
Parsing unary Boolean grammars using online
convolution∗

Alexander Okhotin† Christian Reitwießner‡

Abstract

Consider context-free grammars generating strings over a one-letter alphabet.
For the membership problem for such grammars, stated as “Given a grammar G and
a string an, determine whether an is generated by G”, only a näıve O(|G| ·n2)-time
algorithm is known. This paper develops a new algorithm solving this problem,
which is based upon fast multiplication of integers, works in time |G| · n log3 n ·
2O(log∗ n), and is applicable to the more general conjunctive and Boolean grammars.
The algorithm is based upon (a simplification of) the online integer multiplication
algorithm by Fischer and Stockmeyer (“Fast on-line integer multiplication”, Journal
of Computer and System Sciences, 1974).

1 Introduction

Context-free grammars are the foremost mathematical model of syntax. The main idea
behind these grammars, which corresponds to the intuitive notion of syntax so well,
is that the syntactic properties of a string are determined on the basis of the syntactic
properties of its proper substrings, and that the substrings are combined by concatenating
them. Furthermore, in context-free grammars, syntactic conditions are always expressed
as disjunction of concatenations, as in the two rules A→ BC | DE.

Motivated by the fact that other Boolean connectives are as useful and natural as
the disjunction, two extensions of context-free grammars were introduced. These are
conjunctive grammars [14], in which every rule A → α1& . . .&αn contains an explicit
conjunction of one or more concatenations, and Boolean grammars [15], which further
allow the use of negation. Both conjunctive and Boolean grammars are notable for pre-
serving the main practical properties of the context-free grammars: most importantly, the
parsing techniques. In particular, the membership of a string of length n in the language
generated by a grammar G can be tested in time Θ(|G| · n3) by a straightforward adap-
tation of the Cocke–Kasami–Younger algorithm [14, 15], and a more careful examination
showed that Valiant’s [20] reduction of context-free recognition to matrix multiplication
is still applicable to Boolean grammars [17], leading to a parsing algorithm working in

∗Supported by the Academy of Finland under grant 134860.
†Academy of Finland, and Department of Mathematics, University of Turku, Turku FI–20014, Fin-

land. E-mail: alexander.okhotin@utu.fi.
‡Julius-Maximilians-Universität Würzburg, Theoretische Informatik, Würzburg D–97074, Germany.

E-mail: reitwiessner@informatik.uni-wuerzburg.de.

1

Dagstuhl Seminar Proceedings 10501
Advances and Applications of Automata on Words and Trees
http://drops.dagstuhl.de/opus/volltexte/2011/3146

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62916307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/S0022-0000(74)80047-4

time O(|G| ·BMM(n) log n), where BMM(n) is the number of bit operations needed to
multiply two n× n Boolean matrices [17]. Using the best known upper bound on matrix
multiplication [1] yields O(|G| · n2.376) time complexity of parsing.

The nontriviality of conjunctive grammars over a one-letter alphabet was discovered
by Jeż [9], who presented a grammar generating { a4n | n > 0 }, and later Okhotin and
Rondogiannis [18] showed that a variant of this language can be generated by a conjunc-
tive grammar with a unique nonterminal symbol. Subsequent research on conjunctive
grammars over a unary alphabet revealed their nontrivial properties, such as the follow-
ing. For every recursive function, one can find a strictly greater function f : N → N,
such that the language { af(n) | n > 0 } is generated by a conjunctive grammar [10]. The
decision problem of whether a given conjunctive grammar G over a unary alphabet gen-
erates a fixed language L0 ⊆ a∗ is undecidable for any conjunctive L0 [10]. There exists
a particular language L ⊆ a∗ generated by a conjunctive grammar with one nonterminal
symbol, such that testing the membership of a string an in this language, with n given in
binary, is an EXPTIME-complete problem [11, 12].

These nontrivial facts, especially the latter complexity lower bound, motivate an in-
vestigation of further complexity aspects of unary conjunctive and Boolean grammars. In
the case of a one-letter alphabet, the basic Cocke–Kasami–Younger algorithm is naturally
modified to work in time O(|G| · n2) on an input string an, which applies to the mem-
bership problem for all families between context-free grammars and Boolean grammars.
Further motivation comes from the area of circuits over sets of natural numbers, which
may be regarded as a special case of grammars over a unary alphabet, without circular
dependencies of nonterminals. These circuits have a long history of complexity-theoretical
studies, beginning with the works of Stockmeyer and Meyer [19] and Wagner [21], and
with further investigation in progress [13, 6, 7]. No method of evaluating such circuits
faster than in time O(|C| · n2), where |C| is the size of the circuit, has been proposed.

This paper aims to improve over this näıve upper bound in the same way as Valiant’s [20]
algorithm improved over the basic cubic-time methods of context-free recognition. Valiant’s
method was based upon finding instances of the matrix multiplication problem inside the
total bulk of Θ(|G| · n3) bit operations used by the Cocke–Kasami–Younger recognition.
In this paper, similarly, the Θ(|G| · n2) bit operations in the obvious algorithm for the
membership problem for Boolean grammars over a unary alphabet are found to contain
instances of another fundamental problem of computer algebra: convolution of bitvectors
in the Boolean semiring, which is closely related to multiplication of long numbers. The
known efficient algorithms for the latter problem are hence applied to solve the member-
ship problems for grammars in time |G| · n logO(1) n.

Definitions and examples of conjunctive and Boolean grammars are given in Section 2,
which also presents the basic algorithm for recognizing the membership of the string an

in the language generated by a grammar G in time O(|G| · n2). An improved algorithm,
defined in Section 3, employs at most |G| instances of the online Boolean convolution
procedure, and runs in time O(|G| · OC(n)), where OC(n) is the complexity of online
Boolean convolution. The online convolution enables the algorithm to gradually output
the membership of subsequent numbers 1, . . . , n without knowing n in advance.

The next Section 4 estimates the complexity of the algorithm using a particular con-
volution procedure. This procedure operates through the state-of-the-art multiplication
algorithm by Fürer [4], which multiplies two n-bit numbers in n log n2O(log∗ n) bit opera-
tions. The resulting algorithm recognizes the membership of n in |G| ·n log3 n2O(log∗ n) bit

2

operations, or in |G| · n log2 n2O(log∗ n) operations if the special case of an unambiguous
grammar.

2 Conjunctive and Boolean grammars

Definition 1 (Okhotin [14]). A conjunctive grammar is a quadruple G = (Σ, N,R, S),
in which Σ and N are disjoint finite nonempty sets of terminal and nonterminal symbols,
respectively; R is a finite set of rules, each of the form

A→ α1& . . .&αm (with A ∈ N , m > 1 and α1, . . . , αm ∈ (Σ ∪N)∗), (1)

where “&” is a special symbol not in Σ ∪ N ; and S ∈ N is a nonterminal designated as
the start symbol.

A rule (1) shall be called terminating if it is of the form A → w with w ∈ Σ∗ (and
with n = 1), and non-terminating otherwise.

Informally, a rule (1) states that if a string is generated by each αi, then it is gener-
ated by A. One way of formalizing this understanding is to use rewriting of terms over
conjunction and concatenation, which generalizes Chomsky’s string rewriting [14]. Un-
der this definition, a nonterminal symbol A occurring in any term may be rewritten by
a subterm (α1& . . .&αm) according to a rule (1). Furthermore, a subterm (w& . . .&w)
with w ∈ Σ∗ may be rewritten by the string w. For each A ∈ N , let LG(A) be the set of
strings over Σ generated by term rewriting from the term A. Define L(G) = LG(S).

An equivalent definition can be given using language equations. This definition gen-
eralizes the well-known characterization of the context-free grammars by equations, due
to Ginsburg and Rice [5]. Given a conjunctive grammar G = (Σ, N,R, S), the associated
system of language equations is a system of equations in variables N , in which each vari-
able assumes the value of a language over Σ, and which contains the following equation
for every variable A:

A =
⋃

A→α1&...&αm∈R

m⋂
i=1

αi (for all A ∈ N). (2)

Each occurrence of a symbol a ∈ Σ in such a system defines a constant language {a}, while
each empty string denotes a constant language {ε}. A solution of a system is a vector
of languages (. . . , LC , . . .)C∈N , such that the substitution of LC for C, for all C ∈ N ,
turns each equation (2) into an equality. Every such system has at least one solution,
and among them a least solution with respect to componentwise inclusion. This solution
consists of exactly the languages generated by term rewriting: (. . . , LG(C), . . .)C∈N .

Obviously, every finite intersection of context-free languages, such as the language
{ anbncn | n > 0 }, is generated by a conjunctive grammar. Furthermore, there are
known conjunctive grammars for some languages outside of the intersection closure of the
context-free languages, such as {wcw | w ∈ {a, b}∗ } [14]. Since this paper is concerned
with grammars over a one-letter alphabet, the following example is more relevant.

3

Example 1 (Jeż [9]). The following conjunctive grammar with the start symbol A1 gen-
erates the language { a4n | n > 0 }:

A1 → A1A3&A2A2 | a
A2 → A1A1&A2A6 | aa
A3 → A1A2&A6A6 | aaa
A6 → A1A2&A3A3

Each nonterminal Ai generates the language { ai·4n | n > 0 }.
The idea behind this example is to manipulate base-4 positional notations of numbers,

and one can verify by substitution that the given languages form a solution of language
equations corresponding to this grammar. This method was subsequently generalized to
construct more sophisticated examples of conjunctive grammars over a unary alphabet [9,
10, 11, 12, 18].

There is a generalization of the Chomsky normal form for conjunctive grammars.

Definition 2 (Binary normal form [14]). A conjunctive grammar G = (Σ, N,R, S) is in
binary normal form if every rule in R is of the form

A→ B1C1& . . .&BnCn (n > 1, Bi, Ci ∈ N)

A→ a

S → ε (only if S does not appear in right-hand sides of rules).

Every conjunctive grammar can be effectively transformed to a conjunctive grammar
in binary normal form generating the same language [14].

The rules in Boolean grammars are the same as in conjunctive grammars, but every
conjunct in every rule may be negated.

Definition 3 (Okhotin [15]). A Boolean grammar is a quadruple G = (Σ, N,R, S), where
Σ and N are disjoint finite non-empty sets of terminal and nonterminal symbols respec-
tively; R is a finite set of rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn, (3)

where m+ n > 1, αi, βi ∈ (Σ ∪N)∗; S ∈ N is the start symbol of the grammar.

A grammar is interpreted as a system of language equations in variables N , in which
the equation for each A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈R

[m⋂
i=1

αi ∩
n⋂
j=1

βj

]
. (4)

According to the simplest definition of Boolean grammars, this system is required to
have a unique solution, and this unique solution defines the languages generated by the
nonterminals of the grammar. This definition is assumed in this paper.

Definition 4. The concatenation of two languages, K and L, is said to be unambiguous,
if every string w ∈ K · L has a unique factorization w = uv with u ∈ K and v ∈ L.

A Boolean grammar G = (Σ, N,R, S) has unambiguous concatenation, if all concate-
nations in the corresponding system of language equations (4) are unambiguous under the
substitution A = LG(A).

A Boolean grammar is unambiguous if it has unambiguous concatenation and further-
more, every union in the system (4) is disjoint under the substitution A = LG(A).

4

It is known that every Boolean grammar can be transformed to an equivalent grammar
in binary normal form [15], in which every rule in R is of the form

A→ B1C1& . . .&BnCm&¬D1E1& . . .&¬DnEn&¬ε
(m > 1, n > 0, Bi, Ci, Dj, Ej ∈ N)

A→ a

S → ε (only if S does not appear in right-hand sides of rules).

Furthermore, if the original grammar has unambiguous concatenation, then the resulting
grammar in the normal form is unambiguous [16].

In particular, this normal form is used to obtain a simple generalization of the Cocke–
Kasami–Younger parsing algorithm to conjunctive and Boolean grammars, which still
works in time O(n3) [14, 15]. Given a grammar G and an input string w = a1 . . . an,
this algorithm computes the sets Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A) }, for all nonempty
substrings of w. The bottleneck of this algorithm is the need to compute n2 unions of the
form

⋃
i<k<j Ti,k × Tk,j, which represent the set of all concatenations BC that generate

the corresponding substring ai+1 . . . aj. A more efficient way of calculating these sets via
Boolean matrix multiplication was invented by Valiant [20], and it can be used to obtain
a O(BMM(n))-time parsing algorithm for Boolean grammars [17], where BMM(n) is
the complexity of multiplying two n× n Boolean matrices.

In the case of a unary alphabet, a string of length n has only n distinct nonempty
substrings, and the basic cubic-time parsing algorithm can be simplified down to the
following straightforward procedure.

Algorithm 1. Input: Boolean Grammar G = ({a}, N, S,R) in binary normal form,
n > 1. Data structures: set P ⊆ N × N containing all pairs of nonterminals occuring
(positively or negatively) in right-hand-sides of rules; for each A ∈ N , a bitvector VA[1..n],
initialized to false; for each (B,C) ∈ P , a Boolean variable WBC.

1: if n = 0 then
2: return S → ε ∈ R
3: for all A ∈ N with A→ a ∈ P do
4: VA[1] = true
5: for i := 2 to n do
6: for all (B,C) ∈ P do
7: WBC := false
8: for j := 1 to i− 1 do
9: WBC := WBC ∨ (VB[j] ∧ VC [i− j])

10: for all A→ B1C1& . . .&BmCm&¬D1E1& . . .&¬DrEr ∈ R do
11: VA[i] := VA[i] ∨ (WB1C1 ∧ . . . ∧WBkCk

∧ ¬WD1E1 ∧ . . . ∧ ¬WDrEr)
12: return VS[n]

3 Recognition by convolution

The computation that is done in lines 7 to 9 of Algorithm 1, essentially calculates one
output bit of the Boolean convolution of the bitvectors VB and VC . As we will see later,

5

x

y

0

0

1

1

2

2

3

3

4

4

5

5

1 4 55

8

9

Figure 1: Convolution of the bitvectors x = (1, 0, 0, 0, 1, 0) and y = (0, 1, 0, 0, 1, 1), illus-
trated graphically. Circles represent true conjunctions and true disjunctions are grouped
together. The result is z = (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0).

this computation is done quite inefficiently. The term “unambiguous” in the following
definition will become important in section 4.

Definition 5. The Boolean convolution maps two bitvectors x = (x0, . . . , xn−1), y =
(y0, . . . , yn−1) ∈ Bn to another bitvector z = x ◦ y = (z0, . . . , z2n−2) ∈ B2n−1, where
zi =

∨i
j=0 xj ∧ yj−i.

The convolution of two bitvectors x and y is unambiguous if for every 0 ≤ k ≤ 2n− 2
there is at most one combination of i, j such that i+ j = k and xi = yj = 1.

This definition is illustrated in Figure 1, where the axes correspond to the two bitvec-
tors, circles represent true conjunctions and true disjunctions are grouped together. A
näıve approach to computing the convolution, as the one implemented in Algorithm 1,
involves evaluating all Θ(n2) Boolean operations, as per the definition. Much more ef-
ficient n logO(1) n-time methods were developed in connection with the problem of fast
multiplication of integers.

Using these algorithms, one can determine the membership of a string an in the lan-
guage defined by a regular expression e over a unary alphabet, by calculating the language
generated by each substring modulo {ε, a, . . . , an}. This works in time |e| · n logO(1) n,
where |e| is the number of symbols in the regular expression.

However, this method of evaluating subexpressions one by one is not directly applicable
to Boolean grammars, which may include circularities in the definition. In general, the
membership of a word an in a language LG(A) depends upon the membership of all words
a1, . . . , an−1 in the languages generated by all nonterminals of the grammar G, and there
is no known way to compute the membership of an in LG(A) without first computing the
membership of all shorter words in all languages. To be precise, the membership of an in
LG(A) is a function of the membership of an in LG(BC), for all B,C ∈ N , and the latter
is one bit of the convolution computed in the lines 7–9 of Algorithm 1. Since the Boolean
vectors being convolved depend on the previously calculated bits of the convolution, one
must use the online variant of Boolean convolution, defined as follows.

Definition 6. Let x = (x0, . . . , xn−1), y = (y0, . . . , yn−1) ∈ Bn be two bitvectors. An
online convolution algorithm, which computes their convolution z = x◦y = (z0, . . . , z2n−2),

6

receives x and y bit by bit, and writes each i-th bit of z before reading any input xj, yj for
j > i.

Note that here, the output bit number i can depend on the input bits 0, . . . , i, and not
only on 0, . . . , i − 1, as required for computing the concatenation. As we will see later,
this is compensated by the fact that ε /∈ LG(B), LG(C) when compting LG(B) · LG(C).

Fischer and Stockmeyer [3] showed how to transform ordinary convolution algorithms
into their online variants with not much overhead in the computation. Though they
are mainly concerned with integer multiplication, it is also shown (in Section 4.1) how
this result can be extended to so-called generalized linear products defined by Fischer and
Paterson [2]. Since Boolean convolution is such a generalized linear product, the following
holds.

Theorem 1 (Fischer, Stockmeyer [3]). Let C(n) be the time needed to compute the
Boolean convolution of two bitvectors of length n satisfying n 6 C(n) 6 C(2n)/2 6 k C(n)
for some k. There is an algorithm that computes the online Boolean convolution in time
O(C(n) · log n).

Since Fischer and Stockmeyer do not explicitly prove the case of Boolean convolution,
a full version of the present paper will contain a simplified version of their proof for
multiplication applied to Boolean convolution.

Using this result, we can change Algorithm 1 to directly use online convolution and
can concentrate on finding a good algorithm for ordinary convolution.

Algorithm 2. Input: Boolean Grammar G = ({a}, N, S,R) in binary normal form,
n > 0. Data structures: set P ⊆ N × N containing all pairs of nonterminals occuring
(positively or negatively) in right-hand-sides of rules; for each A ∈ N , a bitvector VA[1..n],
initialized to false; for each (B,C) ∈ P , a Boolean variable WBC.
Furthermore, we run parallel instances of an online convolution algorithm convBC for
each (B,C) ∈ P such that convBC computes the convolution of VB[1..n] and VC [1..n].
We access its output bits by convBC [0..2n].

1: if n = 0 then
2: return S → ε ∈ R
3: for all A ∈ N with A→ a ∈ R do
4: VA[1] := true
5: for i := 2 to n do
6: feed all VA[i− 1], A ∈ N to the convolution algorithms
7: for all (B,C) ∈ P do
8: WBC := convBC [i− 2]
9: for all A→ B1C1& . . .&BkCk&¬D1E1& . . .&¬DrEr ∈ R do

10: VA[i] := VA[i] ∨ (WB1C1 ∧ . . . ∧WBkCk
∧ ¬WD1E1 ∧ . . . ∧ ¬WDrEr)

11: return VS[n]

Lemma 1. Let OC(n) > n be the complexity of computing an n-bit online Boolean
convolution. The problem whether a given string an is generated by a given Boolean
grammar G in binary normal form can be solved in time O(|G| ·OC(n)).

Proof. We show that Algorithm 2 solves the stated problem.

7

Correctness. We first show that the algorithms convBC is used in a way such that they
always have enough bits of the input available to produce the requested output bits.

Let 2 ≤ i ≤ n and (B,C) ∈ P . Because of line 6, the bit convBC [i−2] is requested after
the bits VB[1..(i−1)] and VC [1..(i−1)] have been fed to the algorithm. Transforming these
bitvectors to the bitvectors x and y from Definition 6, it holds that x = (x0, . . . , xn−1) =
(VB[1], . . . , VB[n]), y = (y0, . . . , yn−1) = (VC [1], . . . , VC [n]). Since VB[i− 1] corresponds to
xi−2, this means that, by the time we want to read output bit i−2 (i.e. zi−2), the algorithm
has access to VB[1..(i−1)] and VC [1..(i−1)], i.e. to (x0, . . . , xi−2) and (y0, . . . , yi−2). Thus,
the online convolution algorithm can correctly produce the requested output bit.

It remains to show that this algorithm does the same as Algorithm 1. Since the
replacement of lines 7 to 9 by the lines 6 to 8 is the only difference in the algorithms,
we have to argue that convBC [i − 2] = (VB[1] ∧ VC [i − 1]) ∨ · · · ∨ (VB[i − 1] ∧ VC [1])
for (B,C) ∈ P and 2 ≤ i ≤ n. Using the same index transformation as before, i.e.
x = (x0, . . . , xn−1) = (VB[1], . . . , VB[n]), y = (y0, . . . , yn−1) = (VC [1], . . . , VC [n]), we get

convBC [i− 2] =
i−2∨
j=0

xj ∧ yi−2−j

=
i−2∨
j=0

VB[j + 1] ∧ VC [i− 2− j + 1]

=
i−1∨
r=1

VB[r] ∧ VC [i− r]

= (VB[1] ∧ VC [i− 1]) ∨ · · · ∨ (VB[i− 1] ∧ VC [1]),

and thus both algorithms compute the same result.

Time Complexity. Because we run one online convolution algorithm for each pair
(B,C) ∈ P , we get O(|G| ·OC(n)) for the online convolutions alone. All other operations
need O(|G| · n) time and since OC(n) > n, we get the stated complexity.

4 Boolean convolution

We have reduced parsing unary Boolean grammars to online Boolean convolution which
in turn was reduced to ordinary Boolean convolution. We now apply the final reduction
and show how to use an arbitrary integer multiplication algorithm to compute Boolean
convolutions. As a consequence, progress in algorithms or implementations for integer
multiplication will also improve the complexity of parsing unary Boolean grammars.

Lemma 2. Let M(n) be the time complexity of multiplying two n-bit integers. The
Boolean convolution of two bitvectors of length n can be computed in time O(M(n log n))
and in time O(M(n)) if the convolution is unambiguous.

Proof. In the following, we interpret B = {0, 1} as a subset of the integers. Let x =
(x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) ∈ Bn. We begin with the unambiguous case.

8

Define the n-bit numbers

a =
n−1∑
i=0

xi2
i b =

n−1∑
j=0

yj2
j.

The product of these numbers is

a · b =
n−1∑
i=0

n−1∑
j=0

xiyj2
i+j =

2n−2∑
k=0

2k
∑
i+j=k

xiyj =
2n−2∑
k=0

2k
k∑
i=0

xiyk−i

and since the convolution is unambiguous, the coefficient of each 2k is either zero or one.
Thus the bitvector of the convolution coincides with the binary representation of the
product.

This is not the case anymore if the convolution is not unambiguous, but there, we can
avoid carries by padding in the following way: For

a =
n−1∑
i=0

xi2
idlogne b =

n−1∑
j=0

yj2
jdlogne

we get

a · b =
n−1∑
i=0

n−1∑
j=0

xiyj2
(i+j)dlogne =

2n−2∑
k=0

2kdlogne
∑
i+j=k

xiyj. =
2n−2∑
k=0

2kdlogne
k∑
i=0

xiyk−i.

Since for any k, it holds that
∑

i+j=k xiyj ≤ n ≤ 2dlogne, there will be no carry between
blocks of dlog ne bits and thus the bitvector of the convolution can be extracted from
the binary representation of the product. As the multiplication is done on integers with
binary length ndlog ne, the assertion follows.

Applying the currently best known upper bound for integer multiplication by Fürer [4],
we get the following result.

Proposition 1. The Boolean convolution of two bitvectors of length n can be computed
in time n log2 n · 2O(log∗ n) and in time n log n · 2O(log∗ n) if the convolution is unambiguous.

Proof. We apply Fürer’s algorithm for multiplication with time complexity n log n·2O(log∗ n).
The unambiguous case is obvious and in the general case we get a time complexity of
O((n log n) log(n log n)2O(log∗(n logn))) = n log2 n2O(log∗ n).

Theorem 2. Let M(n) be the time complexity of multiplying two n-bit integers.
The problem of determining whether a word an is generated by a Boolean grammar G

in binary normal form can be solved in time O(|G| ·M(n log n) · log n). If the grammar is
known to be unambiguous, a variant of the algorithm works in time O(|G| ·M(n) · log n).

The currently best known value for M(n) yields the complexities |G| ·n log3 n ·2O(log∗ n)

and |G| · n log2 n · 2O(log∗ n), respectively.

Proof. By Lemma 2, Boolean convolution can be computed in time C(n) = O(M(n log n))
and unambiguous Boolean convolution in time O(M(n)). By Theorem 1, these algorithms
can be convorted to online variants with complexity OC(n) = O(M(n log n) log n) and
O(M(n) log n), respectively. Finally, from Lemma 1, we obtain the assertions. Using
Fürer’s result M(n) = n log n · 2O(log∗ n) [4], the explicit bounds follow.

9

References

[1] D. Coppersmith, S. Winograd, “Matrix multiplication via arithmetic progressions”,
Journal of Symbolic Computation, 9:3 (1990), 251–280.

[2] M. J. Fischer, M. S. Paterson, “String-matching and other products”, Technical
report MIT-LCS-TM-041, Massachusetts Institute of Technology, 1974.

[3] M. J. Fischer, L. J. Stockmeyer, “Fast on-line integer multiplication”, Journal of
Computer and System Sciences, 9:3 (1974), 317–331.

[4] M. Fürer, “Faster integer multiplication”, SIAM Journal on Computing, 39:3 (2009),
979–1005.

[5] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of
the ACM, 9 (1962), 350–371.

[6] C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, M. Waldherr, “Equivalence prob-
lems for circuits over sets of natural numbers”, Theory of Computer Systems, 46:1
(2010), 80–103.

[7] C. Glaßer, C. Reitwießner, S. D. Travers, M. Waldherr, “Satisfiability of algebraic
circuits over sets of natural numbers”, Discrete Applied Mathematics, 158:13 (2010),
1394–1403.

[8] D. T. Huynh, “Commutative grammars: the complexity of uniform word problems”,
Information and Control, 57:1 (1983), 21–39.

[9] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, Interna-
tional Journal of Foundations of Computer Science, 19:3 (2008), 597–615.

[10] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability
and unbounded growth”, Theory of Computing Systems, 46:1 (2010), 27–58.

[11] A. Jeż, A. Okhotin, “Complexity of solutions of equations over sets of natural num-
bers”, 25th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2008, Bordeaux, France, 21–23 February, 2008), 373–383.

[12] A. Jeż, A. Okhotin, “One-nonterminal conjunctive grammars over a unary alphabet”,
Computer Science in Russia (CSR 2009, Novosibirsk, Russia, 18–23 August, 2009),
LNCS 5675, 191–202.

[13] P. McKenzie, K. W. Wagner, “The complexity of membership problems for circuits
over sets of natural numbers”, Computational Complexity, 16:3 (2007), 211–244.

[14] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combi-
natorics, 6:4 (2001), 519–535.

[15] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–
48.

10

http://dx.doi.org/10.1016/S0022-0000(74)80047-4
http://dx.doi.org/10.1137/070711761
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1007/s00224-008-9144-8
http://dx.doi.org/10.1007/s00224-008-9144-8
http://dx.doi.org/10.1016/j.dam.2010.04.001
http://dx.doi.org/10.1016/j.dam.2010.04.001
http://dx.doi.org/10.1016/S0019-9958(83)80022-9
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1007/s00224-008-9139-5
http://drops.dagstuhl.de/opus/volltexte/2008/1319/
http://drops.dagstuhl.de/opus/volltexte/2008/1319/
http://dx.doi.org/10.1007/978-3-642-03351-3_19
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1016/j.ic.2004.03.006

[16] A. Okhotin, “Unambiguous Boolean grammars”, Information and Computation, 206
(2008), 1234–1247.

[17] A. Okhotin, “Fast parsing for Boolean grammars: a generalization of Valiant’s al-
gorithm”, Developments in Language Theory (DLT 2010, London, Ontario, Canada,
August 17–20, 2010), LNCS 6224, 340–351.

[18] A. Okhotin, P. Rondogiannis, “On the expressive power of univariate equations over
sets of natural numbers”, IFIP Intl. Conf. on Theoretical Computer Science (TCS
2008, Milan, Italy, 8–10 September, 2008), IFIP vol. 273, 215–227.

[19] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”, 5th
Annual ACM Symposium on Theory of Computing (STOC 1973, Austin, USA, April
30–May 2, 1973), 1–9.

[20] L. G. Valiant, “General context-free recognition in less than cubic time”, Journal of
Computer and System Sciences, 10:2 (1975), 308–314.

[21] K. W. Wagner, “The complexity of problems concerning graphs with regularities”,
Mathematical Foundations of Computer Science (MFCS 1984, Prague, Czechoslo-
vakia, September 3–7, 1984), LNCS 176, 544–552.

11

http://dx.doi.org/10.1016/j.ic.2008.03.023
http://dx.doi.org/10.1007/978-3-642-14455-4_31
http://dx.doi.org/10.1007/978-3-642-14455-4_31
http://dx.doi.org/10.1007/978-0-387-09680-3_15
http://dx.doi.org/10.1007/978-0-387-09680-3_15
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/S0022-0000(75)80046-8
http://dx.doi.org/10.1007/BFb0030338

	Introduction
	Conjunctive and Boolean grammars
	Recognition by convolution
	Boolean convolution

