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Abstract

Strengthening the result of Rődl and Frankl (Europ. J. Combin 6 (1985) 317–326), Pippenger
proved the theorem stating the existence of a nearly perfect matching in almost regular uniform
hypergraph satisfying some conditions (see J. Combin. Theory A 51 (1989) 24–42). Grable
announced in J. Combin. Designs 4 (4) (1996) 255–273 that such hypergraphs have exponentially
many nearly perfect matchings. This generalizes the result and the proof in Combinatorica 11 (3)
(1991) 207–218 which is based on the Rődl nibble algorithm (European J. Combin. 5 (1985)
69–78). In this paper, we present a simple proof of Grable’s extension of Pippenger’s theorem.
Our proof is based on a comparison of upper and lower bounds of the probability for a random
subgraph to have a nearly perfect matching. We use the Lovasz Local Lemma to obtain the
desired lower bound of this probability. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

An important problem in integer linear programming is to �nd tight bounds on the
ratio of an integral optimum and an optimum of its linear relaxation for di�erent classes
of integer linear programs. For packing and covering integer programs such bounds
were obtained in [1,9,4]. It is interesting to �nd subclasses of packing and covering
integer programs with better approximation ratio of integral and rational optima.
One interesting example of such subclasses gives the theorem of Pippenger originally

formulated in terms of hypergraphs and presented in [10] as a part of joint work. This
theorem can be formulated as a statement which guarantees that for integer packing
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(covering) linear programs with special balancing conditions on (0; 1)-matrix of con-
straints the integer optimum is close to the optimum of its linear relaxation (see [7]).
Moreover, it was proved in [12,13] that under these conditions the so-called random
greedy algorithm always �nds a near-optimal integer solution.
Now we give some de�nitions and notation. A hypergraph H is a pair (V; E), where

V is a �nite set of vertices and E is a �nite family of subsets of V; called edges.
A hypergraph is r-uniform if every edge contains precisely r vertices. The number of
edges of a hypergraph H containing a vertex v is called the degree of v and denoted
by dH (v) or simply d(v). A hypergraph H is called d-regular if dH (v) = d for each
vertex v of H . For two distinct vertices u and v of a hypergraph H , the number of
edges containing both u and v is denoted by dH (u; v) or simply d(u; v). A matching
in a hypergraph is a collection of pairwise disjoint edges.
For two sequences fn and gn we write gn = o(fn) if gn=fn → 0 as n → ∞ and

fn ∼ gn if |fn − gn|= o(gn).
Let H be an r-uniform hypergraph on n vertices and M be a matching of H . M

is called a perfect matching if it contains precisely n=r edges and a nearly perfect
matching if it contains at least (n− o(n))=r edges.
We consider the following version of the theorem of Pippenger:

Theorem 1 (Pippenger and Spencer [10]). Let r be �xed and Hn be an r-uniform
hypergraph on n vertices satisfying the following conditions: for some sequence
d= dn (dn → ∞)

(1) d(v) ∼ d as n→ ∞ (1)

for each vertex v of Hn;

(2) d(u; v) = o(d) (2)

for every two distinct vertices u; v of Hn.
Then Hn has a nearly perfect matching.

Let N (Hn) denote the number of matchings of Hn. Our contribution is a simple
proof of the following theorem.

Theorem 2. Let r be �xed and Hn be an r-uniform hypergraph on n vertices satisfying
the conditions of Theorem 1.
Then

N (Hn)¿exp{((n− o(n))=r)ln d}:
Moreover; for any constant �; 0¡�¡ 1=2; and su�ciently large n the number of
matchings of Hn each containing at least (1− �)n=r edges is at least

exp{(1− 2�)(n=r)ln d}:

This means that Hn has at least exp{((n− o(n))=r)ln d} nearly perfect matchings.
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Corollary 1. lnN (Hn) ∼ (n=r)ln d as n→ ∞.

This result was announced by Grable in [6]. His proof is a direct generalization of
the proof in [4] and is based on the Rődl nibble algorithm [11] (see also [2,3,5,13]).
This is a very powerful but not easy technique which has proven to be successful in
solving a few well-known problems in combinatorics.
In this paper we present simple and quite di�erent argument su�cient to prove

Theorem 2. We use the Lovasz Local Lemma (see [2]) almost as it was done in [8].
The di�erence with [8] (and the most other known applications of the Local Lemma) is
that we use not only the assertion that the probability of a ‘good event’ is positive but
also the lower bound of this probability. Thus, we may consider our proof as another
application of the Local Lemma in its full generality.

2. Proof of Theorem 2

Our main tools will be the following two lemmas.

Lemma 1 (Lovasz Local Lemma, Alon and Spencer [2]). Let A1; : : : ; Am be events in
an arbitrary probability space. A directed graph D = (V; E) on the set of vertices
V = {1; 2; : : : ; m} is called a dependency digraph for the events A1; : : : ; Am if for each
i; 16i6m; the event Ai is mutually independent of all the events {Aj: (i; j) 6∈ E}.
Suppose that D = (V; E) is a dependency digraph for the above events and suppose
there are real numbers x1; : : : ; xm such that 06xi ¡ 1 and

P(Ai)6xi
∏
(i; j)∈E

(1− xj)

for all 16i6m. Then

P

(
m∧
i=1

�Ai

)
¿

m∏
i=1

(1− xi):

Lemma 2 (Alon and Spencer [2], Srinivasan [14]). Let z1; : : : ; zt be independent ran-
dom variables such that zi takes two values 0 and 1; and

P{zi = 1}= p; P{zi = 0}= 1− p:
Then for Z =

∑t
i=1 zi and EZ = pt the following inequalities hold:

P{|Z − EZ |¿
EZ}62 exp{−(
2=3)EZ} (3)

if 06
61;

P{Z − EZ ¿
EZ}6exp{−(((1 + 
)ln(1 + 
))=4)EZ} (4)

if 
¿1.
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Proof of Theorem 2. Let � be a constant, 0¡�¡ 1
2 ; and N =N�(Hn) be the number

of matchings containing at least T =d(1−�)n=re edges in the hypergraph Hn satisfying
the conditions of Theorem 2. Assume that E = {E1; : : : ; Eq} is the set of edges of Hn.
We de�ne the random subgraph Hn(p) of Hn obtained by choosing independently each
edge Ei with probability p= d−1+�.
Let X be the random variable equal to the number of matchings each containing at

least T = d(1 − �)(n=r)e edges in Hn(p). The idea of the proof is simple. First we
show that

P(X¿1)6EX6exp{lnN − (1− �)2(n=r)ln d}:
Then, using Lemma 1, we �nd a lower bound of the probability P(X¿1). Combining
these two inequalities we obtain a desired lower bound

lnN¿(1− 2�)(n=r)ln d
which holds for any �¿ 0 and su�ciently large n. Note, that we will omit, for sim-
plicity, the expression ‘for su�ciently large n’ in some other inequalities.
(1) It is clear, that EX6NpT because each matching in Hn(p) is contained in Hn.

We have

EX 6NpT = exp{lnN − T lnp−1}
6 exp{lnN − (1− �)2(n=r)ln d}:

Using Chebyshev’s inequality we conclude that

P{X¿1}6EX6exp{lnN − (1− �)2(n=r)ln d}: (5)

(2) Now, we will �nd a lower bound of the probability that the random subgraph
Hn(p) satis�es all the conditions of Theorem 1.
For each vertex v of Hn, let D(v) be the random variable equal to the degree of v in

Hn(p). Furthermore, let y1; : : : ; yd(v) be independent random variables such that yj =1
i� the jth edge containing v is in Hn(p), and yj = 0, otherwise. It is clear that

D(v) =
d(v)∑
j=1

yj:

Therefore,

ED(v) =
d(v)∑
j=1

Eyj = (d+ o(d))p= d� + o(d�):

Furthermore, by (3) with Z = D(v) and 
= 
n = (ln d)−1, we have

P{|D(v)− ED(v)|¿
nED(v)}6 2 exp
{
−(d+ o(d))


2
n

3
p
}

= 2exp
{
−(d� + o(d�))


2
n

3

}
6d−3: (6)

Now for each pair of distinct vertices u and v with dHn(u; v)¿1 we de�ne the random
variable D(u; v) which is equal to the number of edges in Hn(p) containing both u
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and v. Furthermore, we de�ne independent random variables x1; : : : ; xd(u;v) such that
xj =1 i� the jth edge containing both u and v is in Hn(p), and xj =0 otherwise. It is
clear that

D(u; v) =
d(u;v)∑
j=1

xj:

Therefore,

ED(u; v) =
d(u;v)∑
j=1

Exj6p max
a;b:a6=b

d(a; b) = o(d�):

Let d� = gnED(u; v). By the previous inequality we have gn → ∞ as n→ ∞.
Hence, by (4) with Z = D(u; v) and 
= 
′n =max{(ln d)−1; (ln gn)−1}, we have

P{D(u; v)− ED(u; v)¿
′nd
�}

=P{D(u; v)− ED(u; v)¿
′ngnED(u; v)}
6exp{−((1 + 
′ngn)(ln(1 + 
′ngn))=4)ED(u; v)}
6exp{−
′nd�(ln(1 + 
′ngn))=4}6d−3: (7)

For each vertex v of Hn let A(v) denote the event: |D(v) − ED(v)|¿
nED(v): Fur-
thermore, for each pair of vertices u; v in Hn with dHn(u; v)¿1 let B(u; v) denote the
event: D(u; v)− ED(u; v)¿
′nd

�:
We will use Lemma 1 to prove that with positive probability none of the events

A(v) and B(u; v) occurs. Our analysis is almost the same as in [8] (see Lemma 4 of
[8]). Consider the dependency digraph for the events A(v) and B(u; v) for all vertices
u and v of Hn such that dHn(u; v)¿1. Clearly, the event A(v) does not depend on all
events A(x) such that x 6∈ ⋃v∈Ei Ei. Analogously, the event A(v) does not depend on
all events B(u; w) such that {u; w} is not contained in an edge containing also v. It
follows that A(v) is independent of all but

(r − 1)d(v) + d(v)
( r
2

)
¡ (rd)2

other events A(x) and B(u; w). Similarly, B(v; w) is independent of all but

2 + (r − 2)d(v; w) + d(v; w)
( r
2

)
¡ (rd)2

other events A(x) and B(x; y). Hence, the degree of each vertex in the dependency
digraph is at most (rd)2.
Setting xi = (rd)−2 we can conclude that for each i the inequality

xi
∏
(i; j)∈E

(1− xj)¿(rd)−2
(
1− 1

(rd)2

)(rd)2
¿
1
6
(rd)−2

holds. By (6) and (7) we have that P{A(v)}6d−3 for all v and P{B(u; v)}6d−3 for
all u and v. Therefore, for each pair of vertices u and v of Hn, P{A(v)} and P{B(u; v)}
are not less than xi

∏
(i; j)∈E(1− xj). It means that all the conditions of Lemma 1 hold.
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Clearly, the number m of vertices of the dependency digraph, that is, the number
of di�erent events A(v) and B(u; v) is at most n+ nr(d+ o(d)). It is well-known that
(1− 1=(k + 1))k¿1=e for each natural k¿2. Using this inequality with k = (dr)2 − 1
we have, by Lemma 1,

P


∧

v

�A(v) ∧
∧

u 6=v;d(u;v)¿1
�B(u; v)


¿(

1− 1
(rd)2

)n(r(d+o(d))+1)

¿ exp
{
−n(rd+ 1 + o(rd))

(dr)2 − 1
}

¿ exp
{
− (dr + 1)(n+ o(n))

(dr)2 − 1
}

¿ exp
{
−n+ o(n)
dr − 1

}
:

This means that all the conditions of Theorem 1 hold for Hn(p) with positive proba-
bility which is not less than exp{−(n + o(n))=(dr − 1)}. This and Theorem 1 imply
that the probability P(X¿1) that Hn(p) has a matching with at least (1− �)n=r edges
also satis�es the inequality

P(X¿1)¿exp
{
−n+ o(n)
dr − 1

}
:

Taking into account (5) we have

lnN − (1− �)2 n
r
ln d¿− n+ o(n)

dr − 1 ;

which implies (in our notations) the inequality

lnN�(Hn)¿(1− 2�) nr ln d:

The last inequality holds for any �xed �¿ 0 and su�ciently large n and implies the
assertion of Theorem 2. The proof of Theorem 2 is complete.

Corollary 2. lnN (Hn) ∼ (n=r)ln d as n→ ∞.

Proof. Let q denote the number of edges in Hn. We use the following trivial upper
bound:

N (Hn)6
bn=rc∑
k=1

(q
k

)
:

Since Hn is r-uniform and almost d-regular (in view of (1)),

q= (d+ o(d))n=r:
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Since q¿2n=r for su�ciently large n,
( q
k

)
¡
( q
k+1

)
for k ¡n=r. Using also the in-

equality
( q
k

)
6(eq=k)k ; we obtain

N (Hn)6
n
r

(
q
n
r

)
6
n
r

(
(d+ o(d))n=r

n
r

)
6n((d+ o(d))e)n=r

= exp
{
n+ o(n)

r
ln d
}
:

Combining this with the bound obtained in the proof of Theorem 2 we have

(1− 2�) n
r
ln d6lnN�(Hn)6lnN (Hn)6

n+ o(n)
r

ln d: (8)

The last inequality holds for any �xed �¿ 0 and su�ciently large n. Therefore, it
implies the desired asymptotics for lnN (Hn).

3. Concluding remarks

Sometimes, the theorem of Pippenger is considered in the more general form:

Theorem. Let r and K be positive constants and Hn be an r-uniform hypergraph on
n vertices satisfying the following conditions: for some sequence d= dn (dn → ∞ as
n→ ∞)

(1) d(v)6Kd

for each vertex v of Hn;

(2) d(v) ∼ d
for all but at most o(n) vertices;

(3) d(u; v) = o(d)

for all two distinct vertices u; v of Hn.
Then Hn has a nearly perfect matching.

The assertion of Theorem 2 is true with the conditions of this theorem as well. The
proof does not di�er signi�cantly from the proof of Theorem 2.
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