all P4’s of the graph are detected. The method depends on the following result
which is an immediate consequence of the previous statement and of Lemma 6.2.

Theorem 9.4 (Babel [2,3]). In a p-tree G=(V; E) every P4 extends to V by partner
addition.

The traversing technique can be extended to �nd e�ciently the p-connected com-
ponents of a p-forest. As a direct application, this allows to construct in linear time
a perfect order for a p-forest which, in turn, allows to solve the classical optimiza-
tion problems maximum clique, minimum coloring, maximum stable set and minimum
clique cover [3].
The key for the construction of e�cient recognition and isomorphism algorithms

is the detailed study of the structure of p-chains in p-trees. For that purpose, call
a p-chain (v1; v2; : : : ; vk) simple if there is no P4 in G({v1; v2; : : : ; vk}) di�erent from
(vi; vi+1; vi+2; vi+3) with 16i6k − 3. It is an easy observation that every p-chain in
a p-tree must be simple. In particular, every pair of vertices in a p-tree is con-
nected by a simple p-chain (surprisingly, this is not true for arbitrary p-connected
graphs).
Obviously, each path Pk consisting of k¿4 vertices and the complement of such

a path are simple p-chains. Further examples are the graphs Qk; k¿4, and Rk; 46k67,
as illustrated in Fig. 10, and the complements of these graphs. We omit a formal
de�nition of the graphs Qk and Rk , since their construction should be evident from
the examples given in Fig. 10. As it turns out, there are no further simple p-
chains.

Theorem 9.5 (Babel [2,32]). A simple p-chain is isomorphic to one of the graphs Pk;
Qk (k¿4); Rk (46k67); or to the complement of one of these graphs.

Using this result a further characterization of p-trees has been found in [2]. Roughly
speaking, a p-tree consists of a simple p-chain which is extended – in a certain simple
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Fig. 10. The simple p-chains Q8 and R7.

pattern – by a number of p-end-vertices which, in turn, are replaced by cographs.
This characterization allows to construct linear-time recognition as well as linear-time
isomorphism algorithms for p-trees and p-forests.

10. Graphs with few P4’s

In recent years the study of graphs which – in some local sense – contain only a
restricted number of P4’s, turned out to be of steadily increasing importance. The start-
ing point and the original motivation for many investigations was the class of graphs
where no P4 is allowed to exist, commonly termed cographs. For these graphs, which
have been investigated independently by many authors, a large number of interesting
structural results have been obtained that culminate in a tree representation which is
unique up to labeled tree isomorphism (see e.g. [16] for a discussion).
The study of cographs has been extended by Jamison and Olariu to graphs which

contain a restricted number of induced paths of length three. The corresponding classes
are called P4-reducible, P4-sparse, P4-extendible and P4-lite. In particular, P4-reducible
graphs [34] are de�ned as those graphs where no vertex belongs to more than one P4.
A graph is called P4-sparse [37] if no set of �ve vertices induces more than one P4
(this class was originally introduced by Hoang in [27]). Obviously, P4-sparse graphs
generalize both cographs and P4-reducible graphs. P4-extendible graphs [36] are graphs
where each p-connected component consists of at most �ve vertices. Finally, a graph is
P4-lite [35] if every induced subgraph with at most six vertices either contains at most
two P4’s or is isomorphic to a spider. It has been shown that these classes are provided
with very nice structural properties. The most remarkable feature is the existence of a
unique tree representation.
Historically, the previous classes have been presented and studied before the notion

of p-connectedness has been introduced. With the knowledge of the results of Section
2, Babel and Olariu [6] proposed the generalizing concept of (q; t)-graphs. In such
a graph no set of at most q vertices is allowed to induce more than t distinct P4’s.
In this sense, the cographs are precisely the (4; 0)-graphs and the P4-sparse graphs
coincide with the (5; 1)-graphs. Furthermore, it turns out that the C5-free P4-extendible
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graphs are exactly the (6; 2)-graphs. The following theorem states that the p-connected
components of these graphs are of a rather simple structure.

Theorem 10.1 (Babel and Olariu [6]). A p-connected component of a (q; q−4)-graph
either contains less than q vertices or is isomorphic to a spider.

As pointed out in Section 3, the Structure Theorem allows to give for any graph a
tree representation which is unique up to isomorphism (the primeval tree). It is well
known that each cograph arises from single vertices by a sequence of operations dis-
joint union and disjoint sum. Thus, in this special case, the leaves of the associated
tree represent the vertices of the graph and the labels of the interior nodes are 0 and 1.
For (q; q − 4)-graphs the interior nodes are labeled 0, 1 and 2, the leaves represent
graphs of restricted size or graphs which are isomorphic to graphs of a very simple
nature, namely spiders.
In [23] Giakoumakis and Vanherpe studied structural and algorithmic properties of

extended P4-reducible and extended P4-sparse graphs. These classes are obtained from
P4-reducible and P4-sparse graphs, respectively, by also allowing C5’s as p-connected
components. Hence, in the �rst case, the nontrivial leaves of the associated primeval
tree are P4’s and C5’s, in the second case they are spiders and C5’s.
Another generalization of the previously mentioned graph classes are P4-tidy graphs.

They were introduced by I. Rusu and studied by Giakoumakis et al. in [22]. A graph
is P4-tidy if no P4 has more than one partner (in other words, for every P4 there exists
at most one vertex outside which, together with three of its vertices, induces a P4).
As it turns out, P4-tidy graphs strictly contain the classes of cographs, P4-reducible,
P4-sparse, P4-extendible and P4-lite graphs. In our terminology, the structure of P4-tidy
graphs can be described as follows:

Theorem 10.2 (Giakoumakis et al. [22]). A p-connected component of a P4-tidy
graph is either isomorphic to a spider (possibly with one vertex replaced by a homo-
geneous set of cardinality 2) or to one of the graphs P5; P5; C5.

With the knowledge of the results of the previous section, recently the classes of
(q; q − 3)-graphs have been analyzed by Babel in [2]. Clearly, every (q; q − 4)-graph
is also a (q; q − 3)-graph since here, in each set of q vertices, one more P4 may be
present. These graphs have also very nice structural properties which are described in
the next theorem (a disc is a cycle or the complement of a cycle with at least �ve
vertices).

Theorem 10.3 (Babel [2]). A p-connected component of a (q; q − 3)-graph; q¿7;
either contains less than q vertices or is isomorphic to a spider; to a disc or to a
p-tree.

Hence, the leaves of the primeval tree associated to a (q; q − 3)-graph represent
spiders, discs, p-trees or graphs of restricted size. The importance of (q; q− 3)-graphs
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becomes evident from the fact that they constitute rather comprehensive graph classes.
In particular, the (7; 4)-graphs properly contain all cographs, P4-reducible graphs,
P4-sparse graphs, p-trees, and p-forests. The (9; 6)-graphs additionally contain all
extended P4-reducible, extended P4-sparse and P4-extendible graphs.

11. Algorithmic features and applications

Graph decompositions are a very powerful tool to simplify di�cult combinatorial
optimization problems. In a divide-and-conquer manner, a problem on a graph is solved
by independently studying the parts of the graph, and then combining the solutions for
the parts into a solution for the whole graph. Often, we want to �nd certain graph
parameters. In this context, the central questions read as follows.
• How fast can we construct the decomposition tree ?
• Given a graph together with its decomposition tree, how can we compute the pa-
rameters for the graph given the parameters for the leaves ?

• For which graph classes does this imply an e�cient solution method ?
In the last years a large number of papers appeared giving (partial) answers to these
questions. The following list of results is certainly far away from being complete.
The pioneering algorithm for the construction of tree representations is the algo-

rithm for cographs described in [19]. Based on the techniques used there, linear-time
algorithms have been developed for some graph classes with few P4’s, namely for
P4-reducible graphs [39], P4-sparse graphs [38] and P4-extendible graphs [30]. Later
on, a linear-time algorithm has been presented in [9] which constructs the primeval de-
composition tree of an arbitrary graph. This implies, among others, that the p-connected
components of a graph can be found in linear time. A re�nement of the former al-
gorithm provides a linear-time method to obtain the homogeneous decomposition tree
[9]. It is based, partly, on known methods which �nd the modular decomposition of a
graph [20,48].
The algorithms [19,30,38,39] immediately imply linear-time recognition methods for

the corresponding graph classes. Using the primeval decomposition algorithm of [9],
the (q; q− 4)-graphs and – combined with the recognition algorithm for p-trees [2] –
even the (q; q − 3)-graphs can be recognized in linear time if the value of q is �xed
[2,6].
Assume now that an arbitrary graph is given together with its primeval (or ho-

mogeneous or separable-homogeneous) decomposition tree. General techniques for the
computation of the clique number, the stability number, the chromatic number and
the minimum clique cover number, even in the weighted case, are described in [2].
The problem of triangulating a graph and computing associated parameters such as
minimum �ll-in and treewidth is treated in [5], for results concerning the scattering
and path covering number, see e.g. [31]. Other applications including dominating set,
Steiner tree, vulnerability, vertex ranking, clustering problems, etc., are in prospect.
One of the most important consequences of the unique tree representations is that the
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isomorphism problem can be solved in polynomial time whenever the isomorphism
classes of the graphs associated to the leaves are known. This immediately follows
from the fact that labeled tree isomorphism is solvable in linear time [1].
The latter observation implies linear-time (or at least polynomial-time) isomorphism

tests for all the special graph classes mentioned in the previous section [2,6,16,19,30,
38,39]. Moreover, for a number of classes, the tree representations imply linear-time
algorithms for problems which are NP-hard in general. This includes, among oth-
ers, maximum clique, maximum stable set, minimum coloring, minimum clique cover
[2,3,16,22,23,41], treewidth, pathwidth, minimum �ll-in [5,10,18,41], clustering and
domination [17], path covering number, scattering number and hamiltonicity [16,22,31,
42,45]. Finally, linear-time algorithms have also been presented to �nd maximum
matchings in special graph classes [21,53].
Recently, increased attention has also been payed to the construction of parallel

algorithms, see e.g. [26,33,43–46].
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