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Abstract
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parallel graphs. The proof methods are based on a generating function approach and a proper
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1 Introduction

In this paper we consider labelled, loopless and simple graphs only. For a graph G = (V (G), E(G)),
a subset J of V (G) is said to be independent if for any pair of vertices x and y contained in J , the
edge {x, y} does not belong to E(G). An independent set J of a graph G is said to be maximal if
any other vertex of G that is not contained in J is adjacent to at least one vertex of J . A subset
N of the edge set E(G) is called a matching if every vertex x of G is incident to at most one edge
of N . A matching N is called maximal if it cannot be extended to a bigger matching by adding an
edge from E(G) \N .

More precisely, let G denote a class of vertex-labelled graphs (vertices on a graph on n vertices
are labelled by {1, 2, . . . , n}). We denote by Gn the set of graphs in G with n vertices. For G ∈ G
we denote by I(G) the set of maximal independent sets of G and by

In =
⋃
G∈Gn

I(G)× {G}

the system of all maximal independent sets of graphs in Gn. That is, every maximal independent
set J is indexed by the corresponding graph, this is formally done by taking pairs (J,G). Similarly,
we denote by M(G) the set of maximal matchings of G and by

Mn =
⋃
G∈Gn

M(G)× {G}

the system of all maximal matchings of graphs of size n. The purpose of this paper is to enumerate
maximal independent sets and maximal matchings by means of symbolic methods. Later, by using
complex analytic tools, we will study their size distribution.

Our research will focus on graph classes defined by an analytic condition that is reminiscent
to the subcritical condition in constrained graph classes. Roughly speaking, a graph class is called
subcritical if the largest block on a uniformly at random graph with n vertices in the class has
O(log(n)) vertices, a block being a 2–connected component that is maximal in the sense of inclusion.
The precise analytic definition (which is done in terms of generating functions) can be found in
Subsection 2.3 (see [2, 7]). Subcritical graphs have typically a tree–like structure and share several
properties with trees. For instance, forests, cacti graphs, outerplanar graphs, series–parallel graphs
and more generally graph families defined by a finite set of 3–connected components are subcritical
graph families [14]. Nowadays, we have a quite good understanding of the shape of a uniformly
at random graph of size n: we know exact results for subgraph statistics [10], their Benjamini–
Schramm convergence [12], their maximum degree [8] and their scaling limits towards the continuous
random tree [23]. Let us also mention that the study of subcritical graph classes is intimately linked
to the understanding of the random planar graph model. In fact, it it was conjectured that a graph
class defined by a set of excluded minors is subcritical if and only if at least one of the excluded
graphs is planar (see [22]). One direction of this conjecture is false: by the work of [13], there exists
a minor–closed addable subcritical graph family which contains all planar graphs. However, the
converse implication in the conjecture is still unknown.

To clarify our setting, let us remark that our research will not be applied to subcritical graph
classes in the classical sense of the papers [2, 7]. In fact, our results can be applied to graph classes
that satisfy some extended sub–criticality conditions which are slightly different from the usual
subcritical analytic condition. We will make this definition precise in Subsection 2.3. In fact, we
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will show that relevant subcritical graph classes (trees, cacti graphs and series–parallel graphs) fit
into this new scheme.

These techniques will be used to obtain precise enumerative results on In andMn. In particular,
we will apply our method to three important graph families: Cayley trees, cacti graphs and series–
parallel graphs. For the mentioned graph classes we have the following universal structure in the
asymptotic enumeration formula for the number of graphs on n vertices, for n large enough:

gn = |Gn| ∼ c n−5/2ρ−nn!, (1)

where c > 0 and ρ is the radius of convergence of the (exponential) generating function G(x) =∑
n≥0 gn

xn

n! associated to the graph class under study. In particular, we will restrict to so-called
aperiodic structures (see also Subsection 2.3), where the asymptotic relation (1) holds for all n and
not only in some residue class.

The first result is an asymptotic estimate for both |In| and |Mn|:

Theorem 1. Let G be a graph class satisfying proper aperiodicity and extended sub–criticality
conditions (defined in Subsection 2.3 and Section 4), and let ρ be the radius of convergence of the
generating function G(x) associated to G. Then we have:

|In| ∼ A1 n
−5/2ρ−n1 n! and |Mn| ∼ A2 n

−5/2ρ−n2 n!,

where A1, A2, ρ1, ρ2 are positive constants such that 0 < ρ1 < ρ and 0 < ρ2 < ρ.

As a direct corollary, we obtain the following asymptotic estimates:

Corollary 2. Let G be as in Theorem 1 and let AIn be the average number of maximal independent
sets in a graph of size n in G and AMn be the average number of matchings in a graph of size n in
G. Then it holds that

AIn =
|In|
gn
∼ C · αn and AMn =

|Mn|
gn

∼ D · βn,

where C,D, α, β are positive constants and α and β are larger than 1.

Our second result concerns the distribution of the respective sizes of random maximal inde-
pendent sets and matchings. The following theorem shows that the limiting distribution follows a
Central Limit Theorem with linear expectation and variance:

Theorem 3. Let G be a graph class satisfying proper aperiodicity and extended sub–criticality
conditions (as in Theorem 1). Furthermore, let SIn denote the size of a uniformly randomly
chosen maximal independent set in In and SMn the size of a uniformly randomly chosen maximal
matching in Mn. Then,

E[SIn] = µn+O(1), Var[SIn] = σ21n+O(1),
E[SMn] = λn+O(1), Var[SMn] = σ22n+O(1),

for some constants µ, λ > 0 and σ21, σ
2
2 ≥ 0. Moreover, if σ21, σ

2
2 > 0 then SIn and MIn satisfy a

Central Limit Theorem:

SIn − E[SIn]√
Var[SIn]

d→ N(0, 1) and
SMn − E[SMn]√

Var[SMn]

d→ N(0, 1).
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Apart from constants A1, A2 (in Theorem 1), and C, D (in Corollary 2), all the other appearing
constants can be computed explicitly to any degree of precision. The following table lists some of
them:

Family α µ β λ

Forests 1.273864 0.463922 1.313080 0.357045
Cacti graphs 1.278323 0.431401 1.184091 0.346734
Series–parallel graphs 1.430394 0.269206 1.470167 0.318924

The constants σ21, σ
2
2 are much more difficult to calculate. However, in all these concrete cases

it can be shown that they are positive (see Section 5).
Let us mention that in [21], Meir and Moon obtained the estimate of Theorem 1 and the

expectation in Theorem 3 for maximal independent sets in Cayley trees, plane trees and binary
trees. Our contribution generalises part of their work, providing a precise limiting distribution for
the size of maximal independent sets in Cayley trees.

Finally, let us briefly discuss the extremal versions of those problems. In the literature, one can
find two such directions. One of them, started by Wilf [28] who was motivated by the design of
an algorithm to compute the chromatic number, consists in characterising the extremal instances
of a given family of graphs containing the maximum number of maximal independent sets (see [17]
for connected graphs, [24] and [29] for trees, and [15] then [25] for graphs with a fixed number
of cycles), as well as maximum independent sets (see [30] and [20]). Furthermore, the maximum
number of both maximal matchings [18] and maximum matchings [19] have been treated. The
other direction consists in bounding the size of a maximum matching in a graph [3]. However, the
problems discussed in this paper seem to be of a different nature. It is worth noticing that in [3],
the authors also give tight bounds on the size of a maximal matching in 3–connected planar graphs
and in graphs with bounded maximum degree.

Structure of the paper. Section 2 introduces the necessary background, namely the language of
generating functions and how they apply to graph decompositions in terms of their connectivity, as
well as the analytic concepts needed in the context of subcritical graph classes. Later, in Section 3
we obtain two implicit systems of functional equations respectively encoding maximal independent
sets and maximal latchings in subcritical graph classes. We then analyse them separatly using
complex analytic tools in Subsection 4. In Section 5, we then apply our results to the families
of Cayley trees, cacti graphs and series–parallel graphs. The details concerning the computations
in cacti graphs and series–parallel graphs are discussed in Appendix A. Let us mention that in
order to get the constants in the case of series–parallel graphs, we need to slightly reformulate
the systems of equations following a grammar introduced in [5]. Finally, in Section 6 we discuss
possible extensions of our work.

2 Preliminaries

2.1 Generating functions

We follow the terminology from [11]. A labelled combinatorial class is a set A together with a size
measure such that if n ≥ 0, then the set of elements of size n (denoted by An) is finite. Each
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element a ∈ An is built from n atoms, which in our context (graph classes) are vertices with labels
in the set {1, . . . , n}. We always assume that the combinatorial classes of graphs we consider are
stable under graph isomorphism, namely, a ∈ A if and only if all graphs a′ isomorphic to a are also
elements of A.

In enumerative problems, it is often useful to use the exponential generating function (EGF,

for short) associated to the labelled class A, namely A(x) :=
∑

n≥0
|An|
n! x

n, [xn]A(x) = |An|
n! . In

our setting, we use the (exponential) variable x to encode vertices, and the (ordinary) variable y
to encode edges. We also use other extra variables to encode different auxiliary parameters.

In this work, we deal with rooted and pointed combinatorial classes. In particular, we can point
the elements of a class A by distinguishing one of the atoms and discounting it, which means that
we reduce the size function by 1. Since we assume that our combinatorial class is stable under
graph isomorphism, this procedure can be performed by taking the atom with the largest label as
the root. The corresponding new pointed class will be denoted by A◦. Since every element of size
n in A corresponds to a unique element in A◦, the term xn/n! in A(x) is replaced by xn−1/(n− 1)!
in A◦(x), i.e. A◦(x) = A′(x).

Similarly, we can consider a rooted structure A• by distinguishing one of the atoms without
discounting it. Since there are n different ways of choosing an atom (for an element of size n), the
corresponding term xn/n! in the generating function is replaced by nxn/n! = xn/(n − 1)!, which
leads to the relation A•(x) = xA′(x).

Finally, we use in this paper the set, sequence and cycle constructions for combinatorial classes
(see [11] for the precise definitions). Concerning notation, we write − log≥k(

1
1−x) =

∑
r≥k

xr

r =

− log( 1
1−x) −

∑k−1
r=1

xr

r for the generating function associated to the cycle construction such that

that the number of components is greater or equal than k. Similarly, the notation exp≥k =
∑

r≥k
xr

r!
will be associated to the restricted set construction.

2.2 Graph decompositions

A block of a graph G is a maximal 2-connected subgraph of G. A graph class G is block–stable if:

1. it contains the single edge (which we denote by e),

2. it satisfies that a connected graph G belongs to G if and only if any one of its blocks is in G.

The class G is also said to be connected component–stable when any graph G is in G if and only
if all connected components of G belong to G. For a graph class G, we denote by C and B the
families of connected and 2-connected graphs in G, respectively. We write C(x) and B(x) their
corresponding EGF, and G(x) for the EGF of G. In particular, if G is a block–stable and connected
component–stable class of graphs, then the following combinatorial decomposition holds:

G = Set(C), C• = • × Set(B◦ ◦ C•). (2)

The previous formulas read as follows: first, each graph in G is defined in terms of a set of connected
graph in C. Secondly, a pointed connected graphs in C• can be decomposed as the root vertex, and
a set of pointed blocks (the ones incident with the root vertex) where we substitute on each vertex
a rooted connected graph. See [1, 6, 16] for details. These expressions translate into equations of
EGFs in the following way:

G(x) = exp(C(x)), C•(x) = x exp(B◦(C•(x))).

We refer the readers to [26] for further results on graph decompositions and connectivity on graphs.
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2.3 Asymptotics for subcritical graph classes

We call a block–stable and vertex labelled graph class subcritical if ηB′′(η) > 1, where η denotes
the radius of convergence of B(x). In particular this condition is satisfied if

B′′(x)→∞ as x→ η−.

Cayley trees, cacti graphs, outerplanar graphs and series–parallel graphs are subcritical. The main
analytic property of subcritical graph classes is that they satisfy universal asymptotic behaviors,
see [2, 7, 23, 12, 10]. In our work, we just use the fact that the property ηB′′(η) > 1 ensures that
the solution C•(x) to the functional equation C•(x) = x exp(B◦(C•(x))) has a square–root type
singularity at its radius of convergence ρ.

Recall that a domain dented at x = ρ is a region of the complex plane of the form ∆(φ,R) =
{x ∈ C : x 6= ρ, |x| < R, |Arg(x − ρ)| > φ}. With the previous assumptions C•(x) has a local
expansion in a domain dented at x = ρ of the form:

C•(x) = xC ′(x) = c0 + c1

(
1− x

ρ

)1/2

+ c2

(
1− x

ρ

)
+ c3

(
1− x

ρ

)3/2

+ · · · , (3)

where ρ is given by the equation ρ = c0e
−B′(c0) and 0 < c0 = C•(ρ) < η is given by the equation

c0B
′′(c0) = 1. Furthermore c1 < 0. Note that the singular behavior of B(x) at its radius of

convergence η is irrelevant for the singular behavior of C•(x) = xC ′(x), we only make use of the
(analytic) behavior of B′(x) = B◦(x) around x = c0 < η.

Assuming that the class G is also connected component–stable, then it follws from (3) that C(x)
and G(x) = eC(x) have the following singular behavior in a domain dented at ρ:

C(x) = c0 + c2

(
1− x

ρ

)
+ c3

(
1− x

ρ

)3/2
+ · · · ,

G(x) = g0 + g2

(
1− x

ρ

)
+ g3

(
1− x

ρ

)3/2
+ · · · ,

where c3 and g3 are positive.
If we further assume that B′(x) = B◦(x) is aperiodic in the sense that B◦(x) cannot be repre-

sented in the form B◦(x) = xeb(xd) for some e ≥ 0 and d > 1. Then it follows that x = ρ is the
only singularity on the circle of convergence |x| = ρ. This is actually satisfied in all the cases under
our study here, and hence for proper positive constants c′, c′′ it follows that (see for instance [11]):

|Cn| = n! [xn]C(x) ∼ c′ · n−5/2ρ−nn! and |Gn| = n! [xn]C(x) ∼ c′′ · n−5/2ρ−nn!.

3 Counting in block–stable graph classes

In this section, we consider block–stable vertex labelled graph classes and set up functional equations
for counting maximal independent subsets and maximal matchings. We recall our notations for
graph classes: B and C denote the families of 2–connected blocks and connected graphs, respectively,
in a block–stable graph class G.
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3.1 Maximal independent sets in block–stable graph classes

A coloured block is a pair (I, b) consisting of a block b ∈ B together with a distinguished independent
set I of b. Note that I can be any independent set of b, i.e. not necessarily maximal. Let
B(x, y0, y1, y2) be the EGF counting coloured blocks, where

• x marks vertices,

• y0 counts vertices in I,

• y1 counts vertices adjacent to vertices in I (namely, vertices at distance one from I),

• y2 counts the rest of the vertices (vertices at distance at least or equal than two from I).

Similarly, a pointed coloured block is a pair (I, b◦) consisting of a pointed block b◦ ∈ B◦ together
with a distinguished independent set I of b. Let Bi := Bi(x, y0, y1, y2) be the EGFs counting
pointed coloured blocks, where the pointed vertex is at distance exactly i from I for i ∈ {0, 1}, and
at distance at least two for i = 2. So that we have:

Bi =
1

x
· ∂B
∂yi

, for i ∈ {0, 1, 2}.

A coloured graph (J, g) is a pair consisting of a connected graph g ∈ C and of a maximal independent
set J of g. Let C := C(x, y0, y1) be the EGF counting coloured graphs, where y0 and y1 encode
vertices in J and vertices at distance one from J , respectively. For i ∈ {0, 1}, let Ci = Ci(x, y0, y1)
be the EGFs enumerating pointed coloured–graphs, for which the pointed vertex is at distance
exactly i from J . These generating functions are given by

Ci =
1

x
· ∂C
∂yi

, for i ∈ {0, 1}.

We finally need an auxiliary class. A special pointed coloured graph is a pair (J, g◦) where J is an
independent set of g not including the pointed vertex, such that the pointed vertex is at distance at
least two from J and which becomes maximal when adding the pointed vertex to J . Equivalently,
a special pointed coloured graph is obtained from a coloured graph pointed at a vertex in J by
removing it from J . We denote the corresponding generating function by C2(x, y0, y1). Observe
that given a coloured graph (J, g), the independent set J together with the vertices of g at distance
one from J form a partition of the vertices of g. Hence, the following equalities hold:

∂C

∂x
=
y0
x

∂C

∂y0
+
y1
x

∂C

∂y1
= y0C0 + y1C1.

We also have that G(x, y0, y1) = exp(C(x, y0, y1)), where G(x, y0, y1) denotes the corresponding
generating function of coloured graphs in G.

The following lemma describes connected structures in terms of their block–decomposition (see
Figure 1 for an example). Thus if we know B(x, y0, y1, y2) (or just Bi(x, y0, y1, y2) for each i ∈
{0, 1, 2}), then we can determine ∂C

∂x (x, y0, y1) and consequently C(x, y0, y1) and G(x, y0, y1).

Lemma 4. With the above notations, the following system of equations holds:

C0 = exp(B0(x, y0C0, y1(C1 + C2), y1C1)),
C1 = (exp(B1(x, y0C0, y1(C1 + C2), y1C1))− 1) · C2,
C2 = exp(B2(x, y0C0, y1(C1 + C2), y1C1)).

(4)
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B1

B2

B0

B0

B1

B0

B1

B1

B1

Figure 1: Left is a pointed coloured graph with independent set J . Vertices of J are circled in red,
the pointed vertex is painted as a white circle. Right is its block–decomposition. Pointed vertices
are coloured (again) in white.

Proof. The proof is based on a refinement of Equation (2) expressing the EGF of a family of pointed
connected graphs in terms of a set of pointed blocks in which we substitute each vertex by a pointed
connected graph. In what follows, we decompose our initial pointed coloured graph into a set of
pointed coloured blocks, and we substitute each of their vertices (of the three different types) by
different families of pointed coloured graphs.

Let us start by proving that the implicit equation defining C0 holds. Let (I, g◦) be a pointed
coloured graph whose pointed vertex is in I. We decompose g◦ according to the blocks that are
incident with its pointed vertex. Observe that the pointed vertex of g◦ determines a set of pointed
coloured blocks (Ji, b

◦
i ) (with i = 1, . . . , k for a certain k): each b◦i is a maximal 2-connected

graph incident with the pointed vertex of g◦, and Ji is the restriction of I into Ji. Observe that
Ji is an independent set but not necessarily maximal. Without loss of generality, let us now fix
j ∈ {1, . . . , k} and analyse the structure of the pair (Jj , b

◦
j ) with respect to the whole pair (I, g◦).

First, to every vertex of b◦j in Jj must be attached a coloured graph (L, h◦) whose root is in L.
That is, a coloured graph counted by C0. In terms of generating functions, this translates into the
substitution of y0 by y0C0. Second, to each vertex of b◦j at distance one from Jj , the root of the
pointed coloured graph (L, h◦) attached to it can be at distances either one or more from L. This
translates into the substitution of y1 by y1(C1 + C2). Finally, if a vertex of b◦j is at distance at
least two from Jj , then the root of the coloured graph (L, h◦) attached to it must be at distance
one from L, as we need to extend the independent set to one that is maximal. This translates into
the substitution of y2 by y1C1 and the first equation of (4) holds.

The implicit equation satisfied by C2 is obtained following the exact same arguments as for C0.
Let us finally discuss the equation for C1. Assume that (I, g◦) is a pointed coloured graph and

that (Ji, b
◦
i ) (for i = 1, . . . , k) are the pointed coloured blocks incident with the pointed vertex of

g◦. In particular, for each i ∈ {1, . . . , k} the pointed vertex of b◦i is at distance either one or at
least two from Ji. Nevertheless, observe that there exists at least one of the pointed-blocks (Jj , b

◦
j )

whose pointed vertex is at distance one from Jj . This concludes the proof, as it gives us that:

C1 = exp≥1(B1(x, y0C0, y1(C1 + C2), y1C1)) · exp(B2(x, y0C0, y1(C1 + C2), y1C1))

= (exp(B1(x, y0C0, y1(C1 + C2), y1C1))− 1) · C2,

where the last equality is obtained using the equation for C2.
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3.2 Maximal matchings in block–stable classes of graphs

In this subsection we deal with the case of maximal matchings. Most of the definitions and concepts
are the natural analogues of the ones developed in the case of maximal independent sets. Hence,
we will skip unnecessary repetitions.

A matched block is a triple (I,M, b) with a block b ∈ B, a matching M in b, and an independent
set I of b, and where no element of I is incident to an edge in M . In other words, we split the set
of vertices of b in three disjoint subsets: vertices in I, matched vertices, and the rest. The former
vertices will be called marginal vertices.

A pointed matched block is a triple (I,M, b◦), where b◦ ∈ B◦ and M and I are respectively a
matching and an independent set of b, and where again no element of I is incident to an edge in
M . Let B̄(x, z0, z1, z2) be the EGF counting matched blocks, where the variable x marks vertices,
and z0, z1 and z2 mark vertices in I, vertices matched by M and marginal vertices respectively.
Observe that the exponent of the variable z1 in B(x, z0, z1, z2) is always an even number. This is
due to the fact that z1 counts pairs of vertices. This is also true for the forthcoming EGF. For
i ∈ {0, 1, 2} let B̄i = B̄i(x, z0, z1, z2) be the generating function counting pointed matched blocks
where the pointed vertex is either in I, is incident with M or pointed at a marginal vertex. In
particular,

B̄i =
1

x
· ∂B̄
∂zi

, for i ∈ {0, 1, 2}.

A matched graph is a triple (I,M, g) consisting of a connected graph g in C ⊆ G, a matching
M of g, and an independent set I not incident with M . Similarly, a pointed matched graph
is a triple (M, I, g◦) where now g◦ is a pointed graph. Let C̄(x, z0, z1, z2) be the exponential
generating function counting matched graphs, where x, z0, z1 and z2 respectively mark vertices,
vertices incident with I, vertices incident with M , and marginal vertices. Notice that when z2 = 0,
C̄ := C̄(x, z0, z1) = C̄(x, z0, z1, 0) encodes matched graphs where M is a maximal matching. For
each i ∈ {0, 1, 2}, let us define the following generating function

C̄i = C̄i(x, z0, z1) =
1

x
· ∂C̄
∂zi

(x, z0, z1, 0).

Observe then that C̄0 counts pointed matched graphs, where the matching is maximal and the
pointed vertex belongs to the independent set, C̄1 counts pointed matched graphs, where the
matching is maximal and the pointed vertex belongs to the matching, whereas C̄2 counts pointed
matched graphs, where the matching is not necessarily maximal and the pointed vertex is marginal.
In the latter case, the matching is maximal except for possibly the pointed vertex, which might be
unmatched and adjacent to other unmatched vertices. In particular, this implies that the generating
function of pairs of connected graphs endowed with a maximal matchings is given by:

∂C̄

∂x
= z0C̄0 + z1C̄1.

The main idea behind the use of these generating functions is that vertices in the independent
set I play the role of vertices that will not be matched in the block decomposition. In particular,
we exploit the knowledge of I in order to ensure that the matching cannot be extended. On the
other hand, the set of marginal vertices will be matched by attached pointed matched graphs in
the decomposition. See Figure 2 for an example of the decomposition of a pointed matched graph
in terms of its blocks and the different types of vertices.
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The following lemma relates all the previous generating functions. Note that the generating
functions C̄(x, z0, z1, 0) and Ḡ(x, z0, z1) = exp(C̄(x, z0, z1)) directly follow from the solution of the
next system.

B0B1

B2

B1

B2

B2

Figure 2: On the left there is a connected graph pointed at a vertex (in white) incident to a
maximal matching (induced by the edges in red), which is counted by the EGF C̄1(x, z0, z1, z2).
The vertices belonging to the independent set are circled in red. Right it is drawn its decomposition
into rooted blocks.

Lemma 5. The following equalities hold:

C̄0 = exp(B̄0(x, z0C̄0, z1C̄2, z1C̄1)),
C̄1 = C̄2 B̄1(x, z0C̄0, z1C̄2, z1C̄1),
C̄2 = exp(B̄2(x, z0C̄0, z1C̄2, z1C̄1)).

(5)

Proof. We proceed similarly to the proof of Lemma 4. To that end, let (I,M, g◦) be a pointed
matched graph, with pointed vertex v.

Suppose first that v ∈ I, i.e. the case counted by C̄0. It is the pointed vertex of a set of adjacent
pointed blocks (Ij ,Mj , b

◦
j ), in which v ∈ Ij , and is not adjacent to any other pointed block. This

means that all the pointed blocks adjacent to v are counted by B̄0. Furthermore, to each vertex
of those blocks incident to I is attached a matched graph (I ′,M ′, h◦) pointed at a vertex incident
to I ′. Similarly, to each vertex incident to M is attached a matched graph pointed at a marginal
vertex, as else two edges of the resulting matching will be incident. And to each marginal vertex
is attached a matched graph (I ′′,M ′′, f◦) pointed at a vertex incident to M ′′. This translates into
the substitutions of the variables z0, z1 and z2 in B̄0 by z0C̄0, z1C̄2 and z2C̄1, respectively. The
first equation then follows.

Suppose next that the vertex v is matched, i.e. the case counted by C̄1. Then the edge of M
incident with v must belong to a single pointed block, whose pointed vertex (identified with v) is
incident to an edge of the respective matching. So that one can only attach this particular block to
v, together with any connected matched graph pointed at a marginal vertex. This gives the second
equation in (5). Finally, the equation for C̄2 is obtained following similar arguments as for C̄0.
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4 Asymptotic analysis. Proofs of Theorems 1 and 3

In this section, we study the analytic properties of the solutions of Systems (4) and (5), provided
that the functions B0, B1 and B2 (resp. B̄0, B̄1 and B̄2) all behave in a proper way that is similar
to the behaviour of B(x) (resp. B̄(x)) in the case of block–stable subcritical graph classes. Under
the hypotheses we assume, it will be rather direct to prove both Theorems 1 and 3. We will fully
discuss the case of maximal independent sets. A similar argument would apply for the study of
maximal matchings. We will only explain the differences at the end of the section.

First, note that the functions Bi(x, y0, y1, y2) are actually functions in three variables since a
monomial xnyk00 y

k1
1 y

k2
2 can only appear if k0 + k1 + k2 = n, that is, we have Bi(x, y0, y1, y2) =

Bi(1, xy0, xy1, xy2) or equivalently Bi(x, y0, y1, y2) = Bi(xy2, y0/y2, y1/y2, 1). However, it is more
convenient to work with all four variables x, y0, y1, and y2.

Now, if y0, y1 and y2 are positive real numbers, then the function x 7→ B(x, y0, y1, y2) is a power
series with non–negative coefficients. Hence the radius of convergence of this function coincides with
its dominant singularity in x. We will denote this radius of convergence by R(y0, y1, y2). Similarly,
for the three solution functions C0(x, y0, y1), C1(x, y0, y1) and C2(x, y0, y1) of the system (4), we
denote by ρi(y0, y1) (i = 0, 1, 2) the radius of convergence of Ci(x, y0, y1) with respect to x when y0
and y1 are (fixed) positive real numbers.

We now introduce the so-called extended subcriticallity conditions:

(C1) For any triple (y0, y1, y2) of positive real numbers, the function R(y0, y1, y2) can be
extended analytically for a sufficiently small neighbourhood.

For all positive real numbers y0, y1 and y2, there are i1, i2 ∈ {0, 1, 2} with:

(C2)
∂2B

∂y2i1
(0, y0, y1, y2) = 0 and (C3) lim

x→R(y0,y1,y2)−

∂2B

∂y2i1
(x, y0, y1, y2) =∞.

We define similarly R̄(z0, z1, z2) for the radius of convergence of the function x 7→ B̄(x, z0, z1, z2).
And introduce three analogue analytic conditions by replacing B with B̄, R with R̄ and yi with zi
for i = 0, 1, 2 in (C1) – (C3).

We say that a graph family is extended subcritical with respect to the parameters maximal
independent sets and maximal matchings if the above three conditions (C1) – (C3) hold. This is a
quite technical condition and seems to be difficult to check (even more difficult than the condition
ηB′′(η) > 1 for subcritical graph families). However, we will see that in our applications the func-
tions Bi(x, y0, y1, y2) (and B̄i(x, y0, y1, y2)) are either polynomials or functions with a dominating
squareroot singularity of the following form:

Bi(x, y0, y1, y2) = Gi(x, y0, y1, y2)−Hi(x, y0, y1, y2)

√
1− x

R(y0, y1, y2)
,

with Hi(x, y0, y1, y2) 6= 0. These kind of singularities appear naturally if – as in our cases –
the functions Bi(x, y0, y1, y2) satisfy a positive and strongly connected system of equation (see [6,
Theorem 2.33]). So that if we have a squareroot singularity of that form, then the rather restrictive
condition (C3) follows immediately.

The next lemma introduces the most technical part of the proof, providing a singular expansion
of each of the functions {Ci(x, y1, y2)} for i = 0, 1, 2 under conditions (C1), (C2) and (C3).
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Lemma 6. Assume that the extended subcriticallity conditions are satisfied. Then the solutions
C0, C1 and C2 of system (4) have the property that the functions ρi(y0, y1) (i = 0, 1, 2) coincide and
extend to an analytic function ρ1(y0, y1), for a sufficiently small neighbourhood around the positive
real numbers. Moreover, the dominant singularity is of square–root type at ρ1(y0, y1) and we have
a local representation of the form

Ci(x, y0, y1) = gi(x, y0, y1)− hi(x, y0, y1)
(

1− x

ρ1(y0, y1)

)1/2

, (6)

where the functions gi(x, y0, y1) and hi(x, y0, y1) are analytic for x close to ρ1(y0, y1) and y0, y1
close to the positive real axis. Furthermore hi(ρ1(y0, y1), y0, y1) > 0, for positive reals y0 and y1.

Proof. Before using the extended subcriticality conditions, we recall some basic facts on (positive)
systems of functional equations that are taken from [6, Theorem 2.33]. Let f , g and h be power
series with non–negative coefficients. Suppose that we have a system of three equations of the form

A1 = f(x,A1, A2, A3),
A2 = g(x,A1, A2, A3),
A3 = h(x,A1, A2, A3),

(7)

in unknown functions A1 = A1(x), A2 = A2(x), A3 = A3(x). We also assume that the system is
strongly connected (namely, no subsystem can be solved before solving the whole system). We set

∆ =

∣∣∣∣∣∣
1− fA1 −fA2 −fA3

−gA1 1− gA2 −gA3

−hA1 −hA2 1− hA3

∣∣∣∣∣∣
the functional determinant of the system {A1 − f = 0, A2 − g = 0, A3 − h = 0}. Let r be the
spectral radius of the Jacobian matrix of the right hand–side of System (7). Note that r = 1 implies
that ∆ = 0.

We also assume that there is a unique non–negative solution A1(0), A2(0) and A3(0) with
the property that r < 1, which also shows that ∆ 6= 0. Furthermore by monotonicity of the
spectral radius, it follows that fA1(0, A1(0), A2(0), A3(0)) < 1, gA2(0, A1(0), A2(0), A3(0)) < 1,
and hA3(0, A1(0), A2(0), A3(0)) < 1. By the property r < 1 and iteration, the solutions for
x = 0 extend to the three power series solutions A1(x), A2(x) and A3(x) with non–negative co-
efficients and (due to strong connectedness) a common positive radius of convergence ρ̄. Also,
by [6, Theorem 2.33] this condition is determined by the fact that r = 1, provided that we
are still working within the region of convergence of f , g, and h. This means that the radii
of convergence ρf (a1, a2, a3), ρg(a1, a2, a3) and ρh(a1, a2, a3) of the mappings x → f(x, a1, a2, a3),
x→ g(x, a1, a2, a3) and x→ h(x, a1, a2, a3) (where a1, a2, a3 are positive) are big enough in the sense
that ρf (A1(ρ̄), A2(ρ̄), A3(ρ̄)) > ρ̄, ρg(A1(ρ̄), A2(ρ̄), A3(ρ̄)) > ρ̄ and ρh(A1(ρ̄), A2(ρ̄), A3(ρ̄)) > ρ̄.

The condition r = 1 can be witnessed by the condition ∆ = 0, or equivalently by the condition

fA2gA3hA1 + fA3gA1hA1

(1− fA1)(1− gA2)(1− hA3)
+

gA3hA2

(1− gA2)(1− hA3)
+

fA3hA1

(1− fA1)(1− hA3)
+

fA2gA1

(1− fA1)(1− gA2)
= 1.

Note that the left hand–side is an increasing and continuous function in x. Thus, if we assume
that r < 1 for x = 0 then the left hand–side is smaller than 1 for x = 0. Furthermore, if we have
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either fA1(x, a1, a2, a3)→∞ if x→ ρf (a1, a2, a3), or gA2(x, a1, a2, a3)→∞ if x→ ρg(a1, a2, a3), or
hA3(x, a1, a2, a3)→∞ if x→ ρh(a1, a2, a3) then the left hand–side will eventually reach the value
one (it would be sufficient to replace ∞ by any limit ≥ 1). Thus, in order to find ρ̄ we just have
to find the x for which the left hand–side hits the value one. By assumption we reach the value
1 inside the region of convergence of f , g and h. Hence, by [6, Theorem 2.33] it follows that the
solution functions A1(x), A2(x) and A3(x) have a square–root type singularity with an expansion
of the claimed form at x = ρ̄. Of course everything can be done, too, if the system of equations
has some additional parameters, for example y0, y1, y2, as in our application cases.

Let us now move to the special situation of System (4). In this situation, all the above
assumptions (positivity, strong connectedness, . . . ) are satisfied. Now let us also observe that
∂2B/∂y20 →∞ (when x→ R(y0, y1, y2)

−) implies that fA1 →∞ as well, since

f = exp(B0(x, y0A1, y1(A2 +A3), y1A2)) (8)

and B0 = (1/x)(∂B/∂y0) (note the two different meanings of y0: in this second equation we mean
the derivative with respect to the second variable of B0(x, y0, y1, y2)). Similar observations hold for
gA2 and hA3 . Thus, it is clear that (4) is satisfied inside the region of convergence of f , g and h,
and hence we are done.

We now show that under the hypotheses of Lemma 6, one can deduce our main results Theorem 1
and Theorem 3.

Proof of Theorem 1 and Theorem 3 for MIS. From (6) and (3.1), it follows that C(x, y0, y1) can be
represented, for x→ ρ1(y1, y2), as

C(x, y0, y1) = c0(y0, y1) + c2(y0, y1)

(
1− x

ρ1(y0, y1)

)
+ c3(y0, y1)

(
1− x

ρ1(y0, y1)

)3/2

+ · · · ,

where c3(y0, y1) > 0 for positive real numbers y0 and y1. Thus, if we set y0 = y1 = 1 and
ρ1(1, 1) = ρ1, then for x→ ρ1 we have:

C(x, 1, 1) = c0(1, 1) + c2(1, 1)

(
1− x

ρ1

)
+ c3(1, 1)

(
1− x

ρ1

)3/2

+ · · · ,

and consequently

G(x, 1, 1) =
∑
n≥0
|In|

xn

n!
= exp(C(x, 1, 1))

= g0(1, 1) + g2(1, 1)

(
1− x

ρ1

)
+ g3(1, 1)

(
1− x

ρ1

)3/2

+ · · · .

This directly implies Theorem 1 for the case of maximal independent sets by standard singularity
analysis (see [11]). We just have to observe that y1 = ρ1 = ρ1(1, 1) is the only singularity on the
circle of convergence. However, this follows from the fact that there exists graphs of all sizes n ≥ 1.

Finally, if we set y1 = 1, then we have that G(x, y0, 1) =
∑

n≥0 E[ySIn0 ] |In| x
n

n! is equal to

exp(C(x, y0, 1)) = g0(y0, 1) + g2(y0, 1)

(
1− x

ρ1(y0, 1)

)
+ g3(y0, 1)

(
1− x

ρ1(y0, 1)

)3/2

+ · · · .

So a direct application of [6, Theorem 2.35] implies a central limit theorem of the proposed form,
as well as the asymptotic expansions for the expectation and variance. This proves Theorem 3 for
the case of maximal independent sets.
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Observation. The same arguments can be applied to the study of maximal matchings. Observe
that the analogue of Equation (8) satisfies the same properties, so again in this setting we can
apply Lemma 6. Similarly, one can use the very same arguments as in the previous proof to obtain
the conclusions in Theorems 1 and 3 for maximal matchings.

The only difference is that in our setting, matchings are counted in terms of vertices, so the
number of matchings will be always an even number. This fact does not affect the result in Theorem
1. However, in terms of computations, one needs to be careful concerning Theorem 3. Observe that
C̄(x, z1) is written in terms of z21 , as matchings are counted in terms of vertices. Let γ(z1) := ρ(z21)
be the corresponding radius of convergence. Then if we want to study the distribution of the

number of edges (instead of vertices), we have to study the associated EGF ¯̄C(x, z1) = C̄(x, z
1/2
1 ),

which has radius of convergence ρ(z1). And we can apply the Quasi–Powers Theorem for ¯̄C(x, z1),
so that the corresponding expectation is asympotically linear with multiplicative constant

−ρ
′(1)

ρ(1)
= −1

2

γ(′1)

γ(1)
.

5 Applications

This section is devoted to the verification of the three conditions (C1) – (C3) for particular graph
families. Namely, in the cases of Cayley trees, cacti graphs and series–parallel graphs. Notice that
Condition (C2) will be satisfied automatically as none of the above three classes contains a 2–
connected graph with either zero or one vertex. And it only remains for us to check that conditions
(C1) and (C3) are satisfied in all three cases.

5.1 Cayley trees

Our first application concerns one of the most basic subcritical graph class: forests of Cayley trees.
We note that the case of maximal independent sets was already discussed in [21]. In both maximal
independent sets and maximal matchings, we proceed following the block-decomposition of trees,
and we explicitly give the generating functions B0, B1 and B2. Notice that in a tree, blocks are
reduced to single edges. The computations of the constants given in Table 1 are obtained by
computing the branch points of the corresponding system, using the explicit expressions for B0, B1

and B2.

5.1.1 Maximal independent sets in trees

From the possible choices of an independent set in a single edge, namely

B(x, y0, y1, y2) =
x2

2

(
2y0y1 + y22

)
,

we obtain that
B0 = xy1, B1 = xy0, B2 = xy2.

All these functions are entire functions whose value at x = 0 is equal to zero. Also, for each choice
of y0, y1 and y2, the radius of convergence of B(x, y0, y1, y2) is infinite. Thus, it is obvious that

lim
x→∞

∂2B

∂y22
= lim

x→∞
x =∞.
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So the extended subcriticality conditions are satisfied, and Lemma 6 applies.
We finally have to check that the variance constant σ21 is in fact positive (even if we do not com-

pute it). For this purpose, we apply the strategy of [7, Lemma 4] by doing formally an elimination
procedure in order to reduce the system (4) of three (positive) equations into one (positive) equa-
tion of the form C0 = F (x,C0, y0) with solution C0 = C0(x, y0, 1), where F is a proper generating
function in three variables. It is easy to check that the conditions of [7, Lemma 4] are satisfied.
Hence, σ21 > 0.

5.1.2 Maximal matchings in trees

Observe that in this case B̄(x, z0, z1, z2) = x2

2

(
2z0z2 + z21 + z22

)
, which gives:

B̄0 = xz2, B̄1 = xz1, B̄2 = x(z0 + z2).

Hence, we are in a similar situation as above and Lemma 6 applies. This completes the proof for
maximal matchings in trees. Note that [7, Lemma 4] again applies (after a formal substitution
procedure), so that σ22 > 0.

Observation. Let S be a subset of N containing 1. By considering the operator
∑

s∈S x
s/s!

instead of the general set operator exp(x), one can directly adapt Lemmas 4 and 5 to analyse
maximal independent sets and maximal matchings in forests whose vertex degrees are restricted to
the set S. One can then extend the proofs of Theorems 1 and 3 to this case.

5.2 Cacti graphs

A graph is said to be a cactus graph if it does not contain K−4 as a minor. Observe that from the
minor definition of this class, a graph is a cactus graph if and only if its connected components are
cacti graphs as well. There is a convenient equivalent definition of cacti graphs in terms of their
block decomposition: a connected cactus graph is a connected graph in which every block is either
an edge or a (simple) cycle. In fact, in the univariate case the associated EGF is given by:

B(x) =
x2

2
+

1

2
log

(
1

1− x

)
− x

2
− x2

4
,

where we deleted the cycles of size one and two, and we added the single edge. In Subsections 5.2.1
and 5.2.2, we use this characterisation to obtain explicit expressions for cycles refined with an
independent set and a matching, respectively.

5.2.1 Maximal independent sets in cacti graphs

In this subsection, we consider the generating function counting cacti graphs carrying a maximal
independent set. According to our decomposition, we will first study blocks then prove Conditions
(C1) – (C3) on their associated generating function.

Unrooted blocks. A cycle C with an independent set I can be decomposed in the following way:
consider the set of vertices which are at distance at least two from I. Two consecutive vertices v
and w in this set are either adjacent or there exists a non-empty path alternating between vertices
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in I and vertices at distance exactly one from I. Conversely, such pair C and I can be obtained
by taking a (possibly of size zero, one or two) base–cycle and by eventually replacing each edge by
a sequence of paths whose vertices alternate between those in I and those at distance one from I.
The vertices of the base–cycle will then become the vertices of C at distance at least two from I.
We refer the readers to Figure 3 for an example of this decomposition.

p1

p2

p3

p4

p1

p2

p3

p4

Figure 3: An independent set I (vertices circled in red) on a cycle. Black vertices are at distance
one from I. White vertices are at distance at least two from I. The rightmost picture shows the
decomposition of a base-cycle carrying an independent set, using alternating paths.

In this context, we say that a path is alternating if it is non-empty, if its terminals are vertices
at distance one from the independent set, and if its vertices alternate between vertices in the
independent set and vertices at distance one from the independent set. The generating function of
alternating paths is given by:

A(x, y0, y1) ≡ A =
x3y0y

2
1

1− x2y0y1
.

We now derive the generating function U ≡ U(x, y0, y1, y2) associated to the family of (unrooted)
cycles carrying an independent set. To that end, it is convenient to partition it into the subfamily of
cycles carrying a maximal matching, whose associated GF will be denoted by U0 ≡ U0(x, y0, y1, y2),
and those with at least one vertex at distance two or more from the independent set, with associated
GF U1 ≡ U1(x, y0, y1, y2). So that U = U0 + U1. As discussed above, an equation for U1 can
be obtained by considering the base–cycle (whose vertices are encoded by the variable y2) and
substituting each edge by a possibly empty sequence of alternating paths:

U1 =
1

2
log

(
1

1− xy2(1−A)−1

)
− xy2

2
− x2y22

4
,

where we removed the terms encoding base-cycles with only one or two vertices and empty sequences
of alternating paths on the edges. Similarly for U0, we get:

U0 =
1

2
log

(
1

1−A

)
+

1

2
log

(
1

1− x2y0y1

)
− x2y0y1

2
,
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where the first (resp. second) logarithm encodes cycles with an odd (resp. even) number of vertices.
The generating function of unrooted blocks is finally obtained from that of unrooted cycles plus

the single edge:

B ≡ B(x, y0, y1, y2) = U(x, y0, y1, y2) +
x2y22

2
+ x2y0y1

=
1

2
log

(
1

1− y0y1(y1 − y2)x3 − x2y0y1 − xy2

)
− xy2

2
+
x2y22

4
+
x2y0y1

2
.

Singularity analysis. We now prove that B verifies Conditions (C1) – (C3) with i = 0. Observe
first in Equation (5.2.1), that the singular curve of B is given by the roots of

x3y0y1(y1 − y2) + x2y0y1 + xy2 − 1 = 0,

when y0, y1 and y2 are positive real numbers. We denote this curve by R(y0, y1, y2). Notice that it
satisfies (C1). If we now consider the second derivative of B with respect to y0, which is a rational
function:

∂2B

∂y20
(x, y0, y1, y2) =

(xy1 − xy2 + 1)2y21x
4

2(1− y0y1(y1 − y2)x3 − x2y0y1 − xy2)2
.

Then it is direct to check that ∂2B/∂y20(0, y0, y1, y2) = 0/2 = 0, and thus that (C2) is satisfied.
And that (C3) also holds by definition of R(y0, y1, y2), as ∂2B/∂y20 →∞ when x→ R(y0, y1, y2).

Let us finally mention that σ21 > 0 holds in this case, and that it can be shown in the same way
as for Cayley trees.

5.2.2 Maximal matchings in cacti graphs

In order to study the generating function of cacti graphs with a maximal matching, we first compute
the generating function B̄ ≡ B̄(x, z0, z1, z2) counting unrooted matched blocks. To that end, we
first obtain an equation satisfied by the generating function V (x, z0, z1, z2) counting unrooted cycles
carrying a matching.

In what follows, a path carrying a maximal matching will be called a matching path. Notice
that such a path may contain vertices not incident with an edge of the matching. Those vertices
will later play the role of the vertices in the independent set of the matched blocks. Observe then
that any unrooted cycle carrying a matching can be obtained by eventually replacing each edge of
a base–cycle (of size possibly zero, one or two) by a matching path. The marginal vertices of the
resulting cycle will then correspond to the original vertices of the base–cycle. See Figure 4 for an
illustration of this decomposition. As they can be described as a sequence of edges, it is rather
direct to obtain the generating function counting matching paths:

P (x, z0, z1) = xz0 + (1 + xz0)
x2z21(1 + xz0)

1− x2z21(1 + xz0)
.
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p1

p2

p3

p4

p5

p1

p2

p3

p4

p5

Figure 4: On the left, a matched block (I,M, b). Vertices in red–black are the vertices in I. Red
edges are edges in M . On the right, the decomposition of the matched block with matching paths.

From there and similarly to the case of independent sets, we partition the unrooted cycles in
two sub-families, whether they have zero or at least one marginal vertex. The associated generating
functions will respectively be denoted by V0(x, z0, z1) and V1(x, z0, z1, z2). For instance, V0(x, z0, z1)
counts unrooted cycles with a maximal matching. Those cycles can be directly obtained from a
matching path of size at least three, with at least one endpoint incident to the matching, and whose
two ends are joined by a non matched edge so as to create a cycle. Thus we get:

V0(x, z0, z1) =
1

2
log

(
1

1− x2z21(1 + xz0)

)
− x2z21

2
,

V1(x, z0, z1, z2) =
1

2
log

(
1

1− xz2(1 + P (x, z0, z1))

)
− xz2(1 + xz0)

2
− x2z22

4
.

Both equations can be understood similarly to their counterparts for independent sets. The main
difference is with the discarded term x2z2z0/2 appearing in the second equation. It encodes the
case where the base–cycle is a loop with a single marginal vertex, and a matching path reduced to
a single vertex (encoded by the first term of P (x, z0, z1), that is xz0) pasted on its edge.

The generating function of unrooted blocks is then obtained from that of unrooted cycles plus
the single edge:

B̄ = V (x, z0, z1, z2) + x2z0z1 +
x2z22

2

= 1
2 log

(
1

1− x3z0z21 − (z0z2 + z21)x2 − xz2

)
+ x2z0z1 +

x2z22
2
− x2z21 −

xz2(1 + xz0)

2
.

(9)

Singularity analysis. Notice in the equation above, that the singular curve of B̄ is given by the
roots 1 − x3z0z21 − (z0z2 + z21)x2 − xz2 = 0, when z0, z1 and z2 are positive real numbers. As we
did in the case of maximal independent sets, we can analogously show that Conditions (C1) – (C3)
are satisfied. And again, it follows that σ22 > 0.
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5.3 Series–parallel graphs

Recall that a graph is said to be series–parallel (SP for short) if it does not contain the graph K4 as
a minor. As K4 is a 3–connected graph, it follows that a graph is SP if and only if its connected and
2–connected components are SP as well. So, similarly to the study of cacti graphs, our objective is
to obtain expressions for 2–connected SP graphs with either an independent set or a matching.

This is a more complex family than cacti graphs. We briefly recall the strategy to get enumer-
ative formulas for the EGF of 2–connected SP graphs. All the details can be found in [4].

We first study the EGF B(x, y), where y marks the number of edges. To get an expression
for B(x, y), one needs to introduce an auxiliary graph class: a series–parallel network is defined
as a simple graph with two distinguished vertices, called the poles of the network (which are not
labelled), and such that adding an edge between the two poles creates a 2–connected multigraph.
If there is an edge joining the two poles, it is called the root edge of the network. We denote by
D(x, y) the EGF of SP–networks. In this situation D(x, y) uniquely determines B(x, y), as shown
by the next equation:

2(1 + y)
∂B(x, y)

∂y
= x2 + x2D(x, y),

which can be understood as follows. Any network can be obtained by marking and orienting an
edge of a 2–connected graph G, and adding back the labels of its two endpoints: the poles. The
summand x2 encodes the single rooted edge that cannot be obtained that way.

We now decompose networks. A network is said to be series when it is obtained from a cycle
with a distinguished edge, whose endpoints become the poles, and such that every other edge is
replaced by a non–series network. A network is said to be parallel when it is obtained by gluing
two or more non-parallel networks, none of them containing the root edge, along their poles. In
the situation of SP–graphs, those are all the possible types of networks, at the exception of the
trivial network consisting of a single rooted edge. We can then translate this decomposition into
generating functions. Denoting by S(x, y) and P (x, y) the EGF for series and parallel networks,
we have the following relations (see [27] and also [26]):

D(x, y) = y + S(x, y) + P (x, y),

S(x, y) = xD(x, y)(D(x, y)− S(x, y)),

P (x, y) = y exp≥1(S(x, y)) + exp≥2(S(x, y)).

It will be useful to use the following relation that can be obtained by combining the previous
equations:

∂B

∂y
=
x2

2
exp(S(x, y)). (10)

The combinatorial property behind this relation is that an edge–rooted series–parallel graph (that
corresponds to the generating function ∂B/∂y) can be seen as a series–parallel network between
the two vertices of the root–edge, consisting of this edge and a collection of series-networks between
the two vertices.

In the next two subsections, we will refine the above decomposition in order to encode maximal
independent sets and maximal matchings, respectively.
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Figure 5: Decomposition of a series network carrying an independent set I (in red) and counted
by the generating function S00. It is obtained by identifying poles a and c (that are both in I) of
the two networks on the right. In the general case, a (resp. c) could also be of type 1 and then c
(resp. a) of type 1 or 2, or they could both be of type 2.

5.3.1 Maximal independent sets in series–parallel graphs.

We are now concerned with the generating functions of SP graphs carrying a maximal independent
set. As above, the vertices of the graphs carrying an independent set I are said to be of type i
(i ∈ {0, 1}), when they are at distance i from I, and of type 2 otherwise.

Series–parallel networks. We denote by Dij the EGF of SP networks whose poles are of type i
and j, respectively. Observe that by symmetry Dij = Dji, so we can restrict the range of the pairs
of indexes ij to the set {00, 01, 02, 11, 12, 22}. The network Dij is either the single rooted edge eij ,
where e01 = e22 = y and eij = 0 otherwise, a series network counted by the generating function Sij ,
or a parallel network counted by the generating function Pij . The decomposition for a particular
series network is illustrated in Figure 5, and one for a parallel network in Figure 6. We can specify
those generating functions via the following positive system of 18 equations and 18 unknowns:

Dij = eij + Sij + Pij ,

Sij = Di0xy0(D0j − S0j) + (Di1 +Di2)xy1(D1j − S1j) + (Di1y1 +Di2y2)x(D2j − S2j),
P00 = exp≥2(S00),

P01 = y exp≥1(S01 + S02) + exp≥2(S01) + exp≥1(S01) exp≥1(S02),

P02 = exp≥2(S02),

P11 = exp≥2(S11) + exp≥1(S11)(y exp(2S12 + S22) + exp≥1(2S12 + S22))

+ (1 + y) exp≥1(S12)
2 exp(S22),

P12 = y exp≥1(S12) exp(S22) + exp≥2(S12) + exp≥1(S12) exp≥1(S22),

P22 = y exp≥1(S22) + exp≥2(S22).

In order to proceed further, we eliminate Dij from this system to obtain a positive and strongly
connected system of equations for Sij = Sij(x, y, y0, y1, y2) and Pij = Pij(x, y, y0, y1, y2), where the
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a0

b0

a1

b1

ak

bk

yS2,1S2,2

Figure 6: A typical parallel network, carrying an independent set, and counted by the generating
function P2,1. It is obtained by identifying together the upper poles of each non–parallel (including
the single edge) networks a0, a1, . . . , ak then the lower poles b0, b1, . . . , bk. As the resulting upper
pole is of type 1, exactly one of the a′is (i ∈ {1, . . . , k}) must be of type 1 (in black) while all the
others must be of type 2 (in white). Similarly, all the b′is (i ∈ {0, . . . , k}) must be of type 2.

right hand–side consists of entire functions. Note that for the equations defining Sij , the term
Dij −Sij = eij +Pij makes the whole system positive. Thus, all functions have a common singular
behaviour that is again of square–root type:

Sij(x, y, y0, y1, y2) = s0;ij(y, y0, y1, y2) + s1;ij(y, y0, y1, y2)

(
1− x

ρ(y, y0, y1, y2)

)1/2

+ · · · ,

and

Pij(x, y, y0, y1, y2) = p0;ij(y, y0, y1, y2) + p1;ij(y, y0, y1, y2)

(
1− x

ρ(y, y0, y1, y2)

)1/2

+ · · · ,

where s1;ij(y, y0, y1, y2) < 0 and p1;ij(y, y0, y1, y2) < 0 for positive y, y0, y1, y2.

2–connected series–parallel graphs. The next step is to relate these network generating func-
tions with the generating function B ≡ B(x, y, y0, y1, y2) of independent sets in 2–connected series
parallel graphs. We adapt now Equation 10, which in our present situation has the following
expression:

∂B

∂y
= x2y0y1 exp(S01 + S02) +

x2

2
y22 exp(S22) + x2y1y2 exp≥1(S12) exp(S22)

+
x2

2
y21 (exp(S11 + 2S12 + S22)− 2 exp(S12 + S22) + exp(S22)) .

This is immediate by considering all possible situations for the rooted edge. Observe then that the
radius of convergence of ∂B/∂y coincides with the one of networks, so that (C1) is satisfied. Notice
also that Condition (C2) is trivially satisfied.

Let us finally argue on (C3). Observe that despite the negative terms, ∂B/∂y is in fact a
positive function of the generating functions {Sij}i,j=0,...,2. Hence, ∂B/∂y also admits a square–
root singularity:

∂B

∂y
= b0(y, y0, y1, y2) + b1(y, y0, y1, y2)

(
1− x

R(y, y0, y1, y2)

)1/2

+ · · · ,
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where b1(y, y0, y1, y2) < 0 for positive y, y0, y1, y2. Next, by applying the proof method of [6, Lemma
2.28], we can integrate ∂B/∂y with respect to y, and then take the derivative with respect to y0,
to obtain the same kind of square–root singularity for ∂B/∂y0:

∂B

∂y0
= b1,0(y, y0, y1, y2) + b1,1(y, y0, y1, y2)

(
1− x

R(y, y0, y1, y2)

)1/2

+ · · · ,

and consequently the following representation of ∂2B/∂y20:

∂2B

∂y20
= b2,−1(y, y0, y1, y2)

(
1− x

R(y, y0, y1, y2)

)−1/2
+ b2,1(y, y0, y1, y2) + · · · ,

which implies that Condtion (C3) holds for i = 0. This completes the proof for maximal independent
sets in series–parallel graphs, given that σ21 > 0, which is proven as in the previous cases.

5.3.2 Maximal matchings in series–parallel graphs

We proceed similarly to the case of independent sets. Let G be a series–parallel graph with a
matching M and an independent set I such that I ∩ V (M) = ∅. A vertex v of G is said to be of
type 0 when v ∈ I, of type 1 when v ∈ V (M) and of type 2 otherwise.

Series–parallel networks. Let D̄ij(x, y, z0, z1, z2) be the exponential generating function count-
ing matchings in series–parallel networks whose poles are of type i and j. As before, observe that
D̄ij = D̄ji and for ij ∈ {00, 01, 02, 11, 12, 22}, define S̄ij and P̄ij to be the generating functions
counting matchings in networks that are respectively series and parallel.

The following system of 18 equations and 18 unknowns holds:

D̄ij = eij + S̄ij + P̄ ij,

S̄ij = (D̄i0 − S̄i0)xz0D̄0j + (D̄i1 − S̄i1)xz1D̄2j + (D̄i2 − S̄i2)x(z1D̄1j + z2D̄2j),

P̄00 = exp≥2(S̄00),

P̄01 = S̄01(y exp(S̄02) + exp≥1(S̄02)),

P̄02 = y exp≥1(S̄02) + exp≥2(S̄02),

P̄11 = (yS̄11 + (1 + y)S̄2
12) exp(S̄22) + (y + S̄11) exp≥1(S̄22),

P̄12 = S̄12(y exp(S̄22) + exp≥1(S̄22)),

P̄22 = y exp≥1(S̄22) + exp≥2(S̄22),

where this time e02 = e11 = e22 = y and eij = 0.

2–connected series–parallel graphs. It remains to check the relevent analytic properties of
B̄ ≡ B̄(x, y, z0, z1, z2) in order to ensure that Lemma 6 can be applied. By eliminating D̄ij from
the above system, we again get a positive and strongly connected system of equations for the set
of generating functions {S̄ij , P̄ij}i,j=0,...,2, where the right hand–side consists of entire functions. In
particular, the functions S̄ij and P̄ij all have a common square–root singular behaviour.
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And we have that:

∂B̄

∂y
= x2z0z1S̄01 exp(S̄02) + x2z0z2 exp(S̄02) + x2z1z2S̄12 exp(S̄22)

+
x2

2
z22 exp(S̄22) +

x2

2
z21
(
S̄11 + S̄2

12 + 1
)

exp(S̄22).

Finally using the very same arguments as in the case of maximal independent sets, we show
that (C1) – (C3) are satisfied in the context of maximal matchings in series–parallel graphs. This
completes the proof. As above, let us add that we can similarly show σ22 > 0.

6 Remarks and further research

In this paper, we have studied maximal independent sets and maximal matchings in subcritical
graph classes. In particular, we have provided a detailed analytic study for trees, cacti graphs
and series–parallel graphs. We would like to point that our techniques can be extended in several
directions. First, by a slight modification of our encoding one would be able to study independent
sets and matchings that are not necessarily maximal. Secondly, we could in principle analyse other
graph classes in the context of subcritical families: this would include outerplanar graphs and
graphs defined by a finite set of 3–connected components. In the latter, one would need to extend
the decomposition grammar used to encode SP–networks to networks arising from 3–connected
components (see for instance [14]). Finally, a more refined (and longer) study would provide
explicit constants for the asymptotic estimate of the variance. Notably, this could be arranged
with some work in the case of SP–graphs (the analysis and computation for the expectation is
detailed in Appendix A.2.1).

Some problems that we have not been able to study are the following: in statistical physics
language, our model can be understood as an annealed model, where a combinatorial parameter
v on a class C is studied by averaging over all pairs (g ∈ C, v(g)). It would be very interesting
to study both maximal independent sets and maximal matchings from the point of view of the
quenched model, in which one first averages on C, for example by picking a graph γ uniformly in
C, then studies the random variable v(γ). In this situation however, new ideas are needed as our
encoding is not sufficient to encapsulate this information.

Finally, a challenging problem is to study both annealed and quenched models for planar graphs.
The first step towards the study of the annealed model would be to have access to 3–connected
planar graphs carrying either an independent set or a matching, which already seems a testing
problem in map enumeration.
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A Appendix: Computations of the constants

A.1 Computations for cacti graphs

Number of maximal independent sets. From Equation (5.2.1), one can compute the GFs
Bi ≡ Bi(x, y0, y1, y2):

Bi =
1

x

∂B

∂yi
(x, y0, y1, y2) (i ∈ {0, 1, 2}).

Notice that B0, B1 and B2 are all in fact rational functions of x, y0, y1 and y2. Substituting now
each Bi (i ∈ {0, 1, 2}) by its rational form in the system of equations of Lemma 4, we obtain a
system of three implicit equations in variables C0(x, y0, y1), C1(x, y0, y1), C2(x, y0, y2), x, y0 and y1
only.

Let us now denote the above system by S and the determinant of its Jacobian by DJ (S). After
setting y0 = y1 = 1 and x = ρ1, one can obtain, using for example Maple/fsolve, numerical values
up to any degree of precision of the four solutions of the system S ∪ DJ (S):

ρ1 ≈ 0.1867604863, C0(ρ1) ≈ 1.5865482480,
C1(ρ1) ≈ 0.6912173223, C2(ρ1) ≈ 1.1812890598.

(11)

Finally, recall that in Section 5.2 we already proved that

|In| ∼ A1 · n−5/2 · ρ−n1 · n!,

where A1 > 0, and ρ1 is as above. So that together with the following estimate (see [7, Theorem
15]) of the number of cacti graphs on n vertices:

gn ∼ g · n−5/2 · ρ−n · n!, where ρ ≈ 0.2387401437 and g > 0,

one can obtain an estimate of the number of maximal independent sets in a uniformly at random
cactus graph on n vertices:

AIn =
|In|
gn
∼ C · αn, where C = A1/g > 0 and α = ρ/ρ1 ≈ 1.2783225640.

Expected size of a maximal independent set. In the same setting, we can now estimate the
expected size of a typical maximal independent set. It works as follows. Observe that the variable
y0 in any of the generating functions Ci (i = 0, 1, 2) encodes the size of a maximal independent
set. So that after setting x = ρ1(y0) in the system S ∪ DJ (S), we can differentiate it to obtain
a system characterising ρ′1(y0) (see the proof of [6, Theorem 2.35]). From there, we can again set
y0 = y1 = 1 to substitute ρ1(1) = ρ1 and Ci(ρ1) (i = 0, 1, 2) with their approximated values in
(11). This gives us a system characterising uniquely ρ′1(1) that we can again solve numerically. In
particular, we get that:

ρ′1 = ρ′1(1) ≈ −0.0805687207.

And we conclude by [6, Theorem 2.35]:

E[SIn] = µn+O(1), where µ = −ρ1
ρ′1
≈ 0.4314013220.
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Number of maximal matchings. From Equation (9), one can now compute the rational GFs
B̄i ≡ B̄i(x, z0, z1, z2):

B̄i =
1

x

∂B̄

∂zi
(x, z0, z1, z2) (i ∈ {0, 1, 2}). (12)

As above, we substitute each B̄i in the system given in Lemma 5 by their rational forms in (12).
Now after computing the Jacobian of the resulting system, one can obtain the approximated values
of each variable when setting z0 = z1 = 1, as in the case of independent sets:

ρ2 ≈ 0.2016232044, C̄0(ρ2) ≈ 1.4072706847,
C̄1(ρ2) ≈ 0.6446283865, C̄2(ρ2) ≈ 1.3374106486.

This implies that the number of maximal matchings in a uniformly at random cactus graph on n
vertices is asymptotically:

AMn ∼ D · βn, where D > 0 and β ≈ 1.1840906130.

Expected size of a maximal matching. We proceed in a similar manner as for the expected
size of a maximal independent set. Notice that this time however, it is the variable z21 which encodes
the size of the maximal matchings. And we get:

ρ′2 = ρ′2(1) ≈ −0.6934685099.

So that:

E[SMn] = λn+O(1), where λ = −1

2

ρ2
ρ′2
≈ 0.3467342549.

A.2 Computations for series–parallel graphs

In this subsection, we obtain some of the constants for the case of series–parallel graphs. This
situation is slightly different compared to that of cacti graphs: the system of equations that we
obtain is too complex, so that we cannot obtain direct asymptotic estimates. In particular, we did
not find a way to directly compute the constant growth for connected series–parallel graphs. Our
strategy will then consist in adapting the grammar introduced in [5] in order to obtain equations
directly from networks. As shown in the following, this methodology provides an even longer system
of equations but that can be treated by symbolic programs efficiently.

In the rest of this Appendix and for each graph classes, we will use ρ1, ρ2 for the radius of
convergence in the study of maximal independent sets and maximal matchings, respectively.

A.2.1 Rooted dissymmetry: from edge–rooted to vertex-rooted graphs

The generating function counting vertex–rooted 2–connected SP graphs from edge–rooted ones can
be obtained via a rooted analogue of the so-called dissymmetry theorem for trees, as designed for
2–connected graphs in [5, Section 5.3.3].
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Tree decomposition of a 2–connected series–parallel graph. The recursive decomposition of a given
2–connected series–parallel graph γ in terms of networks induces a unique tree τ(γ) (see [5, Section
4.3]), which is called the RM–tree associated to γ. The letters R and M represent the types of
nodes of τ(γ): R–nodes or ring nodes when the underlying network–decomposition is series, and
M–nodes or multiple edge nodes when the underlaying network–decomposition is parallel.

Restricted RM–trees. If our 2–connected series–parallel graph γ is rooted at a vertex v, it is
useful to consider a restriction of its associated RM–tree τ(γ): that is the subtree of τ(γ) induced
by the nodes containing v (see [5, Section 4.4]). Let then T be the family of all such restricted
RM–trees. The decomposition directly implies that there is a bijection between T and the family
of 2–connected series–parallel graphs rooted at a vertex (enriched by either an independent set or
a matching). So that to study the latter family by means of generating functions, one can instead
enumerate the family of restricted RM–trees.

The dissymmetry theorem for trees. Now from T , it is then comparatively easy to enumerate
the different related families T •, T •−• and T •→• of the RM–trees rooted respectively at a node,
at an edge or at a directed edge. The main interest of this method is that one can exploit the
following relation between those combinatorial classes, called the dissymmetry theorem for trees
(see [1, Section 4.1] for a proof):

T ∪ T •→• ' T • ∪ T •−•,

which translates into a functional equation between the associated generating functions. This
ultimately allows us to access, via the bijection, the generating function counting 2–connected SP
graphs rooted at a vertex.

Similarly to what was done for networks, one can extend such a decomposition to 2–connected
SP graphs carrying an independent set or a matching. This will be done in the next two subsections.

A.2.2 Independent sets in 2–connected vertex-rooted series–parallel graphs

As discussed above, one can associate a 2–connected SP graph (not reduced to a single edge),
carrying an independent set I, and rooted a vertex v at distance i (i = 0, 1, 2) from I, to a unique
restricted RM–tree whose every node contains v. For each i ∈ {0, 1, 2}, let then Ti ≡ Ti(x, y0, y1, y2)
be the generating function counting those restricted RM–trees and observe that the bijection implies
the equality Bi − xyi = Ti.

Now in order to use the dissymmetry theorem on the Ti’s, we study next for each i ∈ {0, 1, 2} the
generating functions TMi ≡ TMi (x, y0, y1, y2), T

R
i ≡ TRi (x, y0, y1, y2), T

M→R
i ≡ TM→Ri (x, y0, y1, y2)

and TM−Ri ≡ TM−Ri (x, y0, y1, y2) respectively counting the restricted RM–trees rooted at an M-
node, at an R–node, and at an edge (both directed and not) between an M–node and an R–node.
Notice first that due to the maximality of both the series and the parallel decompositions, there
cannot be an edge between two R–nodes or two M-nodes in a restricted RM–tree. And observe
that by symmetry TM→Ri = 2TM−Ri , for all i ∈ {0, 1, 2}.

Restricted RM–tree rooted at an M–node. In this case, the underlaying graph carrying an in-
dependent set is decomposed from a parallel edge (with at least three edges), rooted at one of
its endpoints, and in which every edge but at most one is substituted by a series network. As
before, we need to specify each generating function with respect to the type of the endpoints. Let
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Figure 7: Decomposition of a RM-tree, restricted at a vertex v of type 0, and rooted at an R-node.

Mij ≡Mij(x, y0, y1, y2, y) be such a generating function, counting the case where the two endpoints
are of respective type i and j. The variable y encodes the number of edges. Again by symmetry it
holds that Mij = Mji. The textbook case is the one where the two endpoints are of type 2:

M22 = y exp≥2(S22) + exp≥3(S22).

Remark now that in the cases where one of the endpoints is of type 0 and the other is of type 0 or
2, then all the edges of the parallel edge must be substituted by a series network:

M00 = exp≥3(S00) and M02 = exp≥3(S02).

The decompositions of the remaining cases are slightly more involved, but can be proved following
an argumentation in the same lines:

M01 = y exp≥2(S01 + S02) + exp≥2(S02)S01 + exp≥1(S02)S
2
01/2 + exp≥3(S01) exp(S02)

M11 = exp(2S12 + S22)(y exp≥2(S11) + exp≥3(S11)) + exp≥1(2S12 + S22)(yS11 + S2
11/2)

+ exp≥2(2S12 + S22)S11 + (y exp(S22) + exp≥1(S22))S
2
12/2 + (1 + y) exp≥3(S12) exp(S22)

M12 = exp≥3(S12) exp(S22) + S12 exp≥2(S22) + exp≥1(S22)S
2
12/2

+ y
(
exp≥1(S12) exp≥1(S22) + exp≥2(S12)

)
.

And we can finally write the different generating functions counting the restricted RM–trees rooted
at an M–node:

TMi = x (y0Mi0 + y1Mi1 + y2Mi2) (i ∈ {0, 1, 2}).

Restricted RM–tree rooted at an R–node. A typical case is illustrated in Figure 7: on each side
of v are two non–series networks Na and Nb, with respective poles a1, a2 and b1, b2, each of type
0 (thus, each encoded by D00 − S00), where vertices a2 and b1 are identified with v, and vertices
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a1 and b2 are each identified with the poles c1, c2 of a third network Nc (encoded by D00). In the
latter, the vertices involved stop being poles and we must add their two labels: x2y20. This gives
x2(D00−S00)2y20D00/2, where the factor 1/2 encodes the symmetry around v when exchanging Na

with Nb and the two the poles of Nc.
The general decomposition for i ∈ {0, 2} is obtained by doing a careful (but similar to what

was done above) analysis of each possible cases, and we have:

TRi =
x2

2
((Di0 − Si0)y0A0i + (Di1 − Si1)y1(A1i +A2i) + (Di2 − Si2)(y1A1i + y2A2i)) ,

where for ji ∈ {00, 01, 02, 10, 11, 12, 20, 21, 22}:

Aji = Dj0y0(D0i − S0i) + (Dj1 +Dj2)y1(D1i − S1i) + (Dj1y1 +Dj2y2)(D2i − S2i).

The latter notation is understood in Figure 7 as follows: Nb is encoded by Di0 − Si0 while Nc and
Na are encoded by A0i (the summands of A0i correspond to the possible types of the vertices a2
and c1, while those of TRi correspond to the types of b1 and c2). Using the same notation, we deal
similarly with the (more involved) case i = 1:

TR1 =
x2

2
((D10 − S10)y0(A01 +A02) + (D20 − S20)y0A01 + (D22 − S22)(y2A21 + y1A11)

+ (D12 − S12)(2y1(A11 +A12) + y2(A21 +A22))

+ (D11 − S11)y1(A11 +A21 +A12 +A22)).

Restricted RM–tree rooted at an edge. As mentioned in the previous subsection, there can be
no edge between two R–nodes or two M–nodes. An edge between an R–node and an M–node of
the restricted RM–tree happens when the poles of a series network are identified with the poles of
a parallel network and such that the root vertex inducing the restricted tree is one of the poles.
In the three following equations, we specify this interaction in each of the cases depending on the
types of the poles of both the series and the parallel network:

TR−Mi = x(y0Si0Pi0 + y1(Si1(Pi1 + Pi2) + Si2Pi1) + y2Si2Pi2) (i ∈ {0, 2}),
TR−M1 = x(y0(S10(P10 + P20) + S20P10) + y2(S12(P12 + P22) + S22P12)

+ y1(S11(P11 + P12 + P21 + P22) + 2S12(P11 + P21) + S22P11)).

Vertex-rooted 2–connected SP graphs carrying an indepedent set. And we can finally apply the
dissymmetry theorem for trees on each of the families of restricted RM-trees:

Bi − xyyi = Ti = TMi + TRi − TR−Mi (i ∈ {0, 1, 2}). (13)

A.2.3 Number and expected size of maximal independent sets

As in the case of cacti graphs, we use (13) to apply the substitutions Bi = Ti + xyyi (i = 0, 1, 2)
in the system given in Lemma 4. The resulting system will be denoted by S. In theory one could
also compute the determinant of the Jacobian of S. In this case however, its size prevents us to do
so directly with a small computer.
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Instead, we first consider the determinant of the Jacobian of the system in Lemma 4 without
applying the substitutions in (13). So that each partial derivatives of the Bi’s are seen as unknown
functions to be computed separately using (13), then substituted in order to obtain DJ (S) as in
cacti graphs. And setting y0 = y1 = 1 and x = ρ1 in the system S ∪ DJ (S), one gets the following
approximation:

ρ1 ≈ 0.0770510356

To finally estimate the number of independent sets in a uniformly at random SP graph on
n vertices, we apply the same method as in the case of cacti graphs but now with the following
estimate (see [4, Section 3]) of the number of SP graphs on n vertices:

gn ∼
x→ρ

g · n−5/2 · ρ−n · n!, where ρ ≈ 0.1102133467 and g > 0.

This implies that the number of maximal independent sets in a random SP graph on n vertices is
asymptotically:

AIn =
|In|
gn
∼ C · αn, where C = A1/g > 0 and α = ρ/ρ1 ≈ 1.4303941013.

Now, after setting x = ρ1(y0) in the system S ∪ DJ (S), we can differentiate it to obtain a
system defining ρ′1(y0). The only difference with the system for cacti graphs is that we now have
to compute each derivative in S ∪ DJ (S) by first computing it separately in (13). From there, we
can again set y0 = y1 = 1 to substitute ρ1(1) = ρ1 with its approximated value. This gives us a
system characterising uniquely ρ′1(1) that we can again solve numerically. In particular, we obtain:

ρ′1 = ρ′1(1) ≈ −0.0207425825.

So that the expected size of a maximal independent set in a uniformly at random SP graph on n
vertices is asymptotically:

E[SIn] = µn+O(1), where µ = −ρ1
ρ′1
≈ 0.2690257588.

A.2.4 Matchings in 2–connected vertex-rooted series–parallel graphs

The generating functions counting restricted RM–trees associated to the network decompositions
of vertex–rooted SP graphs carrying a matching are derived similarly to the case of independent
sets. In this section, we will hence only briefly explicit the systems of equations corresponding to
the different ways of rooting the restricted RM–trees.

Restricted RM–tree rooted at an M–node. It holds that:

T̄Mi = x
(
y0M̄i0 + y1M̄i1 + y2M̄i2

)
(i ∈ {0, 1, 2}),

where we set:

M̄00 = exp≥3(S̄00),

M̄01 = S̄01(y exp≥1(S̄02) + exp≥2(S̄02)),

M̄02 = y exp≥2(S̄02) + exp≥3(S̄02),

M̄11 = exp≥2(S̄22)(y + S̄11) + exp≥1(S̄22)(yS̄11 + S̄2
12) + exp(S̄22)yS̄

2
12,

M̄12 = S̄12(y exp≥1(S̄22) + exp≥2(S̄22)),

M̄22 = y exp≥2(S̄22) + exp≥3(S̄22).

31



Restricted RM–tree rooted at an R–node. For i ∈ {0, 2}, it holds that:

T̄Ri =
x2

2
((D̄i0 − S̄i0)z0Ā0i + (D̄i1 − S̄i1)z1Ā2i + (D̄i2 − S̄i2)(z1Ā1i + z2Ā2i)),

where for ij ∈ {00, 01, 02, 10, 11, 12, 20, 21, 22}, we set:

Āji = (D̄j0 − S̄j0)z0D̄0i + (D̄j1 − S̄j1)z1D̄2i + (D̄j2 − S̄j2)(z1D̄1i + z2D̄2i).

Finally, for i = 1 we have:

T̄R1 =
x2

2
((D̄10 − S̄10)z0Ā02 + (D̄20 − S̄20)z0Ā01 + (D̄11 − S̄11)z1Ā22

+ (D̄12 − S̄12)(z12Ā12 + z2Ā22) + (D̄22 − S̄22)(z1Ā11 + z2Ā21)).

Restricted RM–tree rooted at an edge. Similar restrictions, as for independent sets, between edges
of the restricted RM–tree apply in the case of matchings:

T̄R−Mi = x(z0S̄i0P̄i0 + z1(S̄i1P̄i2 + S̄i2P̄i1) + z2S̄i2P̄i2) (i ∈ {0, 2}),
T̄R−M1 = x(z0(S̄10P̄20 + S̄20P̄10) + z2(S̄12P̄22 + S̄22P̄12) + z1(S̄11P̄22 + 2S̄12P̄21 + S̄22P̄11)).

Vertex–rooted 2–connected series–parallel graphs carrying a matching. And we can finally apply
the dissymmetry theorem for trees to obtain:

B̄i − ēi = T̄i = T̄Mi + T̄Ri − T̄R−Mi (i ∈ {0, 1, 2}), (14)

where ē0 = xyy2, ē1 = xyy1 and ē2 = xy(y0 + y2).

A.2.5 Number and expected size of maximal matchings

Here again, the size of the system obtained by substituting the equations from (14) into the system
of Lemma 5 prevents us to directly compute the determinant of its Jacobian. Instead, we also
consider the determinant of the Jacobian of the system of Lemma 5 without substitution and
compute each partial derivatives directly on each equation of (14), then apply the substitutions.

From the resulting system, one can then obtain the following approximation:

ρ2 ≈ 0.0749665399.

Ths implies that the number of maximal matchings in a uniformly at random SP graph on n vertices
is asymptotically:

AMn ∼ D · βn, where D > 0 and β ≈ 1.4701671808.

Concerning the expected size of a maximal matching, remember that we must now consider the
perturbation with respect to the variable z21 . And similarly to before, we get:

ρ′2 = ρ′2(1) ≈ −0.0478172197.

So that the expected size of a maximal matching in a random SP graph on n vertices is asymptot-
ically:

E[SMn] = λn+O(1), where λ = −1

2
· ρ2
ρ′2
≈ 0.3189237476.
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