148,308 research outputs found

    On the number of maximal independent sets in a graph

    Full text link
    Miller and Muller (1960) and independently Moon and Moser (1965) determined the maximum number of maximal independent sets in an nn-vertex graph. We give a new and simple proof of this result

    Maximal independent sets and maximal matchings in series-parallel and related graph classes

    Get PDF
    We provide combinatorial decompositions as well as asymptotic tight estimates for two maximal parameters: the number and average size of maximal independent sets and maximal matchings in seriesparallel graphs (and related graph classes) with n vertices. In particular, our results extend previous results of Meir and Moon for trees [Meir, Moon: On maximal independent sets of nodes in trees, Journal of Graph Theory 1988]. We also show that these two parameters converge to a central limit law.Postprint (author's final draft

    Maximal Independent Sets and Maximal Matchings in Series-Parallel and Related Graph Classes

    Get PDF
    We provide combinatorial decompositions as well as asymptotic tight estimates for two maximal parameters: the number and average size of maximal independent sets and maximal matchings in series-parallel graphs (and related graph classes) with n vertices. In particular, our results extend previous results of Meir and Moon for trees [Meir, Moon: On maximal independent sets of nodes in trees, Journal of Graph Theory 1988]. We also show that these two parameters converge to a central limit law

    The typical structure of maximal triangle-free graphs

    Get PDF
    Recently, settling a question of Erd\H{o}s, Balogh and Pet\v{r}\'{i}\v{c}kov\'{a} showed that there are at most 2n2/8+o(n2)2^{n^2/8+o(n^2)} nn-vertex maximal triangle-free graphs, matching the previously known lower bound. Here we characterize the typical structure of maximal triangle-free graphs. We show that almost every maximal triangle-free graph GG admits a vertex partition XYX\cup Y such that G[X]G[X] is a perfect matching and YY is an independent set. Our proof uses the Ruzsa-Szemer\'{e}di removal lemma, the Erd\H{o}s-Simonovits stability theorem, and recent results of Balogh-Morris-Samotij and Saxton-Thomason on characterization of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the number of maximal independent sets in triangle-free graphs with many vertex-disjoint P3P_3's, which is of independent interest.Comment: 17 page

    Maximal independent sets and maximal matchings in series-parallel and related graph classes

    Get PDF
    The goal of this paper is to obtain quantitative results on the number and on the size of maximal independent sets and maximal matchings in several block-stable graph classes that satisfy a proper sub-criticality condition. In particular we cover trees, cacti graphs and seriesparallel graphs. The proof methods are based on a generating function approach and a proper singularity analysis of solutions of implicit systems of functional equations in several variables. As a byproduct, this method extends previous results of Meir and Moon for trees [Meir, Moon: On maximal independent sets of nodes in trees, Journal of Graph Theory 1988].Postprint (author's final draft
    corecore