1,466 research outputs found

    Mean-payoff Automaton Expressions

    Get PDF
    Quantitative languages are an extension of boolean languages that assign to each word a real number. Mean-payoff automata are finite automata with numerical weights on transitions that assign to each infinite path the long-run average of the transition weights. When the mode of branching of the automaton is deterministic, nondeterministic, or alternating, the corresponding class of quantitative languages is not robust as it is not closed under the pointwise operations of max, min, sum, and numerical complement. Nondeterministic and alternating mean-payoff automata are not decidable either, as the quantitative generalization of the problems of universality and language inclusion is undecidable. We introduce a new class of quantitative languages, defined by mean-payoff automaton expressions, which is robust and decidable: it is closed under the four pointwise operations, and we show that all decision problems are decidable for this class. Mean-payoff automaton expressions subsume deterministic mean-payoff automata, and we show that they have expressive power incomparable to nondeterministic and alternating mean-payoff automata. We also present for the first time an algorithm to compute distance between two quantitative languages, and in our case the quantitative languages are given as mean-payoff automaton expressions

    Bayes and maximum likelihood for L1L^1-Wasserstein deconvolution of Laplace mixtures

    Full text link
    We consider the problem of recovering a distribution function on the real line from observations additively contaminated with errors following the standard Laplace distribution. Assuming that the latent distribution is completely unknown leads to a nonparametric deconvolution problem. We begin by studying the rates of convergence relative to the L2L^2-norm and the Hellinger metric for the direct problem of estimating the sampling density, which is a mixture of Laplace densities with a possibly unbounded set of locations: the rate of convergence for the Bayes' density estimator corresponding to a Dirichlet process prior over the space of all mixing distributions on the real line matches, up to a logarithmic factor, with the n3/8log1/8nn^{-3/8}\log^{1/8}n rate for the maximum likelihood estimator. Then, appealing to an inversion inequality translating the L2L^2-norm and the Hellinger distance between general kernel mixtures, with a kernel density having polynomially decaying Fourier transform, into any LpL^p-Wasserstein distance, p1p\geq1, between the corresponding mixing distributions, provided their Laplace transforms are finite in some neighborhood of zero, we derive the rates of convergence in the L1L^1-Wasserstein metric for the Bayes' and maximum likelihood estimators of the mixing distribution. Merging in the L1L^1-Wasserstein distance between Bayes and maximum likelihood follows as a by-product, along with an assessment on the stochastic order of the discrepancy between the two estimation procedures

    On Order Types of Random Point Sets

    Get PDF
    A simple method to produce a random order type is to take the order type of a random point set. We conjecture that many probability distributions on order types defined in this way are heavily concentrated and therefore sample inefficiently the space of order types. We present two results on this question. First, we study experimentally the bias in the order types of nn random points chosen uniformly and independently in a square, for nn up to 1616. Second, we study algorithms for determining the order type of a point set in terms of the number of coordinate bits they require to know. We give an algorithm that requires on average 4nlog_2n+O(n)4n \log\_2 n+O(n) bits to determine the order type of PP, and show that any algorithm requires at least 4nlog_2nO(nloglogn)4n \log\_2 n - O(n \log\log n) bits. This implies that the concentration conjecture cannot be proven by an "efficient encoding" argument

    Techniques to explore time-related correlation in large datasets

    Get PDF
    The next generation of database management and computing systems will be significantly complex with data distributed both in functionality and operation. The complexity arises, at least in part, due to data types involved and types of information request rendered by the database user. Time sequence databases are generated in many practical applications. Detecting similar sequences and subsequences within these databases is an important research area and has generated lot of interest recently. Previous studies in this area have concentrated on calculating similitude between (sub)sequences of equal sizes. The question of unequal sized (sub)sequence comparison to report similitude has been an open problem for some time. The problem is an important and non-trivial one. In this dissertation, we propose a solution to the problem of finding sequences, in a database of unequal sized sequences, that are similar to a given query sequence. A paradigm to search pairs of similar, equal and unequal sized, subsequences within a pair of sequences is also presented. We put forward new approaches for sequence time-scale reduction, feature aggregation and object recognition. To make the search of similar sequences efficient, we propose an indexing technique to index the unequal-sized sequence database. We also introduce a unique indexing technique to index identified subsequences within a reference sequence. This index is subsequently employed to report similar pairs of subsequences, when presented with a query sequence. We present several experimental results and also compare the proposed framework with previous work in this area

    Latent Semantic Learning with Structured Sparse Representation for Human Action Recognition

    Full text link
    This paper proposes a novel latent semantic learning method for extracting high-level features (i.e. latent semantics) from a large vocabulary of abundant mid-level features (i.e. visual keywords) with structured sparse representation, which can help to bridge the semantic gap in the challenging task of human action recognition. To discover the manifold structure of midlevel features, we develop a spectral embedding approach to latent semantic learning based on L1-graph, without the need to tune any parameter for graph construction as a key step of manifold learning. More importantly, we construct the L1-graph with structured sparse representation, which can be obtained by structured sparse coding with its structured sparsity ensured by novel L1-norm hypergraph regularization over mid-level features. In the new embedding space, we learn latent semantics automatically from abundant mid-level features through spectral clustering. The learnt latent semantics can be readily used for human action recognition with SVM by defining a histogram intersection kernel. Different from the traditional latent semantic analysis based on topic models, our latent semantic learning method can explore the manifold structure of mid-level features in both L1-graph construction and spectral embedding, which results in compact but discriminative high-level features. The experimental results on the commonly used KTH action dataset and unconstrained YouTube action dataset show the superior performance of our method.Comment: The short version of this paper appears in ICCV 201

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form ababa \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201

    The brick polytope of a sorting network

    Get PDF
    The associahedron is a polytope whose graph is the graph of flips on triangulations of a convex polygon. Pseudotriangulations and multitriangulations generalize triangulations in two different ways, which have been unified by Pilaud and Pocchiola in their study of flip graphs on pseudoline arrangements with contacts supported by a given sorting network. In this paper, we construct the brick polytope of a sorting network, obtained as the convex hull of the brick vectors associated to each pseudoline arrangement supported by the network. We combinatorially characterize the vertices of this polytope, describe its faces, and decompose it as a Minkowski sum of matroid polytopes. Our brick polytopes include Hohlweg and Lange's many realizations of the associahedron, which arise as brick polytopes for certain well-chosen sorting networks. We furthermore discuss the brick polytopes of sorting networks supporting pseudoline arrangements which correspond to multitriangulations of convex polygons: our polytopes only realize subgraphs of the flip graphs on multitriangulations and they cannot appear as projections of a hypothetical multiassociahedron.Comment: 36 pages, 25 figures; Version 2 refers to the recent generalization of our results to spherical subword complexes on finite Coxeter groups (http://arxiv.org/abs/1111.3349
    corecore