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Abstract
We define amore formal version of literal movement grammar (LMG) as outlined in [Gro95c], in such away that
it provides asimple framework that incorporates alarge family of grammar formalisms (Head Grammar [Pol84],
LCFRS, [Wei88]), PMCFG, [KNSK92] and String Attributed Grammars [Eng86]). The semantics is (both in
rewriting and least fixed point definitions) simple and elegant, and sheds some new light on shared properties of
the mentioned formalisms. We then define a restricted version called simple LMG and show that it generates
languagesthat are not mildly context sensitive, yet preservesthe polynomial time recognition property of LCFRS.

Introduction

This paper consists of three parts. In the first, we propose a more e ementary notation of the LMG formalism as
introduced thefirst LM G paper [Gro95c], and call it predicate literal movement grammar. The generalization has
atwofold purpose. Firgt, it alows us to give a more e ementary semantics, both in rewriting style and as a fixed
point operator on sets of tuples of terminal strings. Then, we see how it allows us to put a series of tuple-based
grammar formalisms of increasing recognising power (LCFRS [Wei88], MCFG, PMCFG [KNSK92], and LMG)
in auniform semantic framework.

In the second part we look at least fixed point interpretations, followed by a discussion on complexity of
recognition. We introduce a restricted version of our formalism, simple LMG, and show that it strictly extends
LCFRS and PMCFG, yet preserves polynomial time recognition. More precisely, the class of languages described
by simple LMG isexactly the class PTIME. The PTIME fragment can be extended to cover input datain the form
of alattice (such as in speech analysis) or arbitrary ordered finite structures (think of pattern recognition in vector
based images).

The third part wraps up the story with a classification of the formalisms that have been discussed, and a
discussion on mild context-sensitivity and polynomial time. Among other things, we give an example showing that
LMG can give accounts of essentia structural phenomenain Natural Language known to be beyond the scope of
linear context-free rewriting systems.

1 ThePredicateLMG Framework

Literal movement grammar (LMG, henceforth dash-style LMG) was introduced by the author in [Gro95c], as
a formalism which takes a strong |eft-to-right top-down view on “literal” filler-gap relocation, i.e. passing the
terminal words scanned infiller positionsdown the derivation until they are matched up by a correspondingly typed
gap, in theform of what in that paper was called a‘dash item’.

We will redefine LMG here in aversion which has more formal appeal.

Definition 1 A predicate literal movement grammar (LMG!) isatuple G = (N, T,V, S, P) where N, T and V
are mutually digoint sets of nonterminal symbols, terminal symbols and variable symbols, respectively, S € N,

1 The previous papers[Gro96] and [Gro95h] refer to predicate LM G as CPG (concatenative predicate grammar), but | agreewith the readers
who thought that giving what is essentially a different representation of the same formalism, a name of its own, might lead to unnecessary
confusion.
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VT(saw) NP(Mary) VT(admired) NP(Mary)
VP(saw, Mary) VP(admired, Mary)
NP(John) VP(saw and adnir ed, Mary)
S(Mary, John saw and admi red)

Figure 1. Derivation of Mary, John saw and admired

and P is a set of clauses (which correspond to the notion of a production in CFG or the slash-style LMG from
[Gro95c]) of the form

¢ - Y, P2 Pm

where ¢, 91 . . . ¢, are predicates of theform
Aty ... ytn)

wheret; € (TUV)*.

A predicate LMG clause isinstantiated by substituting a string w € T for each of the variables occurring in the
clause.

Definition 2 (semantics) Let G = (N, T,V, S, P) beapredicate LMG. Then G issaid to recognise a string w if
F¢ S(w) where ¢ isdefined inductively as follows: if

A(wl,...,wn) .- Bl(vll,...,vlnl),
cey
Bm(vmla"'avmnm)

isan ingtantiationof aclausein P,andforeach1 < k£ < m
L& B;i(vk1, - - - Vkny)

then
FE A(wi, ..., wy)

Notethat m = 0 isthe base case (zero antecedents).

Example 1 (Topicalization/Conjunction) An example of an LMG isthe following grammar

S(n”,” mv) .- NP(m), VP(v,n)
VP(v; 7and” vy, n) : - VP(v1,n), VP(v2, n)
VP(v,n) i - VT(v), NP(n)

which derives topicalized sentences of the form
Mary, John saw and admired and kissed.

An example derivationis shown in figure 1.

Example2 (CFGs) Every CFG can be defined as a predicate LM G; thisis analogous to the trandation of a CFG
into Prolog. Every nonterminal will have one argument which representsitsyield. E.g. S — NP VP will become
S(zy) — NP(z), VP(y).

We can do the same to slash style LM G [Gro95c].



Example 3 (Slash-style LM G) Theoriginal version of LMG using slash items[Gro95c] [Gro96] can betranslated
directly into predicate LM G, by introducing an extra argument for each nonterminal. Viceversa, in some predicate
LMG, such as thegrammar from example 1, one argument that clearly encodes simple | eft-to-right phrase structure
can be removed so as to give adash-style LMG; the slash-style LM G notation for the grammar in the exampleis

S — n"," NP VP(n)

VP(n) — VP(n) "and" VP(n)

VP(n) — VT (NP/n)

Note how the dlash-style notation is, especially in the case of natura language grammars, more appealing to

traditional intuition (but also actually more readable, asit involves less variables per rule).

Example4 (Head Grammar) A head grammar isaCPG that operateson pairs. Therearethreetypesof (modified)
head grammar rule: awrapping production:

A — wrap(B, C)
isrepresented inLMG as
A(brer, e2b2) 1 - B(b1,b2), C(c1,c2)
and one of the two types of concatenating rule as
A(a1, azbibs) 1 - B(b1,b3), Cle1,¢2)

Example5 (LCFRS and PMCFG) Linear context-freerewriting systems (LCFRS) and parallel multiplecontext-
free grammars (PMCFG) are no more than complex notationfor restrictionsof predicate LMG. Productionsin both
LCFRS [Wei88] and PMCFG [KNSK92] are of theform

A — f(Bl,,Bm)
where f isafunction over tuples of termina words defined (symbolicaly) as

f(<£(111, .. '7$1n1> ’

ey
<£Cm1,...,icmnm>) = <t1,...,tn>

wheret; aretermsover thevariablesz;; and termina symbols. InLCFRS, f isrequired to belinear and nonerasing,
that is every one of the z;; should appear exactly onceinthety,...,t,. For PMCFG, thereis no such restriction.

In the predicate notation of these formalisms, the separate function definition disappears, we simple write a
ruleas

A(tl,...,tn) .- Bl(:cll,...,:clnl),
cey
Bm(:cmla"'accmnm)

Example6 (Attribute Grammar) [Eng86] We have two nonterminals. a start symbol Z with a designated
attribute d; and A with an inherited attribute < and a synthesized attribute s. The grammar and the attribute rules
are asfollows:

zZ — a A Zd:=As, Ar:=a
VA — b A Zd:=As, Ai:=Db
AM 5 a AR AW 5= 4(3) 5 AR) g,

A .= AW a

AM) b AR AM) 5= A4(3) 5 AR) g,
A®) .= AW 5 p

A — A As:=Az1Cc AzcC

The context-free backbone recognises arbitrary nonempty strings w over the alphabet T' = {a, b}, and the output
valuefor w € T* is(wc)?™'.



The grammar isrepresented in predicate LMG as

S(z) - Z(z,y)
Z(z, az) - Aa; z, 2)
Z(z, bz) - A(b; z, 2)
A(y; oz, az) - A(ya; @, 2)
A(y; =z, bz) i- A(yb; =, 2)
A(z; zczc, ).

Note that there is no formal difference between inherited and synthesized attributes—thisis in line with the
observation that designating an attribute as synthesized or inherited is, once we ook at the equations as constraints,
semantically irrelevant, and should rather be considered as a hint toward a concrete program or parser that eval uates
the “value” of a sentence. The translated SAG is a curious type of LMG, as the S production “throws away” the
valuey. It will turn out that thistype of LMG has less favourable computational propertiesthan the ones defined
so far; the example serves mainly to stressthat LM G provides avery simple semantics, and acompact notation for
attribute grammars.

2 Least Fixed Pointsand Complexity

The examples have aready shown how LMG subsumes the chain CFG C HG C LCFRG C PMCFG of
formalisms of increasing generative capacity. Itis actualy known that these are all strict inclusions; moreover the
fixed recognition problems for all these formalisms are in PTIME. We will now answer the question how, in the
spirit of these formalisms, we can characterize PTIME itself.

Calculi that describe PTIME have been known for quitesometime. The calculusILFP (integer |east fixed point)
isintroduced in [Rou88]; it applies knowledge about the rel ationship between bounded arithmetic and complexity
to language recognition. The underlying idea is that by talking about positionsin the input string, as opposed
to about the strings themselves, we can store intermediate steps in the search for a derivation in logspace, which
with the Chandra-K ozen-Stockmeyer [ CK S81] result on the correspondence between deterministic and aternating
Turing machine computations then gives a deterministic PTIME complexity for recognition.

2.1 Fixed point interpretationsof LMG

Before we redefine LMG to talk about integer positionsin strings, let’s present the semantics of LMG in such a
way that weinterpret the nonterminalsas relationsover terminal strings. Let G = (N, T, V, S, P) bean LMG. Let
NA be the set of assignmentsto the nonterminals: functions p mapping a nonterminal to a set of arbitrary tuples of
stringsover T'. The set of productions P can then be viewed as an operator [G] taking an interpretation function as
an argument and producing a new function, defined as follows:

If

A(wl,...,wn) .- Bl(vll,...,vlnl),
cey
Bm(vmla"'avmnm)

is an instantiation of aclausein P, and for esch 1 < k < m, (vk1,...,Vkns) € [Gl(B), then (wy,...,w,) €
[G1(A4).
It iseasily seen that [G] isa continuous and monotoni ¢ operator on the complete partid order (NA, C) defined
by
prCps & VAEN.p1(4) Cp2(4):
let p1, p2 be two assignments, and p1 C p2. Let a € ([G]p1)(4). Then we have the clause R and the tuples
b1, - - -, by, fromthedefinition, and b; € p1(B;). It now followsthat for each 4, b; € p2(B;), hencea € ([Gloz)(A).

So [G]ismonotonic. Because the partial order isdefined as componentwise set inclusion over asufficiently general
universe, it followsautomatically that [G] is a so continuous.



We can now validly define the interpretation of agrammar to be the least fixed point of [G]:

(e}

Ie = | |[G1F(14.0)

k=0

i.e. afunction which takes a nonterminal and yields a set of tuplesof strings; If S isthe start symbol of G, and its
arity throughout the grammar is 1, then Z¢(S) will bethelanguage recognised by theLMG in thetraditional sense.

It is easy to check that the rewriting semantics and the fixed point semantics are equivalent. The fixed point
semantics is a useful tool for several purposes. First of al, it gives a more detailed yet mathematically elegant
interpretation of grammar. More detailed, because it does not merely characterize the language generated by a
single designated start symbol, but characterizes the derivational behaviour of the grammar, without looking at
single derivationsin particular.

We want to find out how we can restrict the LMG grammars in such a way that recognition can be performed
as an alternating search in logspace. For a given string of length n, in log space we can encode a bounded set of
numbers ranging from 0 to » (in binary encoding). This means that we have to encode the arguments of an LMG
predicate in aderivation each with a bounded set of numbers. Sincein the origina interpretation the arguments are
strings, the most obvious choice isto encode the arguments as pairs of integersranging 0 to n encoding a substring
of theinput.

Redefine the fixed point semantics as follows; let w = aga; - - -a,_1 be atermina string of length n; then
NA, istheset of integer nonterminal assignments p mapping a nonterminal to a set of tuples of pairs of integers.
Then [G],, is defined

If

A(ail ---ajl,...,ain---ajn)
‘- Bl(aiu Y FER RN s P "'ahnl)a
cey
Bm(aiml . -ajml, .o .,aimnm . -ajmnm)

is an instantiation of aclause in P, and for each 1 < & < m, ((%k1, Jk1), - - -+ (tknns Jkny)) € [Gluw(Bk), then

<(’61,]1)a(zna]n)> € [G]w(A) i . . .
It isimportant to see that what is done here, is not the same as taking the string-based L FP interpretation, and
intersecting the sets of tupleswith the domain of substrings of a given w. If we have an instantiated clause

A(wl,...,wn) L- Bl(vll,...,vlnl),

.y

B (vm1, -+ Umn,,)
such that wy, . .., w, are substrings of w, but the v;; are not, then this instantiation will be ignored in the integer
LFP semantics. Hence we want to rule out this type of clause. 1.e., we want to make sure that wy, . .., w, ae

substrings of theinput, so are the v;;.

Thus simple LMG is defined by disallowing terms other than single variables on the right hand side of the
clauses. This way we can uniquely replace each rule by arule that is talking about integer positions instead of
strings.

Definition 3 (smpleLMG) AnLMG iscdled simpleif itsclauses R € P aredl of theform

A(tl,...,tn) .- Bl(:cll,...,:clnl),
cey
Bm(:cmla"'accmnm)

and each of the z;; appears at precisely onceinty, ..., t,.

22 SimpleLML isin PTIME

There are two ways to show that the |languages generated by simple LMG can be recognised in polynomial time.
The first, most forma argument showsthat every LMG can be trang ated into an equivaent formulain the integer



string position caculus ILFP [Rou88]; thisis quite ssimple and is sketched in [Gro95g]. The VP rulesin the
grammar for English topicalization from conjunctive verb phrases

VP(v; 7and” vy, n) : - VP(v1,n), VP(v2, n)
VP(v,n) i - VT(v), NP(n)

for example, are trandated into asingle formula

VP(i, ], k,1)
& L (i<i' < ' <jAand(i, )
AVP(, i, k1)
AVP(S, ], k1))
V (VT(,5) ANP(k, 1))

The correspondence between the languages defined by |LFP and those recogni sed by |ogspace-bounded aternating
Turing machines (ATM) shown in [Rou88] then compl etes the argument.

Here we will sketch a more informal recognition agorithm, which however gives a better indication of what a
possibleimplementation would look like (asit is a deterministic algorithm).

We take the integer representation of LMG grammars, in which every argument is represented as a pair (I, r)
of integer indices, as a point of departure (in fact the ILFP trangl ation given above will serve for this purpose).

Given an input string w of length n, construct memo tables containing a boolean value for each possible
predicate A(ly, 71, ..., ln,7s), Wherel;, r; are integer values ranging from 0 to n. Reset all the table entries
to zero. Now start with the predicate S(0, n), and recursively check, using the memo table where possible, all
possibleinstantiations of the bound variables (i’ and j' inthe example) in al applicable rules.

The procedure for VP rule we just trandated is as follows:

VP(i,j,k, 1):
if VP(i,j,k,I) nmenoed
t hen
return nenoed val ue
el se
meno VP(i,j,k,1) as Fal se
loop i’ =0...n
loop j' =0...n
if i <=i’ and
jTo<=j and
jt=i o+ 1 and
a[i’] = "and" and
VP(i,i’,k, 1) and
VP(j',j,k, 1)
t hen
meno VP(i,j,k,l) as True

return True

if VI(i,j) and

NP(k, 1)
t hen
meno VP(i,j,k,l) as True

return True

return Fal se

If p isthe largest number of integer predicate arguments and m is the largest number of bound variables in each
disjunct of the ILFP version of an LMG rule, then the recogniser needs to do O(»™) calls or look-ups for each



of the predicates. Since there are O(n?) predicates, recognition can be performed in deterministic O(n?+™) time
and O(nP) memoing storage. Constructing a minimally informative parse forest would require O (n?+™) space.
The bound given here seems tight. The rules of a binary, modified head grammar, such athe wrapping rule;

A(albl,bgag) .- B(al,ag), C(bl,bg)
are trandated into integer based ruleswith 6 variables (p = 4, m = 2):

A(G G, Lk) & I (i< <j
AT <k
A B, i, I', k)
AC(E, 5, L))

The genera recogniser for HG we obtain by applying the sketched algorithm has the well known upper time bound
of O(n®).

23 SimpleLML subsumesPTIME

We proceed exactly asin [Rou88]. It isaknown resultthat PTIME = ASPACE(log n). Let M be an dternating
Turing machine [CKS81] with a read-only input tape and one binary working tape (the argument can then be
extended to cover an arbitrary number of binary workingtapes). Let M be space bounded by log n, wheren isthe
length of itsinput w.

I nstantaneous descriptions (ID) of the ATM can be described by a state symbol ¢ and atuple (k, I, r, I, rr) of
integers ranging from 0 to n; & is the position of the input head, ! and » describe the contents of the binary work
tape left and right of its head, and !l and rr represent the amount of work tape space left and right of its head.
As Rounds argues, an I1D predicate g(k, I, r, I, rr) is defined in terms of other ID predicates through a disjunction
(existential states) or conjunction (universal states) of other predicates, where the arguments of the predicates are
built from A, I, r, Il and »r through the arithmetical constants and operations0, 1,n — 1, +1, —1, *2 and /2. The
applicability of the moves is checked by equality and nonequality over values derived from A, {, », I, rr by the
operators.

We now simulate the ATM in asimple LMG by introducing a 6-ary nonterminal for each state g; its first
argument isacopy of theinput w; thelast five are arbitrary substringsof w, whose length corresponds to the values
of h,l,r, I, rr. The start rule of the grammar is

S(zz) - qo(w,2,2,2,2,2), LengthZero(z)
LengthZero( ).

Theinformal ideaisthat the grammar recognisesaword w if and only if S(w) isderived, hence go(w, A, A, A, A, w)
holds,® which will correspond precisely to the machine M halting in an accepting state when given the string w
on the input tape, a blank work tape, and its heads in O position. The copy of w will be passed to each state
nonterminal, and will be used both for checking e ements of the input and to generate copies of stringsfor doing
arithmeticover 0.. . n.

We define a number of auxiliary predicates, such as a schema of clauses defining SameLength(z,y) which
produces exactly the tuples (w1, we) where |wi| = |wz|, EmptyOrLengthOne(z), TwiceAsLong(z,y), etc. We
can then easily define the arithmetical operations, e.g. if we define

Mult2(zy,z) : - TuwiceAsLong(z, z),
NextState(z)

then Mult2(w, v1) isderived by the grammar if and only if it derives NeztState(vz), where w isan auxiliary copy
of theinput, and v, isany string twice as long as v, (but no longer than |w).

Similar constructions define the other arithmetical operations. For each universal state symbol, we introduce
a single production that rewrites it to a number of new states. For each existentia state, we will have a number
of productionswhich each rewrite it to a single new state. In both cases, a number of extrarulesis necessary for

21t should be admitted here that there is a certain amount of handwaving in this argument—the algorithm is recursive, with a maximum
recursion depth of O(n?)—extrastorage and time required to do this recursion is not incorporated into the sketch.

3 Note that this amountsto initializing »» with the valuen rather than log n. Although we could initialize it with log n (by adding afairly
complicated set of SLMG rules to compute that value), thisis not necessary for the construction to succeed.



evaluation of conditions; the transition itself must be broken up into a series of steps, each step corresponding to
the application of one arithmetical operation; each step passes a sufficient number of copies of w to the next step
to preserve the ability of doing modulo n arithmetic.

Hence we build agrammar that generates w if and only if the ATM M accepts w, compl eting the construction.

2.4 Recognition of nonlinear finite structures

We can diminate the terminals (7') in the definition of LMG, instead talking about how we can recognise derived
relations (the phrases) between positionsin a sentence given axioms defining a set of basic relations (the words)
between these positions.

Definition 4 (terminal free LMG) A terminal-freeLMGisatuple(N,V, S, P),where N, V and S are asbefore;
productionsare asfor predicate LM G, but thearguments of nonterminal sare now only alowed to besinglevariables
z € V. Let U bean arbitrary universe (aset); aterminal free LM G clauseisinstantiated by substituting an el ement
from U for each of the variables. The semanticsisthen asfollows; for any instantiated predicate ¢, we have

$+¢ ¢
and if
A(wl,...,wn) .- Bl(vll,...,vlnl),

cey
Bm(vmla .. '7vmnm)

where w;, v;; € U, isaninstantiation of aclausein P,and foreach1 <k <m
Ty H¢ B; (Vk1y - -+ Vkny)

then
Ty,...,Th F¢ A(wy, ..., w,)

(where IT'y, are sets of predicates).

String-based LMG is an instance of this very general definition; we take U to be the set of nonnegative integers
and we encodethestringw = apa; - - -an—1 by adding ao, . . ., a1 to the set of nonterminals V', and postul ating
the axioms a(0, 1), ..., an—1(n — 1,n). We transform the grammar G to a grammar G’ over integer positions
instead of strings, asin the formulaein section 2.2; the notion of derivability (¢ S(w)) isreplaced with

ao(0,1),...,an_1(n — 1,n) F€ S(0,n).

Clearly thisis not the only interpretation we can imagine. As the form of the axioms allows us to define any
finite structure over pointsin an arbitrary universe U, we are now no longer prohibited from defining astring lattice
or even any graph; if U (or the part of U addressed in the axioms) is finite, the sketched recognition agorithm
will still be polynomial in terms of the number of points. So it seems that this definition extends the scope of
tuple-based grammar to the discussion of complexity of more general forms of pattern recognition.

3 Classfication & Discussion

We have seen examples of how CFG, HG, LCFRS and PMCFG are represented in the predicate LM G framework.
It isknown that these are of strictly growing generative capacity: HG can generate the 3-counting language a™ 6™ ¢™
which is not context-free; LCFRS can generate arbitrary counting languages ata% - - -af (for any k), but the
languages generated by LCFRS satisfy an extended form of pumping lemma, pumping an (even) number & of
substrings.

Lemmal (pumping for LCFRS/MCTAG) Let the language L be generated by an LCFRS. Then there are
constants n, k such that for any w € L with |w| > n, there are strings uo, . .., ux and vy, ..., v such that
W = UQUIUI VU2 - + + Ug— 1V Uk, aNd for any p > 1, ugrf ugrvhuy - - -uk_lviuk e L.



Formalism Increasing conditions on CPG form Weakly equivalent to
Generic LMG — recursive enumerability
SAG First argument of nonterminalsdoesnotin-  —
teract with the others, and is limited to
concatenation—i.e. a context free grammar
Bounded LMG Length of terminal strings in derivationsis EXP-POLY time
polynomiadly (linearly) bounded intermsof  (CLFP, EXPTIME)
thelength of theinput string

SimpleLMG Bottom-up nonerasing, ILFR, PTIME
non-combinatorial

Nonerasing Top-down linear, Standard PMCFG

PMCFG top-down nonerasing

LCFRS Bottom-up linear MCFG, MC-TAG

HG Pairs only, restricted operations TAG, LIG, CCG

CFG Singletons —

Figure 2: Hierarchical classification

The PMCFG

S(zz) - S(z)
S(a).

generatesthelanguage 2", which does not grow constantly and hence clearly does not satisfy the pumping lemma.
However, as with context free grammars and LCFRS, subderivations of PMCFG can be freely substituted,
hence PMCFG is still closed under arbitrary homomorphism.
To show that simple LMG is of strictly stronger generative capacity, we make two observations. First, smple
LMG is closed under intersection: Take two simple LMGs G; and G2 whose start symbols are S; and S»
respectively. Then combinethe clauses of G'; and G2 (renaming nonterminal swhere necessary) and add the clause

S(z) :- Si(z), S2(z)

which says“S(z) can be derived if we can derive both S;(z) and S;(z).” Clearly the resulting grammar generates
the intersection of G; and G-.

The second observation is that we can trandate any PMCFG to asimple LMG. Simple LMG does not alow a
variable to appear more than once on the LHS of aclause: e.g. the PMCFG clause

A(z,yy) - B(z), C(y)

isnot avaidsimple LMG clause. However (and contrary to PMCFG) simple LM G does allow variables to appear
on theright hand side more than once. So we can replace the clause by the fragment

A(z,yz) - B(z), C(y), Eq(y,2)
Eq(az,ay) : - Eq(z,y) foreveryaeT
Eq(A, A).

So simple LML subsumes PMCFL. Now suppose PMCFL and simple LML would be equal, then they would
be closed under homomorphism and intersection, which implies that they generate al r.e. languages, and would
not be decidable. So we must conclude that PMCFL is not closed under intersection, LMG is not closed under
homomorphism, and LML strictly includesPMCFL.

For a full classification of the different formalisms in their predicate LMG versions, we introduce some
terminol ogy.

Definition 5 (propertiesof LMG) Let G = (N,T,V, S, P) beaLMG, and let R € P be oneof itsproductions:
A(tl, .. .,tn) L- Bl(sll, ceey Slnl),

cey
Bm(smla .. '73mnm)



then

R isbottom-up linear if no variable z appears morethan onceinty, ..., t,.

R istop-down linear if no variable z appears morethan oncein si1, . . ., Smn,, -

R isbottom-up nonerasing if each variable z occurring in an s; aso occursin at least one of thet;.

R istop-down nonerasing if each variable z occurring in one of thet; aso appearsin one of the s;x.
¢ R isnon-combinatorial if each of the s, consists of asingle variable.

e Rissimpleif itisbottom-up nonerasing, bottom-up linear and non-combinatorial .
For all these properties, G hasthe property if and only if all R € P have the property.

So an LCFRS is a noncombinatoria, top-down and bottom-up linear, top-down and bottom-up nonerasing LMG.
A PMCFG is only top-down nonerasing and top-down linear.
In short, we have the hierarchical classification shownin figure 2.4

3.1 Mild Context-Sensitivity and Polynomial Time

So far we have seen that LCFRS and PMCFG can be extended to simple LMG, which generates a strictly larger
class of grammars, but still has polynomial time recognisability; moreover the top-down recognition agorithms
for the different types of grammar are not essentially different. Does simple LMG give us an essential increasein
expressivity?

Presentations of LCFRS usually go with the definition of mild context-sensitivity (MCS), outlined by Joshi as
the class of languages

1. with alimited capacity for describing crossed dependencies
2. recognisablein polynomial time

3. sdtisfying the constant growth property, that is [Wei88] the language L has associated to it a constant ¢ and
afiniteset of constants C such that for all w € L where |w| > ¢o thereisaw’ € L such that |w| = |w'| 4+ ¢
for somec € C.

The constant growth property isin asense amore general statement of the LCFRS pumping lemma. The statement
of MCS is motivated by the desire to define classes of grammar which are severely limited in capacity, yet have
sufficient strength to describe the basic structure of natural language syntax. It has aways been proposed as an
attempt to characterize such aclass, and there hasin particular been anumber of arguments that the constant growth
property is not satisfactory: Manaster-Ramer [Rad91] pointed out that while {a™ | n is prime} does not have the
constant growth property, its perverted cousin {b*a™ | n is prime} does.

The following example shows a fragment of Dutch which is constant growth but does not satisfy the LCFRS
pumping lemma

3.2 Example

[MR87] givesthe following example of atrans-tree adjoining fragment of Dutch, containing sentences such as:

...dat Jan Piet Marie liet opbellen,
that made call
hoorde uitnodigen,
heard invite
hielp ontmoeten en zag omhelzen
helped meet saw  embrace

... that Jan made Piet call Marie,
heard [him] invite[her],
helped [him] meset [her]
and saw [him] embrace [her]

4 Thefigure includes a class (bounded LM G) not treated in this paper, which correspondsto the least fixed point calculus CLFP in [Rou88].
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The fragment can be characterized as follows:

... dat Jan Piet Marie NP*
liet VR* opbellen,
hoorde VR* uitnodigen,
hielp VR* ontmoeten
en zag VR* omhelzen.

The fragment does not satisfy the pumping lemma for TAG and Head Grammar which says that we can creste
constantly growing subfragments by pumping 4 substrings. Obviously, in the example, 5 strings will need to be
pumped.

The pumping lemma for LCFRS states that thereis anumber & such that at most £ strings need to be pumped.
Increasing the number of conjunctsin Manaster-Ramer’s example hence provides, given any LCFRS, an argument
that it cannot describe the fragment.

The following simple (slash-style) LM G does generate Manaster-Ramer’ s fragment [MR87] as sketched in the
examples, with an unbounded number of conjuncts.

S — ...dat NP n VP(n)
VP(n) — V(n)

VP(n) — VP%n)

VP9n) — V(n)"," VP%n)
VP%(n) — V(n)en V(n)

V(n) — VT (NP/n)
V(nm) — VR (NP/n) V(m)

— Jan, Marie, Piet
VT — opbell en, uitnodigen...
— zag, horen, hielp...

3.3 RevisngMCS

The ability to describe crossed dependencies in conjunctive VPs is clearly a desirable feature of a grammar
formalism in the spirit of LCFRS. This could be seen as an argument that the constant growth property in the
definition of LCFRS should in fact not be strengthened to a pumping lemma.

The remaining question is whether there are clearly ‘unnatura’ languages that are in PTIME but which we
want to rule out; one may think of «2”. If we do not rule these out, then the ‘limited capacity for describing
crossed dependencies’ is obvious, and mild context-sensitivity collapses into the single predicate ‘ recognisablein
polynomial time' which isequivaent to ‘ generated by asimple LMG'.

Thepumpinglemmafor LCFRSistoowesk (it doesn’t ruleout theprefixed primelanguage{b*a™® | n is prime}),
whereas L CFRS does not cater for the example of crossed dependencies and unbounded conjunction.

| believe that the ‘flaws' in the definition of constant growth and pumping lemma should be circumvented by
claiming that there is a fixed bound to the size of the ‘unpumped’ part of the string, i.e. there is some form of a
finite‘basis’. A revised pumping lemma would be aong the lines of

Lemma 2 (strong finite pumping) Let L bealanguage. Then L isstrongly finitely pumpableif thereare constants
n, k suchthat for any w € L with|w| > n, therearestringsuo, . . ., ux and vy, ..., v suchthat > u, + > v; < n,
thereisap such that w = ueviusvhus - - -uk_lviuk, and for anyp > 1, ugvf ugvhuy - - -uk_lviuk € L.

This does rule out the prefixed prime language because instead of claiming that we can make larger stringsfroma
given string, we are saying that it can be pumped from a string shorter than a constant fixed for the language.

Sincethisisa stronger pumping lemma than that known for LCFRS/MCTAG, it isnot what we are after, since
it will again rule out the unbounded conjunctions. However, if we could weaken thisversion of the pumping lemma
into a revised definition of constant growth, it would seem to characterize a valuable property.
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34 Conclusons

We have outlined a formal version of the LMG formalism as presented earlier, and shown that we can define a
restrictionwhich model s exactly the polynomial time recognisablelanguages. Moreover, thisrestriction, thesimple
LMG, can describe essentia fragments of Dutch verb structure which cannot be described by any known smaller
classes of grammars within PTIME.

While LCFRS was previoudly the best known approximation of the ideal class of ‘mildly context-sensitive’
grammars, we believe to have shown by our examples of Dutch, that it is not strong enough; however the dternative
presented hereis clearly too strong—unnatural languages such as a?” can now be described. So now the question
should be raised how we can exploit the extra power (hidden in the ability to do intersection), without allowing
the reduplication given by PMCFG (multiple occurrence of variables on the LHS), which seems to giverise to the
‘“unnatural’ languages. It should be noted that LMG grammars which generate these unnatural languages, contain
‘equality’ predicates which consist of one clause for every symbol in theterminal a phabet, which could indeed be
Seen as an ‘unnatural grammar’.

The proposed general recogniser for LCFRS/LM G which givesthe proper boundsfor theclass of HG (including
TAG, LIG and CCG), if informally presented, is as far as we know the first of its kind written on paper. One of
the reasons there have not been attempts to define such algorithms before is the claim [KNSK92] that universal
recognition of LCFRS is PSPACE-complete and universal recognition of PMCFG is EXP-POLY time compl ete.
However, these resultsinvolve constructions which generate grammars whose size is proportional to a given input
string, and hence provide only a limited picture of computational reality. Thoughts on possible improvement by
reducing top-down prediction based on terminal corners are in progress, and an implementation of a parser based
on LMG isto be expected in the near future.
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