7,527 research outputs found

    Impact of Channel Errors on Decentralized Detection Performance of Wireless Sensor Networks: A Study of Binary Modulations, Rayleigh-Fading and Nonfading Channels, and Fusion-Combiners

    Get PDF
    We provide new results on the performance of wireless sensor networks in which a number of identical sensor nodes transmit their binary decisions, regarding a binary hypothesis, to a fusion center (FC) by means of a modulation scheme. Each link between a sensor and the fusion center is modeled independent and identically distributed (i.i.d.) either as slow Rayleigh-fading or as nonfading. The FC employs a counting rule (CR) or another combining scheme to make a final decision. Main results obtained are the following: 1) in slow fading, a) the correctness of using an average bit error rate of a link, averaged with respect to the fading distribution, for assessing the performance of a CR and b) with proper choice of threshold, ON/OFF keying (OOK), in addition to energy saving, exhibits asymptotic (large number of sensors) performance comparable to that of FSK; and 2) for a large number of sensors, a) for slow fading and a counting rule, given a minimum sensor-to-fusion link SNR, we determine a minimum sensor decision quality, in order to achieve zero asymptotic errors and b) for Rayleigh-fading and nonfading channels and PSK (FSK) modulation, using a large deviation theory, we derive asymptotic error exponents of counting rule, maximal ratio (square law), and equal gain combiners

    Network lifetime extension, power conservation and interference suppression for next generation mobile wireless networks

    Get PDF
    Two major focus research areas related to the design of the next generation multihop wireless networks are network lifetime extension and interference suppression. In this dissertation, these two issues are addressed. In the area of interference suppression, a new family of projection multiuser detectors, based on a generalized, two-stage design is proposed. Projection multiuser detectors provide efficient protection against undesired interference of unknown power, while preserving simple design, with closed-form solution for error probabilities. It is shown that these detectors are linearly optimal, if the interference power is unknown. In the area of network lifetime extension, a new approach to minimum energy routing for multihop wireless networks in Rayleigh fading channels is proposed. It is based on the concept of power combining, whereby two users transmit same signal to the destination user, emulating transmit diversity with two transmit antennas. Analytical framework for the evaluation of the benefits of power combining, in terms of the total transmit power reduction, is defined. Simulation results, which match closely the analytical results, indicate that significant improvements, in terms of transmit power reduction and network lifetime extension, are achievable. The messaging load, generated by the new scheme, is moderate, and can be further optimized

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Optimal Precoders for Tracking the AoD and AoA of a mm-Wave Path

    Get PDF
    In millimeter-wave channels, most of the received energy is carried by a few paths. Traditional precoders sweep the angle-of-departure (AoD) and angle-of-arrival (AoA) space with directional precoders to identify directions with largest power. Such precoders are heuristic and lead to sub-optimal AoD/AoA estimation. We derive optimal precoders, minimizing the Cram\'{e}r-Rao bound (CRB) of the AoD/AoA, assuming a fully digital architecture at the transmitter and spatial filtering of a single path. The precoders are found by solving a suitable convex optimization problem. We demonstrate that the accuracy can be improved by at least a factor of two over traditional precoders, and show that there is an optimal number of distinct precoders beyond which the CRB does not improve.Comment: Resubmission to IEEE Trans. on Signal Processing. 12 pages and 9 figure
    • …
    corecore