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Abstract

We define a more formal version of literal movement grammar (LMG) as outlined in [Gro95c], in such a way that
it provides a simple framework that incorporates a large family of grammar formalisms (Head Grammar [Pol84],
LCFRS, [Wei88]), PMCFG, [KNSK92] and String Attributed Grammars [Eng86]). The semantics is (both in
rewriting and least fixed point definitions) simple and elegant, and sheds some new light on shared properties of
the mentioned formalisms. We then define a restricted version called simple LMG and show that it generates
languages that are not mildly context sensitive, yet preserves the polynomial time recognition property of LCFRS.

Introduction

This paper consists of three parts. In the first, we propose a more elementary notation of the LMG formalism as
introduced the first LMG paper [Gro95c], and call it predicate literal movement grammar. The generalization has
a twofold purpose. First, it allows us to give a more elementary semantics, both in rewriting style and as a fixed
point operator on sets of tuples of terminal strings. Then, we see how it allows us to put a series of tuple-based
grammar formalisms of increasing recognising power (LCFRS [Wei88], MCFG, PMCFG [KNSK92], and LMG)
in a uniform semantic framework.

In the second part we look at least fixed point interpretations, followed by a discussion on complexity of
recognition. We introduce a restricted version of our formalism, simple LMG, and show that it strictly extends
LCFRS and PMCFG, yet preserves polynomial time recognition. More precisely, the class of languages described
by simple LMG is exactly the class PTIME. The PTIME fragment can be extended to cover input data in the form
of a lattice (such as in speech analysis) or arbitrary ordered finite structures (think of pattern recognition in vector
based images).

The third part wraps up the story with a classification of the formalisms that have been discussed, and a
discussion on mild context-sensitivity and polynomial time. Among other things, we give an example showing that
LMG can give accounts of essential structural phenomena in Natural Language known to be beyond the scope of
linear context-free rewriting systems.

1 The Predicate LMG Framework

Literal movement grammar (LMG, henceforth slash-style LMG) was introduced by the author in [Gro95c], as
a formalism which takes a strong left-to-right top-down view on “literal” filler-gap relocation, i.e. passing the
terminal words scanned in filler positions down the derivation until they are matched up by a correspondingly typed
gap, in the form of what in that paper was called a ‘slash item’.

We will redefine LMG here in a version which has more formal appeal.

Definition 1 A predicate literal movement grammar (LMG1) is a tuple G = (N; T; V; S; P ) where N; T and V
are mutually disjoint sets of nonterminal symbols, terminal symbols and variable symbols, respectively, S 2 N ,1The previous papers [Gro96] and [Gro95b] refer to predicate LMG as CPG (concatenative predicate grammar), but I agree with the readers
who thought that giving what is essentially a different representation of the same formalism, a name of its own, might lead to unnecessary
confusion.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NP(John) VT(saw) NP(Mary)VP(saw; Mary) VT(admired) NP(Mary)VP(admired; Mary)VP(saw and admired; Mary)S(Mary, John saw and admired)
Figure 1: Derivation of Mary, John saw and admired

and P is a set of clauses (which correspond to the notion of a production in CFG or the slash-style LMG from
[Gro95c]) of the form� :-  1;  2; : : : ;  m
where �;  1 : : : m are predicates of the formA(t1; : : : ; tn)
where ti 2 (T [ V )�.

A predicate LMG clause is instantiated by substituting a string w 2 T � for each of the variables occurring in the
clause.

Definition 2 (semantics) Let G = (N; T; V; S; P ) be a predicate LMG. Then G is said to recognise a string w if`G S(w) where `G is defined inductively as follows: ifA(w1; : : : ; wn) :- B1(v11; : : : ; v1n1);: : : ;Bm(vm1; : : : ; vmnm)
is an instantiation of a clause in P , and for each 1 � k � m`G Bi(vk1; : : : ; vknk)
then `G A(w1; : : : ; wn)
Note that m = 0 is the base case (zero antecedents).

Example 1 (Topicalization/Conjunction) An example of an LMG is the following grammarS(n "; " mv) :- NP(m); VP(v; n)VP(v1 "and" v2; n) :- VP(v1; n); VP(v2; n)VP(v; n) :- VT(v); NP(n)
which derives topicalized sentences of the form

Mary, John saw and admired and kissed.

An example derivation is shown in figure 1.

Example 2 (CFGs) Every CFG can be defined as a predicate LMG; this is analogous to the translation of a CFG
into Prolog. Every nonterminal will have one argument which represents its yield. E.g. S! NP VP will becomeS(xy)! NP(x);VP(y).
We can do the same to slash style LMG [Gro95c].
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Example 3 (Slash-style LMG) The original version of LMG using slash items [Gro95c] [Gro96] can be translated
directly into predicate LMG, by introducing an extra argument for each nonterminal. Vice versa, in some predicate
LMG, such as the grammar from example 1, one argument that clearly encodes simple left-to-right phrase structure
can be removed so as to give a slash-style LMG; the slash-style LMG notation for the grammar in the example isS ! n "," NP VP(n)VP(n) ! VP(n) "and" VP(n)VP(n) ! VT (NP=n)

Note how the slash-style notation is, especially in the case of natural language grammars, more appealing to
traditional intuition (but also actually more readable, as it involves less variables per rule).

Example 4 (Head Grammar) A head grammar is a CPG that operates on pairs. There are three types of (modified)
head grammar rule: a wrapping production:A! wrap(B;C)
is represented in LMG asA(b1c1; c2b2) :- B(b1; b2); C(c1; c2)
and one of the two types of concatenating rule asA(a1; a2b1b2) :- B(b1; b2); C(c1; c2)
Example 5 (LCFRS and PMCFG) Linear context-free rewriting systems (LCFRS) and parallel multiple context-
free grammars (PMCFG) are no more than complex notation for restrictions of predicate LMG. Productions in both
LCFRS [Wei88] and PMCFG [KNSK92] are of the formA! f(B1 ; : : : ; Bm)
where f is a function over tuples of terminal words defined (symbolically) asf(hx11; : : : ; x1n1i ;: : : ;hxm1; : : : ; xmnmi) = ht1; : : : ; tni
where ti are terms over the variablesxij and terminal symbols. In LCFRS, f is required to be linear and nonerasing,
that is every one of the xij should appear exactly once in the t1; : : : ; tn. For PMCFG, there is no such restriction.

In the predicate notation of these formalisms, the separate function definition disappears; we simple write a
rule asA(t1; : : : ; tn) :- B1(x11; : : : ; x1n1);: : : ;Bm(xm1; : : : ; xmnm)
Example 6 (Attribute Grammar) [Eng86] We have two nonterminals: a start symbol Z with a designated
attribute d; and A with an inherited attribute i and a synthesized attribute s. The grammar and the attribute rules
are as follows:Z ! a A Z:d := A:s; A:i := aZ ! b A Z:d := A:s; A:i := bA(1) ! a A(2) A(1):s := A(2):s A(2):s;A(2):i := A(1):i aA(1) ! b A(2) A(1):s := A(2):s A(2):s;A(2):i := A(1):i bA ! � A:s := A:i c A:i c
The context-free backbone recognises arbitrary nonempty strings w over the alphabet T = fa;bg, and the output
value for w 2 T � is (wc)2jwj

.
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The grammar is represented in predicate LMG asS(x) :- Z(x; y)Z(x; az) :- A(a; x; z)Z(x; bz) :- A(b; x; z)A(y; xx; az) :- A(ya; x; z)A(y; xx; bz) :- A(yb; x; z)A(x; xcxc; �):
Note that there is no formal difference between inherited and synthesized attributes—this is in line with the
observation that designating an attribute as synthesized or inherited is, once we look at the equations as constraints,
semantically irrelevant, and should rather be considered as a hint toward a concrete program or parser that evaluates
the “value” of a sentence. The translated SAG is a curious type of LMG, as the S production “throws away” the
value y. It will turn out that this type of LMG has less favourable computational properties than the ones defined
so far; the example serves mainly to stress that LMG provides a very simple semantics, and a compact notation for
attribute grammars.

2 Least Fixed Points and Complexity

The examples have already shown how LMG subsumes the chain CFG � HG � LCFRG � PMCFG of
formalisms of increasing generative capacity. It is actually known that these are all strict inclusions; moreover the
fixed recognition problems for all these formalisms are in PTIME. We will now answer the question how, in the
spirit of these formalisms, we can characterize PTIME itself.

Calculi that describe PTIME have been known for quite some time. The calculus ILFP (integer least fixed point)
is introduced in [Rou88]; it applies knowledge about the relationship between bounded arithmetic and complexity
to language recognition. The underlying idea is that by talking about positions in the input string, as opposed
to about the strings themselves, we can store intermediate steps in the search for a derivation in logspace, which
with the Chandra-Kozen-Stockmeyer [CKS81] result on the correspondence between deterministic and alternating
Turing machine computations then gives a deterministic PTIME complexity for recognition.

2.1 Fixed point interpretations of LMG

Before we redefine LMG to talk about integer positions in strings, let’s present the semantics of LMG in such a
way that we interpret the nonterminals as relations over terminal strings. Let G = (N; T; V; S; P ) be an LMG. Let
NA be the set of assignments to the nonterminals: functions � mapping a nonterminal to a set of arbitrary tuples of
strings over T . The set of productionsP can then be viewed as an operator [jGj] taking an interpretation function as
an argument and producing a new function, defined as follows:

If A(w1; : : : ; wn) :- B1(v11; : : : ; v1n1);: : : ;Bm(vm1; : : : ; vmnm)
is an instantiation of a clause in P , and for each 1 � k � m, (vk1; : : : ; vknk) 2 [jGj](Bk), then (w1; : : : ; wn) 2[jGj](A).

It is easily seen that [jGj] is a continuous and monotonic operator on the complete partial order (NA;v) defined
by �1 v �2 , 8A 2 N: �1(A) � �2(A) :
let �1; �2 be two assignments, and �1 v �2. Let a 2 ([jGj]�1)(A). Then we have the clause R and the tuplesb1; : : : ; bm from the definition, and bi 2 �1(Bi). It now follows that for each i, bi 2 �2(Bi), hence a 2 ([jGj]�2)(A).
So [jGj] is monotonic. Because the partial order is defined as componentwise set inclusion over a sufficiently general
universe, it follows automatically that [jGj] is also continuous.
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We can now validly define the interpretation of a grammar to be the least fixed point of [jGj]:IG = 1Gk=0[jGj]k(�A:;)
i.e. a function which takes a nonterminal and yields a set of tuples of strings; If S is the start symbol of G, and its
arity throughout the grammar is 1, then IG(S) will be the language recognised by the LMG in the traditional sense.

It is easy to check that the rewriting semantics and the fixed point semantics are equivalent. The fixed point
semantics is a useful tool for several purposes. First of all, it gives a more detailed yet mathematically elegant
interpretation of grammar. More detailed, because it does not merely characterize the language generated by a
single designated start symbol, but characterizes the derivational behaviour of the grammar, without looking at
single derivations in particular.

We want to find out how we can restrict the LMG grammars in such a way that recognition can be performed
as an alternating search in logspace. For a given string of length n, in log space we can encode a bounded set of
numbers ranging from 0 to n (in binary encoding). This means that we have to encode the arguments of an LMG
predicate in a derivation each with a bounded set of numbers. Since in the original interpretation the arguments are
strings, the most obvious choice is to encode the arguments as pairs of integers ranging 0 to n encoding a substring
of the input.

Redefine the fixed point semantics as follows; let w = a0a1 � � �an�1 be a terminal string of length n; thenNAw is the set of integer nonterminal assignments � mapping a nonterminal to a set of tuples of pairs of integers.
Then [jGj]w is defined

If A(ai1 � � �aj1 ; : : : ; ain � � �ajn)
:- B1(ai11 � � �aj11 ; : : : ; ai1n1 � � �aj1n1 );: : : ;Bm(aim1 � � �ajm1 ; : : : ; aimnm � � �ajmnm )

is an instantiation of a clause in P , and for each 1 � k � m, h(ik1; jk1); : : : ; (iknk; jknk)i 2 [jGj]w(Bk), thenh(i1; j1) : : : ; (in; jn)i 2 [jGj]w(A).
It is important to see that what is done here, is not the same as taking the string-based LFP interpretation, and

intersecting the sets of tuples with the domain of substrings of a given w. If we have an instantiated clauseA(w1; : : : ; wn) :- B1(v11; : : : ; v1n1);: : : ;Bm(vm1; : : : ; vmnm)
such that w1; : : : ; wn are substrings of w, but the vij are not, then this instantiation will be ignored in the integer
LFP semantics. Hence we want to rule out this type of clause. I.e., we want to make sure that w1; : : : ; wn are
substrings of the input, so are the vij .

Thus simple LMG is defined by disallowing terms other than single variables on the right hand side of the
clauses. This way we can uniquely replace each rule by a rule that is talking about integer positions instead of
strings.

Definition 3 (simple LMG) An LMG is called simple if its clauses R 2 P are all of the formA(t1; : : : ; tn) :- B1(x11; : : : ; x1n1);: : : ;Bm(xm1; : : : ; xmnm)
and each of the xij appears at precisely once in t1; : : : ; tn.

2.2 Simple LML is in PTIME

There are two ways to show that the languages generated by simple LMG can be recognised in polynomial time.
The first, most formal argument shows that every LMG can be translated into an equivalent formula in the integer
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string position calculus ILFP [Rou88]; this is quite simple and is sketched in [Gro95a]. The VP rules in the
grammar for English topicalization from conjunctive verb phrasesVP(v1 "and" v2; n) :- VP(v1; n); VP(v2; n)VP(v; n) :- VT(v); NP(n)
for example, are translated into a single formulaVP(i; j; k; l), 9i0; j0: ( i � i0 < j0 � j ^ and(i0; j0)^ VP(i; i0; k; l)^ VP(j0; j; k; l) )_ (VT(i; j) ^NP(k; l))
The correspondence between the languages defined by ILFP and those recognised by logspace-bounded alternating
Turing machines (ATM) shown in [Rou88] then completes the argument.

Here we will sketch a more informal recognition algorithm, which however gives a better indication of what a
possible implementation would look like (as it is a deterministic algorithm).

We take the integer representation of LMG grammars, in which every argument is represented as a pair (l; r)
of integer indices, as a point of departure (in fact the ILFP translation given above will serve for this purpose).

Given an input string w of length n, construct memo tables containing a boolean value for each possible
predicate A(l1; r1; : : : ; ln; rn), where li; ri are integer values ranging from 0 to n. Reset all the table entries
to zero. Now start with the predicate S(0; n), and recursively check, using the memo table where possible, all
possible instantiations of the bound variables (i0 and j0 in the example) in all applicable rules.

The procedure for VP rule we just translated is as follows:

VP(i,j,k,l):
if VP(i,j,k,l) memoed
then

return memoed value
else

memo VP(i,j,k,l) as False

loop i’ = 0...n
loop j’ = 0...n

if i <= i’ and
j’ <= j and
j’ = i’ + 1 and
a[i’] = "and" and
VP(i,i’,k,l) and
VP(j’,j,k,l)

then
memo VP(i,j,k,l) as True
return True

if VT(i,j) and
NP(k,l)

then
memo VP(i,j,k,l) as True
return True

return False

If p is the largest number of integer predicate arguments and m is the largest number of bound variables in each
disjunct of the ILFP version of an LMG rule, then the recogniser needs to do O(nm) calls or look-ups for each
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of the predicates. Since there are O(np) predicates, recognition can be performed in deterministicO(np+m) time
and O(np) memoing storage. Constructing a minimally informative parse forest would require O(np+m) space.2

The bound given here seems tight. The rules of a binary, modified head grammar, such a the wrapping rule:A(a1b1; b2a2) :- B(a1; a2); C(b1; b2)
are translated into integer based rules with 6 variables (p = 4; m = 2):A(i; j; l; k) , 9i0; l0: ( i � i0 � j^ l � l0 � k^ B(i; i0; l0; k)^ C(i0; j; l; l0) )
The general recogniser for HG we obtain by applying the sketched algorithm has the well known upper time bound
of O(n6).
2.3 Simple LML subsumes PTIME

We proceed exactly as in [Rou88]. It is a known result that PTIME = ASPACE (log n). Let M be an alternating
Turing machine [CKS81] with a read-only input tape and one binary working tape (the argument can then be
extended to cover an arbitrary number of binary working tapes). Let M be space bounded by log n, where n is the
length of its inputw.

Instantaneous descriptions (ID) of the ATM can be described by a state symbol q and a tuple (h; l; r; ll; rr) of
integers ranging from 0 to n; h is the position of the input head, l and r describe the contents of the binary work
tape left and right of its head, and ll and rr represent the amount of work tape space left and right of its head.
As Rounds argues, an ID predicate q(h; l; r; ll; rr) is defined in terms of other ID predicates through a disjunction
(existential states) or conjunction (universal states) of other predicates, where the arguments of the predicates are
built from h; l; r; ll and rr through the arithmetical constants and operations 0, 1, n � 1, +1, �1, �2 and =2. The
applicability of the moves is checked by equality and nonequality over values derived from h; l; r; ll; rr by the
operators.

We now simulate the ATM in a simple LMG by introducing a 6-ary nonterminal for each state q; its first
argument is a copy of the inputw; the last five are arbitrary substrings ofw, whose length corresponds to the values
of h; l; r; ll; rr. The start rule of the grammar isS(xz) :- q0(x; z; z; z; z; x); LengthZero(z)LengthZero(�):
The informal idea is that the grammar recognises a wordw if and only if S(w) is derived, hence q0(w; �; �; �; �; w)
holds,3 which will correspond precisely to the machine M halting in an accepting state when given the string w
on the input tape, a blank work tape, and its heads in 0 position. The copy of w will be passed to each state
nonterminal, and will be used both for checking elements of the input and to generate copies of strings for doing
arithmetic over 0 : : :n.

We define a number of auxiliary predicates, such as a schema of clauses defining SameLength (x; y) which
produces exactly the tuples (w1; w2) where jw1j = jw2j, EmptyOrLengthOne(x), TwiceAsLong(x; y), etc. We
can then easily define the arithmetical operations, e.g. if we defineMult2 (xy; z) :- TwiceAsLong(x; z);NextState(x)
then Mult2 (w; v1) is derived by the grammar if and only if it derives NextState(v2), where w is an auxiliary copy
of the input, and v2 is any string twice as long as v1 (but no longer than jwj).

Similar constructions define the other arithmetical operations. For each universal state symbol, we introduce
a single production that rewrites it to a number of new states. For each existential state, we will have a number
of productions which each rewrite it to a single new state. In both cases, a number of extra rules is necessary for2It should be admitted here that there is a certain amount of handwaving in this argument—the algorithm is recursive, with a maximum
recursion depth of O(np)—extra storage and time required to do this recursion is not incorporated into the sketch.3Note that this amounts to initializing rr with the value n rather than log n. Although we could initialize it with log n (by adding a fairly
complicated set of SLMG rules to compute that value), this is not necessary for the construction to succeed.
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evaluation of conditions; the transition itself must be broken up into a series of steps, each step corresponding to
the application of one arithmetical operation; each step passes a sufficient number of copies of w to the next step
to preserve the ability of doing modulo n arithmetic.

Hence we build a grammar that generates w if and only if the ATM M accepts w, completing the construction.

2.4 Recognition of nonlinear finite structures

We can eliminate the terminals (T ) in the definition of LMG, instead talking about how we can recognise derived
relations (the phrases) between positions in a sentence given axioms defining a set of basic relations (the words)
between these positions.

Definition 4 (terminal free LMG) A terminal-free LMG is a tuple (N; V; S; P ), where N; V and S are as before;
productionsare as for predicate LMG, but the arguments of nonterminals are now only allowed to be single variablesx 2 V . Let U be an arbitrary universe (a set); a terminal free LMG clause is instantiated by substitutingan element
from U for each of the variables. The semantics is then as follows; for any instantiated predicate �, we have� `G �
and ifA(w1; : : : ; wn) :- B1(v11; : : : ; v1n1);: : : ;Bm(vm1; : : : ; vmnm)
where wi; vij 2 U , is an instantiation of a clause in P , and for each 1 � k � m�k `G Bi(vk1; : : : ; vknk)
then �1; : : : ;�k `G A(w1; : : : ; wn)
(where �k are sets of predicates).

String-based LMG is an instance of this very general definition; we take U to be the set of nonnegative integers
and we encode the stringw = a0a1 � � �an�1 by adding a0; : : : ; an�1 to the set of nonterminalsN , and postulating
the axioms a0(0; 1); : : : ; an�1(n � 1; n). We transform the grammar G to a grammar G0 over integer positions
instead of strings, as in the formulae in section 2.2; the notion of derivability (`G S(w)) is replaced witha0(0; 1); : : : ; an�1(n� 1; n) `G S(0; n):

Clearly this is not the only interpretation we can imagine. As the form of the axioms allows us to define any
finite structure over points in an arbitrary universeU , we are now no longer prohibited from defining a string lattice
or even any graph; if U (or the part of U addressed in the axioms) is finite, the sketched recognition algorithm
will still be polynomial in terms of the number of points. So it seems that this definition extends the scope of
tuple-based grammar to the discussion of complexity of more general forms of pattern recognition.

3 Classification & Discussion

We have seen examples of how CFG, HG, LCFRS and PMCFG are represented in the predicate LMG framework.
It is known that these are of strictly growing generative capacity: HG can generate the 3-counting language anbncn
which is not context-free; LCFRS can generate arbitrary counting languages an1an2 � � �ank (for any k), but the
languages generated by LCFRS satisfy an extended form of pumping lemma, pumping an (even) number k of
substrings.

Lemma 1 (pumping for LCFRS/MCTAG) Let the language L be generated by an LCFRS. Then there are
constants n; k such that for any w 2 L with jwj > n, there are strings u0; : : : ; uk and v1; : : : ; vk such thatw = u0v1u1v2u2 � � �uk�1vkuk, and for any p � 1, u0vp1u1vp2u2 � � �uk�1vpkuk 2 L.
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Formalism Increasing conditions on CPG form Weakly equivalent to
Generic LMG — recursive enumerability
SAG First argument of nonterminals does not in-

teract with the others, and is limited to
concatenation—i.e. a context free grammar

—

Bounded LMG Length of terminal strings in derivations is
polynomially (linearly) bounded in terms of
the length of the input string

EXP-POLY time
(CLFP, EXPTIME)

Simple LMG Bottom-up nonerasing,
non-combinatorial

ILFP, PTIME

Nonerasing
PMCFG

Top-down linear,
top-down nonerasing

Standard PMCFG

LCFRS Bottom-up linear MCFG, MC-TAG
HG Pairs only, restricted operations TAG, LIG, CCG
CFG Singletons —

Figure 2: Hierarchical classification

The PMCFGS(xx) :- S(x)S(a):
generates the language a2k, which does not grow constantly and hence clearly does not satisfy the pumping lemma.

However, as with context free grammars and LCFRS, subderivations of PMCFG can be freely substituted,
hence PMCFG is still closed under arbitrary homomorphism.

To show that simple LMG is of strictly stronger generative capacity, we make two observations. First, simple
LMG is closed under intersection: Take two simple LMGs G1 and G2 whose start symbols are S1 and S2
respectively. Then combine the clauses ofG1 andG2 (renaming nonterminals where necessary) and add the clauseS(x) :- S1(x); S2(x)
which says “S(x) can be derived if we can derive both S1(x) and S2(x).” Clearly the resulting grammar generates
the intersection of G1 and G2.

The second observation is that we can translate any PMCFG to a simple LMG. Simple LMG does not allow a
variable to appear more than once on the LHS of a clause: e.g. the PMCFG clauseA(x; yy) :- B(x); C(y)
is not a valid simple LMG clause. However (and contrary to PMCFG) simple LMG does allow variables to appear
on the right hand side more than once. So we can replace the clause by the fragmentA(x; yz) :- B(x); C(y); Eq(y; z)Eq(ax;ay) :- Eq(x; y) for every a 2 TEq(�; �):
So simple LML subsumes PMCFL. Now suppose PMCFL and simple LML would be equal, then they would
be closed under homomorphism and intersection, which implies that they generate all r.e. languages, and would
not be decidable. So we must conclude that PMCFL is not closed under intersection, LMG is not closed under
homomorphism, and LML strictly includes PMCFL.

For a full classification of the different formalisms in their predicate LMG versions, we introduce some
terminology.

Definition 5 (properties of LMG) Let G = (N; T; V; S; P ) be a LMG, and let R 2 P be one of its productions:A(t1; : : : ; tn) :- B1(s11; : : : ; s1n1);: : : ;Bm(sm1; : : : ; smnm )
9



then� R is bottom-up linear if no variable x appears more than once in t1; : : : ; tn.� R is top-down linear if no variable x appears more than once in s11; : : : ; smnm .� R is bottom-up nonerasing if each variable x occurring in an sjk also occurs in at least one of the ti.� R is top-down nonerasing if each variable x occurring in one of the ti also appears in one of the sjk.� R is non-combinatorial if each of the sjk consists of a single variable.� R is simple if it is bottom-up nonerasing, bottom-up linear and non-combinatorial.

For all these properties, G has the property if and only if all R 2 P have the property.

So an LCFRS is a noncombinatorial, top-down and bottom-up linear, top-down and bottom-up nonerasing LMG.
A PMCFG is only top-down nonerasing and top-down linear.

In short, we have the hierarchical classification shown in figure 2.4
3.1 Mild Context-Sensitivity and Polynomial Time

So far we have seen that LCFRS and PMCFG can be extended to simple LMG, which generates a strictly larger
class of grammars, but still has polynomial time recognisability; moreover the top-down recognition algorithms
for the different types of grammar are not essentially different. Does simple LMG give us an essential increase in
expressivity?

Presentations of LCFRS usually go with the definition of mild context-sensitivity (MCS), outlined by Joshi as
the class of languages

1. with a limited capacity for describing crossed dependencies

2. recognisable in polynomial time

3. satisfying the constant growth property, that is [Wei88] the language L has associated to it a constant c0 and
a finite set of constants C such that for all w 2 L where jwj > c0 there is a w0 2 L such that jwj = jw0j+ c
for some c 2 C.

The constant growth property is in a sense a more general statement of the LCFRS pumping lemma. The statement
of MCS is motivated by the desire to define classes of grammar which are severely limited in capacity, yet have
sufficient strength to describe the basic structure of natural language syntax. It has always been proposed as an
attempt to characterize such a class, and there has in particular been a number of arguments that the constant growth
property is not satisfactory: Manaster-Ramer [Rad91] pointed out that while fan j n is primeg does not have the
constant growth property, its perverted cousin fb�an j n is primeg does.

The following example shows a fragment of Dutch which is constant growth but does not satisfy the LCFRS
pumping lemma.

3.2 Example

[MR87] gives the following example of a trans-tree adjoining fragment of Dutch, containing sentences such as:: : :dat
that

Jan Piet Marie liet
made

opbellen
call

;
hoorde

heard

uitnodigen
invite

;
hielp
helped

ontmoeten
meet

en zag
saw

omhelzen
embrace

. . . that Jan made Piet call Marie,
heard [him] invite [her],
helped [him] meet [her]
and saw [him] embrace [her]4The figure includes a class (bounded LMG) not treated in this paper, which corresponds to the least fixed point calculus CLFP in [Rou88].
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The fragment can be characterized as follows:

. . . dat Jan Piet Marie NPk
liet VRk opbellen,

hoorde VRk uitnodigen,
hielp VRk ontmoeten

en zag VRk omhelzen.

The fragment does not satisfy the pumping lemma for TAG and Head Grammar which says that we can create
constantly growing subfragments by pumping 4 substrings. Obviously, in the example, 5 strings will need to be
pumped.

The pumping lemma for LCFRS states that there is a number k such that at most k strings need to be pumped.
Increasing the number of conjuncts in Manaster-Ramer’s example hence provides, given any LCFRS, an argument
that it cannot describe the fragment.

The following simple (slash-style) LMG does generate Manaster-Ramer’s fragment [MR87] as sketched in the
examples, with an unbounded number of conjuncts.S ! ...dat NP n VP(n)VP(n) ! V(n)VP(n) ! VPC(n)VPC(n) ! V(n) "," VPC(n)VPC(n) ! V(n) en V(n)

V(n) ! VT (NP=n)
V(nm) ! VR (NP=n) V(m)NP ! Jan, Marie, PietVT ! opbellen, uitnodigen : : :VR ! zag, horen, hielp : : :

3.3 Revising MCS

The ability to describe crossed dependencies in conjunctive VPs is clearly a desirable feature of a grammar
formalism in the spirit of LCFRS. This could be seen as an argument that the constant growth property in the
definition of LCFRS should in fact not be strengthened to a pumping lemma.

The remaining question is whether there are clearly ‘unnatural’ languages that are in PTIME but which we
want to rule out; one may think of a2n . If we do not rule these out, then the ‘limited capacity for describing
crossed dependencies’ is obvious, and mild context-sensitivity collapses into the single predicate ‘recognisable in
polynomial time’ which is equivalent to ‘generated by a simple LMG’.

The pumping lemma for LCFRS is too weak (it doesn’t rule out the prefixed prime languagefb�an j n is primeg),
whereas LCFRS does not cater for the example of crossed dependencies and unbounded conjunction.

I believe that the ‘flaws’ in the definition of constant growth and pumping lemma should be circumvented by
claiming that there is a fixed bound to the size of the ‘unpumped’ part of the string, i.e. there is some form of a
finite ‘basis’. A revised pumping lemma would be along the lines of

Lemma 2 (strong finite pumping) LetL be a language. ThenL is strongly finitely pumpable if there are constantsn; k such that for anyw 2 L with jwj > n, there are strings u0; : : : ; uk and v1; : : : ; vk such that
Pui+P vi < n,

there is a p such that w = u0vp1u1vp2u2 � � �uk�1vpkuk, and for any p � 1, u0vp1u1vp2u2 � � �uk�1vpkuk 2 L.

This does rule out the prefixed prime language because instead of claiming that we can make larger strings from a
given string, we are saying that it can be pumped from a string shorter than a constant fixed for the language.

Since this is a stronger pumping lemma than that known for LCFRS/MCTAG, it is not what we are after, since
it will again rule out the unbounded conjunctions. However, if we could weaken this version of the pumping lemma
into a revised definition of constant growth, it would seem to characterize a valuable property.
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3.4 Conclusions

We have outlined a formal version of the LMG formalism as presented earlier, and shown that we can define a
restriction which models exactly the polynomial time recognisable languages. Moreover, this restriction, the simple
LMG, can describe essential fragments of Dutch verb structure which cannot be described by any known smaller
classes of grammars within PTIME.

While LCFRS was previously the best known approximation of the ideal class of ‘mildly context-sensitive’
grammars, we believe to have shown by our examples of Dutch, that it is not strong enough; however the alternative
presented here is clearly too strong—unnatural languages such as a2n can now be described. So now the question
should be raised how we can exploit the extra power (hidden in the ability to do intersection), without allowing
the reduplication given by PMCFG (multiple occurrence of variables on the LHS), which seems to give rise to the
‘unnatural’ languages. It should be noted that LMG grammars which generate these unnatural languages, contain
‘equality’ predicates which consist of one clause for every symbol in the terminal alphabet, which could indeed be
seen as an ‘unnatural grammar’.

The proposed general recogniser for LCFRS/LMG which gives the proper bounds for the class of HG (including
TAG, LIG and CCG), if informally presented, is as far as we know the first of its kind written on paper. One of
the reasons there have not been attempts to define such algorithms before is the claim [KNSK92] that universal
recognition of LCFRS is PSPACE-complete and universal recognition of PMCFG is EXP-POLY time complete.
However, these results involve constructions which generate grammars whose size is proportional to a given input
string, and hence provide only a limited picture of computational reality. Thoughts on possible improvement by
reducing top-down prediction based on terminal corners are in progress, and an implementation of a parser based
on LMG is to be expected in the near future.
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