309 research outputs found

    On the number of nearly perfect matchings in almost regular uniform hypergraphs

    Get PDF
    AbstractStrengthening the result of Rődl and Frankl (Europ. J. Combin 6 (1985) 317–326), Pippenger proved the theorem stating the existence of a nearly perfect matching in almost regular uniform hypergraph satisfying some conditions (see J. Combin. Theory A 51 (1989) 24–42). Grable announced in J. Combin. Designs 4 (4) (1996) 255–273 that such hypergraphs have exponentially many nearly perfect matchings. This generalizes the result and the proof in Combinatorica 11 (3) (1991) 207–218 which is based on the Rődl Nibble algorithm (European J. Combin. 5 (1985) 69–78). In this paper, we present a simple proof of Grable's extension of Pippenger's theorem. Our proof is based on a comparison of upper and lower bounds of the probability for a random subgraph to have a nearly perfect matching. We use the Lovasz Local Lemma to obtain the desired lower bound of this probability

    Large matchings in uniform hypergraphs and the conjectures of Erdos and Samuels

    Get PDF
    In this paper we study conditions which guarantee the existence of perfect matchings and perfect fractional matchings in uniform hypergraphs. We reduce this problem to an old conjecture by Erd\H{o}s on estimating the maximum number of edges in a hypergraph when the (fractional) matching number is given, which we are able to solve in some special cases using probabilistic techniques. Based on these results, we obtain some general theorems on the minimum dd-degree ensuring the existence of perfect (fractional) matchings. In particular, we asymptotically determine the minimum vertex degree which guarantees a perfect matching in 4-uniform and 5-uniform hypergraphs. We also discuss an application to a problem of finding an optimal data allocation in a distributed storage system

    Uniform hypergraphs containing no grids

    Get PDF
    A hypergraph is called an r×r grid if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e.,a family of sets {A1, ..., Ar, B1, ..., Br} such that Ai∩Aj=Bi∩Bj=φ for 1≤i<j≤r and {pipe}Ai∩Bj{pipe}=1 for 1≤i, j≤r. Three sets C1, C2, C3 form a triangle if they pairwise intersect in three distinct singletons, {pipe}C1∩C2{pipe}={pipe}C2∩C3{pipe}={pipe}C3∩C1{pipe}=1, C1∩C2≠C1∩C3. A hypergraph is linear, if {pipe}E∩F{pipe}≤1 holds for every pair of edges E≠F.In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For r≥. 4 our constructions are almost optimal. These investigations are motivated by coding theory: we get new bounds for optimal superimposed codes and designs. © 2013 Elsevier Ltd

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Hypergraph matchings and designs

    Full text link
    We survey some aspects of the perfect matching problem in hypergraphs, with particular emphasis on structural characterisation of the existence problem in dense hypergraphs and the existence of designs.Comment: 19 pages, for the 2018 IC
    • …
    corecore