143 research outputs found

    Representing a P-complete problem by small trellis automata

    Full text link
    A restricted case of the Circuit Value Problem known as the Sequential NOR Circuit Value Problem was recently used to obtain very succinct examples of conjunctive grammars, Boolean grammars and language equations representing P-complete languages (Okhotin, http://dx.doi.org/10.1007/978-3-540-74593-8_23 "A simple P-complete problem and its representations by language equations", MCU 2007). In this paper, a new encoding of the same problem is proposed, and a trellis automaton (one-way real-time cellular automaton) with 11 states solving this problem is constructed

    Grammars with two-sided contexts

    Full text link
    In a recent paper (M. Barash, A. Okhotin, "Defining contexts in context-free grammars", LATA 2012), the authors introduced an extension of the context-free grammars equipped with an operator for referring to the left context of the substring being defined. This paper proposes a more general model, in which context specifications may be two-sided, that is, both the left and the right contexts can be specified by the corresponding operators. The paper gives the definitions and establishes the basic theory of such grammars, leading to a normal form and a parsing algorithm working in time O(n^4), where n is the length of the input string.Comment: In Proceedings AFL 2014, arXiv:1405.527

    On the closure properties of linear conjunctive languages

    Get PDF
    AbstractLinear conjunctive grammars are conjunctive grammars in which the body of each conjunct contains no more than a single nonterminal symbol. They can at the same time be thought of as a special case of conjunctive grammars and as a generalization of linear context-free grammars that provides an explicit intersection operation.Although the set of languages generated by these grammars is known to include many important noncontext-free languages, linear conjunctive languages are still all square-time, and several practical algorithms have been devised to handle them, which makes this class of grammars quite suitable for use in applications.In this paper we investigate the closure properties of the language family generated by linear conjunctive grammars; the main result is its closure under complement, which implies that it is closed under all set-theoretic operations. We also consider several cases in which the concatenation of two linear conjunctive languages is certain to be linear conjunctive. In addition, it is demonstrated that linear conjunctive languages are closed under quotient with finite languages, not closed under quotient with regular languages, and not closed under ε-free homomorphism

    Parsing Unary Boolean Grammars Using Online Convolution

    Get PDF
    In contrast to context-free grammars, the extension of these grammars by explicit conjunction, the so-called conjunctive grammars can generate (quite complicated) non-regular languages over a single-letter alphabet (DLT 2007). Given these expressibility results, we study the parsability of Boolean grammars, an extension of context-free grammars by conjunction and negation, over a unary alphabet and show that they can be parsed in time O(|G| log^2(n) M(n)) where M(n) is the time to multiply two n-bit integers. This multiplication algorithm is transformed into a convolution algorithm which in turn is converted to an online convolution algorithm which is used for the parsing

    Numbers and Languages

    Get PDF
    The thesis presents results obtained during the authors PhD-studies. First systems of language equations of a simple form consisting of just two equations are proved to be computationally universal. These are systems over unary alphabet, that are seen as systems of equations over natural numbers. The systems contain only an equation X+A=B and an equation X+X+C=X+X+D, where A, B, C and D are eventually periodic constants. It is proved that for every recursive set S there exists natural numbers p and d, and eventually periodic sets A, B, C and D such that a number n is in S if and only if np+d is in the unique solution of the abovementioned system of two equations, so all recursive sets can be represented in an encoded form. It is also proved that all recursive sets cannot be represented as they are, so the encoding is really needed. Furthermore, it is proved that the family of languages generated by Boolean grammars is closed under injective gsm-mappings and inverse gsm-mappings. The arguments apply also for the families of unambiguous Boolean languages, conjunctive languages and unambiguous languages. Finally, characterizations for morphisims preserving subfamilies of context-free languages are presented. It is shown that the families of deterministic and LL context-free languages are closed under codes if and only if they are of bounded deciphering delay. These families are also closed under non-codes, if they map every letter into a submonoid generated by a single word. The family of unambiguous context-free languages is closed under all codes and under the same non-codes as the families of deterministic and LL context-free languages.Siirretty Doriast

    Ambiguity Detection Methods for Context-Free Grammars

    Get PDF
    The Meta-Environment enables the creation of grammars using the SDF formalism. From these grammars an SGLR parser can be generated. One of the advantages of these parsers is that they can handle the entire class of context-free grammars (CFGs). The grammar developer does not have to squeeze his grammar into a specific subclass of CFGs that is deterministically parsable. Instead, he can now design his grammar to best describe the structure of his language. The downside of allowing the entire class of CFGs is the danger of ambiguities. An ambiguous grammar prevents some sentences from having a unique meaning, depending on the semantics of the used language. It is best to remove all ambiguities from a grammar before it is used. Unfortunately, the detection of ambiguities in a grammar is an undecidable problem. For a recursive grammar the number of possibilities that have to be checked might be infinite. Various ambiguity detection methods (ADMs) exist, but none can always correctly identify the (un)ambiguity of a grammar. They all try to attack the problem from different angles, which results in different characteristics like termination, accuracy and performance. The goal of this project was to find out which method has the best practical usability. In particu

    A Simple Uniform Semantics for Concatenation-based Grammar

    Get PDF
    We define a more formal version of literal movement grammar (LMG) as outlined in [Gro95c], in such a way that it provides a simple framework that incorporates a large family of grammar formalisms (Head Grammar [Pol84], LCFRS, [Wei88]), PMCFG, [KNSK92] and String Attributed Grammars [Eng86]). The semantics is (both in rewriting and least fixed point definitions) simple and elegant, and sheds some new light on shared properties of the mentioned formalisms. We then define a restricted version called simple LMG and show that it generates languages that are not mildly context sensitive, yet preserves the polynomial time recognition property of LCFRS
    • …
    corecore