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Abstract

Recently, settling a question of Erdős, Balogh, and Petříčková showed that there are at most
2n2/8+o(n2) n-vertex maximal triangle-free graphs, matching the previously known lower bound.
Here, we characterize the typical structure of maximal triangle-free graphs. We show that almost
every maximal triangle-free graph G admits a vertex partition X ∪ Y such that G[X ] is a perfect
matching and Y is an independent set.

Our proof uses the Ruzsa–Szemerédi removal lemma, the Erdős–Simonovits stability theorem,
and recent results of Balogh, Morris, and Samotij and Saxton and Thomason on characterization
of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the
number of maximal independent sets in triangle-free graphs with many vertex-disjoint P3s, which
is of independent interest.

2010 Mathematics Subject Classification: 05C35, 05C30, 05C69

1. Introduction

Given a family of combinatorial objects with certain properties, a fundamental
problem in extremal combinatorics is to describe the typical structure of these
objects. This was initiated in a seminal work of Erdős, Kleitman and Rothschild
[13] in 1976. They proved that almost all triangle-free graphs on n vertices
are bipartite; that is, the proportion of n-vertex triangle-free graphs that are not
bipartite goes to zero as n → ∞. Since then, various extensions of this theorem

c© The Author(s) 2015. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2015.22
Downloaded from https://www.cambridge.org/core. IP address: 137.205.202.82, on 28 Oct 2019 at 16:49:09, subject to the Cambridge Core

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:jobal@math.uiuc.edu
mailto:hliu36@illinois.edu
mailto:petrckv2@illinois.edu
mailto:sharifz2@illinois.edu
https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2015.22
https://www.cambridge.org/core
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have been established. The typical structure of H -free graphs has been studied
when H is a large clique [3, 19], H is a fixed color-critical subgraph [23], H is a
finite family of subgraphs [2], and H is an induced subgraph [4]. For sparse H -
free graphs, analogous problems were examined in [9, 21]. In the context of other
combinatorial objects, the typical structure of hypergraphs with a fixed forbidden
subgraph is investigated for example in [10, 22], and the typical structure of
intersecting families of discrete structures is studied in [5]; see also [1] for a
description of the typical sum-free set in finite abelian groups.

In contrast to the family of all n-vertex triangle-free graphs, which has been
well studied, very little was known about the subfamily consisting of all those
that are maximal (under graph inclusion) triangle free. Note that the size of the
family of triangle-free graphs on [n] is at least 2n2/4 (all subgraphs of a complete
balanced bipartite graph), and at most 2n2/4+o(n2) by the result of Erdős, Kleitman,
and Rothschild from 1976. Until recently, it was not even known if the subfamily
of maximal triangle-free graphs is significantly smaller. As a first step, Erdős
suggested the following problem (as stated in [26]): determine or estimate the
number of maximal triangle-free graphs on n vertices. The following folklore
construction shows that there are at least 2n2/8 maximal triangle-free graphs on
the vertex set [n] := {1, . . . , n}.
Lower bound construction. Assume that n is a multiple of 4. Start with a graph on
a vertex set X ∪ Y with |X | = |Y | = n/2 such that X induces a perfect matching
and Y is an independent set (see Figure 1a). For each pair of a matching edge
x1x2 in X and a vertex y ∈ Y , add exactly one of the edges x1 y or x2 y. Since
there are n/4 matching edges in X and n/2 vertices in Y , we obtain 2n2/8 triangle-
free graphs. These graphs may not be maximal triangle free, but since no further
edges can be added between X and Y , all of these 2n2/8 graphs extend to distinct
maximal ones.

Balogh and Petřı́čková [11] recently proved a matching upper bound, that the
number of maximal triangle-free graphs on vertex set [n] is at most 2n2/8+o(n2).
Now that the counting problem is resolved, one would naturally ask what most of
the maximal triangle-free graphs look like; that is, what their typical structure is.
Our main result provides an answer to this question.

THEOREM 1.1. For almost every maximal triangle-free graph G on [n], there
is a vertex partition X ∪ Y such that G[X ] is a perfect matching and Y is an
independent set.

The proof of Theorem 1.1 consists of two parts. In the first part, we show
an asymptotic version of Theorem 1.1, which implies that almost all maximal
triangle-free graphs have a structure very close to the desired one (see the
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The typical structure of maximal triangle-free graphs 3

Figure 1. (a) r = 2, (b) r = 3. Lower bound construction for maximal Kr+1-free
graphs.

beginning of Section 3 for an outline of the proof). In the second part, we compare
directly the size of the family of ‘bad’ maximal triangle-free graphs, that is, those
without the desired structure, with the size of the family of ‘good’ ones (see the
beginning of Section 4 for the idea of the proof).

It is worth mentioning that, once a maximal triangle-free graph has the above
partition X∪Y , then there has to be exactly one edge between every matching edge
of X and every vertex of Y . Thus Theorem 1.1 implies that almost all maximal
triangle-free graphs have the same structure as the graphs in the lower bound
construction above. Furthermore, our proof yields that the number of maximal
triangle-free graphs without the desired structure is exponentially smaller than the
number of maximal triangle-free graphs. Let M3(n) denote the set of all maximal
triangle-free graphs on [n], and let G(n) denote the family of graphs from M3(n)
that admit a vertex partition such that one part induces a perfect matching and
the other is an independent set. Then there exists an absolute constant c > 0 such
that, for n sufficiently large, |M3(n)− G(n)| 6 2−cn|M3(n)|.

It would be interesting to have similar results for Mr (n), the number of
maximal Kr -free graphs on [n]. Alon pointed out that, if the number of maximal
Kr -free graphs is 2cr n2+o(n2), then cr is monotone increasing in r , though not
necessarily strictly monotone. For the lower bound, a discussion with Alon and
Łuczak led to the following construction that gives 2(1−1/r+o(1))n2/4 maximal Kr+1-
free graphs. Assume that n is a multiple of 2r . Partition the vertex set [n] into
r equal classes X1, . . . , Xr−1, Y , and place a perfect matching into each of X1,

. . . , Xr−1 (see Figure 1b). Between the classes we have the following connection
rule: between the vertices of two matching edges from different classes X i

and X j place exactly three edges, and between a vertex in Y and a matching
edge in X i put exactly one edge. For the upper bound, by Erdős, Frankl and
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Rödl [12], Mr+1(n) 6 2(1−1/r+o(1))n2/2. A slightly improved bound is given in
[11]: For every r there is ε(r) > 0 such that |Mr+1(n)| 6 2(1−1/r−ε(r))n2/2 for n
sufficiently large. We suspect that the lower bound is the ‘correct value’; that is,
that |Mr+1(n)| = 2(1−1/r+o(1))n2/4.

Related problem. There is a surprising connection between the family of maximal
triangle-free graphs and the family of maximal sum-free sets in [n]. Recently,
Balogh, Liu, Sharifzadeh and Treglown [6] proved that the number of maximal
sum-free sets in [n] is 2(1+o(1))n/4, settling a conjecture of Cameron and Erdős.
Although neither of the results imply one another, the methods in both of the
papers fall in the same general framework, in which a rough structure of the family
is obtained first using the appropriate container lemma and removal lemma.
These are Theorems 2.1 and 2.2 in this paper, and a group removal lemma of
Green [16], and a granular theorem of Green and Ruzsa [17] in the sum-free
case. Both problems can then be translated into bounding the number of maximal
independent sets in some auxiliary link graphs. In particular, one of the tools here
(Lemma 2.4) is also utilized in [7] to give an asymptotic of the number of maximal
sum-free sets in [n].
Organization. We first introduce all the tools in Section 2, then we prove
Lemma 3.1, the asymptotic version of Theorem 1.1, in Section 3. Using this
asymptotic result, we prove Theorem 1.1 in Section 4.

Notation. For a graph G, denote by |G| the number of vertices in G, and by e(G)
the number of its edges. An n-vertex graph G is t-close to bipartite if G can be
made bipartite by removing at most t edges. Denote by Pk the path on k vertices.
Write MIS(G) for the number of maximal independent sets in G. The Cartesian
product G� H of graphs G and H is a graph with vertex set V (G)× V (H) such
that two vertices (u, u ′) and (v, v′) are adjacent if and only if either u = v and
u ′v′ ∈ E(H), or u ′ = v′ and uv ∈ E(G). For a fixed graph G, let N (v) be the set
of neighbors of a vertex v in G, and let d(v) := |NG(v)| and Γ (v) := N (v)∪{v}.
For v ∈ V (G) and X ⊆ V (G), denote by NX (v) the set of all neighbors of v
in X (that is, NX (v) = N (v) ∩ X ), and let dX (v) := |NX (v)|. Denote by ∆(X)
the maximum degree of the induced subgraph G[X ]. For two disjoint vertex sets
X, Y ⊆ V , the edges between X and Y are called [X, Y ]-edges, and the number
of [X, Y ]-edges is denoted e(X, Y ). A (vertex) cut X ∪ Y is a partition of the
vertex set V into two disjoint subsets X and Y , and e(X, Y ) is the size of the
cut X ∪ Y . A vertex cut X ∪ Y is a max-cut if e(X, Y ) is not smaller than the
size of any other cut. Given a vertex cut X ∪ Y , the inner edges (of X ∪ Y ) are
the edges in G[X ] and G[Y ], the inner neighbors of a vertex v are its neighbors
in the same partite set as v (that is, NX (v) if v ∈ X ), and the inner degree of a
vertex is the number of its inner neighbors. We say that a family F of maximal
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triangle-free graphs is negligible if there exists an absolute constant C > 0 such
that |F | < 2−Cn|M3(n)|.

2. Tools

Our first tool is a corollary of recent powerful counting theorems of Balogh,
Morris and Samotij [8, Theorem 2.2.], and of Saxton and Thomason [25].

THEOREM 2.1. For all δ > 0 there is c = c(δ) > 0 such that there is a family
F of at most 2c·log n·n3/2

graphs on [n], each containing at most δn3 triangles, such
that for every triangle-free graph G on [n] there is an F ∈ F such that G ⊆ F,
where n is sufficiently large.

The graphs in F in the above theorem will be referred to as containers. A weaker
version of Theorem 2.1, which can be concluded from the Szemerédi regularity
lemma, could be used instead of Theorem 2.1 here. The only difference is that the
upper bound on the size of F is 2o(n2).

We need two well-known results. The first is the Ruzsa–Szemerédi triangle-
removal lemma [24], and the second is the Erdős–Simonovits stability theorem
[14].

THEOREM 2.2. For every ε > 0 there exist δ = δ(ε) > 0 and n0(ε) > 0 such
that any graph G on n > n0(ε) vertices with at most δn3 triangles can be made
triangle free by removing at most εn2 edges.

THEOREM 2.3. For every ε > 0 there exists δ = δ(ε) > 0 and n0(ε) > 0 such
that every triangle-free graph G on n > n0(ε) vertices with at least n2/4 − δn2

edges can be made bipartite by removing at most εn2 edges.

We also need the following lemma, which is an extension of results of Moon
and Moser [20] and of Hujter and Tuza [18].

LEMMA 2.4. Let G be an n-vertex triangle-free graph. If G contains at least k
vertex-disjoint P3s, then

MIS(G) 6 2n/2−k/25. (1)

Proof. The proof is by induction on n. The base case of the induction is n = 1
with k = 0, for which MIS(G) = 1 6 21/2−0/25.

For the inductive step, let G be a triangle-free graph on n > 2 vertices with k
vertex-disjoint P3s, and let v be any vertex in G. Observe that MIS(G − Γ (v))

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2015.22
Downloaded from https://www.cambridge.org/core. IP address: 137.205.202.82, on 28 Oct 2019 at 16:49:09, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2015.22
https://www.cambridge.org/core
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is the number of maximal independent sets containing v, and that MIS(G − {v})
bounds from above the number of maximal independent sets not containing v.
Therefore,

MIS(G) 6 MIS(G − {v})+MIS(G − Γ (v)).
If G has k vertex-disjoint P3s, then G−Γ (v) has at least k− d(v) vertex-disjoint
P3s, and so, by the induction hypothesis,

MIS(G) 6 2(n−1)/2−(k−1)/25 + 2(n−(d(v)+1))/2−(k−d(v))/25

6 2n/2−k/25(2−1/2+1/25 + 2−(d(v)+1)/2+d(v)/25).

The function f (x) = 2−1/2+1/25 + 2−(x+1)/2+x/25 is a decreasing function with
f (3) ≈ 0.9987 < 1. So, if there exists a vertex of degree at least 3 in G, then
we have MIS(G) 6 2n/2−k/25, as desired.

It remains to verify (1) for graphs with∆(G) 6 2. Observe that we can assume
that G is connected. Indeed, if G1, . . . ,Gl are maximal components of G, and
each of G i has ni vertices and ki vertex-disjoint P3s, then

MIS(G) =
∏

i

MIS(G i) 6
∏

i

2ni /2−ki /25 = 2
∑

i ni /2−
∑

i ki /25 = 2n/2−k/25.

Every connected graph with ∆(G) 6 2 and n > 2 vertices is either a path or
a cycle. Suppose first that G is a path Pn . We have MIS(P2) = 2 6 22/2−0/25,
MIS(P3) = 2 6 23/2−1/25. By Füredi [15, Example 1.1], MIS(Pn) =MIS(Pn−2)+
MIS(Pn−3) for all n > 4. By the induction hypothesis, thus

MIS(Pn) 6 2(n−2)/2−(k−1)/25 + 2(n−3)/2−(k−1)/25

6 2n/2−k/25(2−1+1/25 + 2−3/2+1/25) 6 2n/2−k/25.

Let now G be a cycle Cn . We have MIS(C4) = 2 6 24/2−1/25 and MIS(C5) = 5 6
25/2−1/25. By Füredi [15, Example 1.2], MIS(Cn) = MIS(Cn−2)+MIS(Cn−3) for
all n > 6. Therefore, by the induction hypothesis,

MIS(Cn) 6 2(n−2)/2−(k−1)/25 + 2(n−3)/2−(k−1)/25 6 2n/2−k/25.

REMARK 2.5. A disjoint union of C5s together with a matching shows that the
constant c for which MIS(G) 6 2n/2−k/c in Lemma 2.4 cannot be smaller than 5.6.

3. Asymptotic result

In this section, we prove an asymptotic version of Theorem 1.1:
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The typical structure of maximal triangle-free graphs 7

LEMMA 3.1. Fix any γ > 0. Almost every maximal triangle-free graph G on the
vertex set [n] satisfies the following: for any max-cut V (G) = X ∪ Y , there exist
X ′ ⊆ X and Y ′ ⊆ Y such that the following hold.

(i) |X ′| 6 γ n and G[X − X ′] is an induced perfect matching.

(ii) |Y ′| 6 γ n and Y − Y ′ is an independent set.

The outline of the proof is as follows. We observe that every maximal triangle-
free graph G on [n] can be built in the following three steps.

(S1) Choose a max-cut X ∪ Y for G.

(S2) Choose triangle-free graphs S and T on the vertex sets X and Y ,
respectively.

(S3) Extend S∪ T to a maximal triangle-free graph by adding edges between X
and Y .

We give an upper bound on the number of choices for each step. First, there are at
most 2n ways to fix a max-cut X ∪Y in (S1). For (S2), we show (Lemma 3.5) that
almost all maximal triangle-free graphs on [n] are o(n2)-close to bipartite, which
implies that the number of choices for most of these graphs in (S2) is at most
2o(n2). For fixed X, Y, S, T , we bound, using Claim 3.4, the number of choices in
(S3) by the number of maximal independent sets in some auxiliary link graph L .
This enables us to use Lemma 2.4 to force the desired structure on S and T .

DEFINITION 3.2 (Link graph). Given edge-disjoint graphs S and A on [n], define
the link graph L := L S[A] of S on A as follows:

V (L) := E(A),
E(L) := {a1a2 : ∃s ∈ E(S) such that {a1, a2, s} forms a triangle}.

CLAIM 3.3. Let S and A be two edge-disjoint graphs on [n]. If S is triangle free,
then L S[A] is triangle free.

Proof. Indeed, otherwise there exist a1, a2, a3 ∈ E(A) and s1, s2, s3 ∈ E(S) such
that the 3-sets {a1, a2, s1}, {a2, a3, s2}, and {a1, a3, s3} span triangles. Since S and
A are edge disjoint, the edges a1, a2, a3 share a common endpoint, and {s1, s2, s3}
spans a triangle. This is a contradiction, since S is triangle free.

CLAIM 3.4. Let S and A be two edge-disjoint triangle-free graphs on [n] such
that there is no triangle {a, s1, s2} in S∪ A with a ∈ E(A) and s1, s2 ∈ E(S). Then
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the number of maximal triangle-free subgraphs of S ∪ A containing S is exactly
MIS(L S[A]).

Proof. First observe that, by our assumption, every triangle in S ∪ A consists of
two edges from E(A) and one edge from E(S). It follows that, for a subgraph
A′ ⊆ A, the graph G = S ∪ A′ is triangle free if and only if E(A′) spans an
independent set in L := L S[A].

A triangle-free graph G = S ∪ A′ is not a maximal triangle-free subgraph of
S ∪ A if and only if there exists an edge a ∈ E(A) − (A′) such that, for any
two edges a′ ∈ E(A′) and s ∈ E(S), {a, a′, s} does not form a triangle. By the
definition of a link graph L S[A], this is exactly when there exists a vertex a ∈
E(A) − (A′) such that the set E(A′) ∪ {a} is an independent set, that is, when
E(A′) is not maximal independent set in L S[A].

We fix the following parameters that will be used throughout the rest of the
paper. Let γ, β, ε, ε′ > 0 be sufficiently small constants satisfying the following
hierarchy:

ε′ � δ2.3(ε)� ε � β � δ2.3(γ
3)� γ � 1, (2)

where δ2.3(x) > 0 is the constant returned from Theorem 2.3 with input x . The
notation x � y above means that x is a sufficiently small function of y to satisfy
some inequalities in the proof. In the following proof, δ2.2(x) is the constant
returned from Theorem 2.2 with input x , and, in the rest of the paper, we shall
always assume that n is sufficiently large, even when this is not explicitly stated.

LEMMA 3.5. Almost all maximal triangle-free graphs on [n] are 2εn2-close to
bipartite.

Proof. Let F be the family of graphs obtained from Theorem 2.1 using δ2.2(ε
′).

Then every triangle-free graph on [n] is a subgraph of some container F ∈ F .
We first show that the family of maximal triangle-free graphs in small

containers is negligible. Consider a container F ∈ F with e(F) 6 n2/4− 6ε′n2.
Since F contains at most δ2.2(ε

′)n3 triangles, by Theorem 2.2, we can find A and
B, subgraphs of F , such that F = A∪B, where A is triangle free, and e(B)6 ε′n2.
For each F ∈ F , fix such a pair (A, B). Then every maximal triangle-free graph
in F can be built in two steps.

(i) Choose a triangle-free S ⊆ B.

(ii) Extend S in A to a maximal triangle-free graph.
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The typical structure of maximal triangle-free graphs 9

The number of choices in (i) is at most 2e(B) 6 2ε′n2 . Observe that any edge A ∈
E(A) that is in a triangle containing two edges from S cannot be added in step
(ii). Therefore we remove all such edges from A and call the resulting graph
A′. Let L := L S[A′] be the link graph of S on A′. By Claim 3.3, L is triangle
free. Claim 3.4 implies that the number of maximal triangle-free graphs in S ∪ A
containing S (that is, the number of extensions in (ii)) is at most MIS(L). Thus,
by Lemma 2.4,

MIS(L) 6 2|A
′|/2 6 2n2/8−3ε′n2

.

Therefore, the number of maximal triangle-free graphs in small containers is at
most

|F | · 2ε′n2 · 2n2/8−3ε′n2
6 2n2/8−ε′n2

.

From now on, we may consider only maximal triangle-free graphs contained in
containers of size at least n2/4− 6ε′n2. Let F be any large container. Recall that,
by Theorem 2.2, F = A ∪ B, where A is triangle free with e(A) > n2/4− 7ε′n2

and e(B) 6 ε′n2. Since ε′ � δ2.3(ε), by Theorem 2.3, A can be made bipartite by
removing at most εn2 edges. Since ε′ � ε, F can be made bipartite by removing
at most (ε′ + ε)n2 6 2εn2 edges. Therefore, every maximal triangle-free graph
contained in F is 2εn2-close to bipartite.

Fix X, Y, S, T as in steps (S1) and (S2). Let A be the complete bipartite graph
with parts X and Y . By Claim 3.4, the number of ways to extend S ∪ T in (S3)
is at most MIS(L S∪T [A]). The number of ways to fix X and Y is at most 2n , and,
by Lemma 3.5, the number of ways to fix S and T is at most

( n2

2εn2
)
. It follows

that, if MIS(L S∪T [A]) is smaller than 2n2/8−cn2 for some c� ε, then the family of
maximal triangle-free graphs with such (X, Y, S, T ) is negligible.

CLAIM 3.6. L S∪T [A] = S� T .

Proof. Note that V (L S∪T [A]) = E(A) = {(x, y) : x ∈ X, y ∈ Y } = V (S� T ).
Using the definition of the Cartesian product, (x, y) and (x ′, y′) are adjacent in
S� T if and only if x = x ′ and {y, y′} ∈ E(T ), or y = y′ and {x, x ′} ∈ E(S), that
is, if and only if {x = x ′, y, y′} or {x, x ′, y = y′} form a triangle in S ∪ A. But,
by the definition of L S∪T [A], this is exactly when (x, y) and (x ′, y′) are adjacent
in L S∪T [A].

Claim 3.6 allows us to rule out certain structures of S and T since, by
Lemma 2.4, if S� T has many vertex-disjoint P3s, then the number of maximal
triangle-free graphs with S = G[X ] and T = G[Y ] is much smaller than 2n2/8.
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CLAIM 3.7. For almost all maximal triangle-free n-vertex graphs G with a max-
cut X ∪ Y the following hold.

(i) |X |, |Y | > n/2− βn.

(ii) ∆(X),∆(Y ) 6 βn.

Proof. Let G be a maximal triangle-free graph with a max-cut X ∪ Y . By
Lemma 3.5, almost all maximal triangle-free graphs are 2εn2-close to bipartite,
which implies that the number of choices for G[X ] and G[Y ] is at most

( n2

2εn2

)
.

Denote by A the complete bipartite graph with partite sets X and Y .
For (i), suppose that |X | 6 n/2−βn. Then |X ||Y | 6 n2/4−β2n2, and, for any

fixed S on X and T on Y , Lemma 2.4 implies that MIS(L S∪T [A]) 6 2n2/8−β2n2/2.
Since β � ε, it follows from the discussion before Claim 3.6 that the family of
maximal triangle-free graphs with such max-cut X ∪ Y is negligible.

For (ii), suppose that G has a vertex x ∈ X of inner degree at least βn. Since
X ∪Y is a max-cut, |NY (x)| > |NX (x)| > βn. Since G is triangle free, there is no
edge in between NX (x) and NY (x). Let A′ ⊆ A be a graph formed by deleting all
edges between NX (x) and NY (x) from A. Define a link graph L ′ := L S∪T [A′] of
S∪T on A′. In this case, the number of choices for (S3) is at most MIS(L ′). Since
L ′ is triangle free (Claim 3.3) and |L ′| = e(A′) 6 |X ||Y | − |NX (x)||NY (x)| 6
n2/4− β2n2, it follows from Lemma 2.4 that

MIS(L ′) 6 2|L
′|/2 6 2n2/8−β2n2/2.

Proof of Lemma 3.1. First, we show that, for almost every maximal triangle-free
graph G on [n] with max-cut X ∪ Y and with G[X ] = S and G[Y ] = T , there
are very few vertex-disjoint P3s in S ∪ T . Suppose that there exist βn vertex-
disjoint P3s in S or in T , say in S. Since L S∪T [A] = S� T by Claim 3.6, and,
for each of the βn vertex-disjoint P3s in S we obtain |T | vertex-disjoint P3s in
S� T , the number of vertex-disjoint P3s in L S∪T [A] is at least βn|T | = βn|Y |.
By Claim 3.7(i), βn|Y | > βn(n/2− βn) > βn2/3. Then, by Lemma 2.4,

MIS(L S∪T [A]) 6 2|S� T |/2−βn2/75 6 2n2/8−βn2/75.

Since β � ε, the family of maximal triangle-free graphs with such (X, Y, S, T ) is
negligible. Hence, for almost every maximal triangle-free graph G with some (X,
Y, S, T ), we can find some induced subgraphs S′ ⊆ S and T ′ ⊆ T with |S′| 6 3βn
and |T ′| 6 3βn such that both S − S′ and T − T ′ are P3 free. This implies that
each of S − S′ and T − T ′ is a union of a matching and an independent set.

Next, we show that at most one of the graphs S and T can have a large matching.
Suppose that both S and T have a matching of size at least βn; then there are
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The typical structure of maximal triangle-free graphs 11

Figure 2. Forbidden structures in S and T .

at least β2n2 vertex-disjoint C4s in S� T , each of which contains a copy of P3

(see Figure 2a). It follows that the family of such graphs is negligible, since
MIS(L S∪T [A]) 6 2n2/8−β2n2/25 and β � ε. Hence, we can assume that all but
2βn vertices in T form an independent set. Redefine T ′ so that |T ′| 6 2βn and
V (T − T ′) is an independent set.

Lastly, we show that there are very few isolated vertices in the graph S − S′.
Suppose that there are γ n/2 isolated vertices in S − S′, spanning a subgraph
S′′ of S. We count MIS(S� T ) as follows. Let J := (S� T ′) ∪ (S′� T ) and
L ′ := S� T − J . Every maximal independent set in S� T can be built as follows.

(i) Choose an independent set in J .

(ii) Extend it to a maximal independent set in L ′.

Since |J | 6 |S′||T |+ |T ′||S| 6 3βn ·n+2βn ·n = 5βn2, there are at most 2|J | =
25βn2 choices for (i). Note that L ′ consists of isolated vertices from S′′� (T − T ′)
and an induced matching from (S − S′ − S′′)� (T − T ′) (see Figure 2b). Thus
the number of extensions in (ii) is at most MIS((S − S′ − S′′)� (T − T ′)). The
graph (S − S′ − S′′)� (T − T ′) is a perfect matching with at most

1
2
|S − S′′||T | 6 1

2

(
|S| − γ n

2

)
(n − |S|) 6 1

2

(
n
2
− γ n

4

)2

6
n2

8
− γ n2

16

edges, and so choosing one vertex for each matching edge gives at most
2n2/8−γ n2/16 maximal independent sets. Since β � γ , it follows that
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MIS(S� T ) 6 25βn2 · 2n2/8−γ n2/16 6 2n2/8−γ n2/17. Thus, such a family of maximal
triangle-free graphs is negligible, and we may assume that |S′′| 6 γ n/2.

The statement of Lemma 3.1 follows by setting X ′ := V (S′ ∪ S′′) and Y ′ :=
V (T ′). Indeed, |X ′| 6 3βn + γ n/2 6 γ n, |Y ′| 6 2βn 6 γ n, G[X − X ′] =
S− S′− S′′ is a perfect matching, and Y −Y ′ = V (T )− V (T ′) is an independent
set.

4. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. Recall the hierarchy of parameters
fixed in Section 3:

ε′ � δ2.3(ε)� ε � β � δ2.3(γ
3)� γ � 1, (3)

We will in fact show that there are exponentially fewer ‘bad’ graphs, that is,
maximal triangle-free graphs without the desired structure. We do so by first
grouping graphs by some triple (X, Y,M) (see the definitions below). Then we
compare the number of ‘bad’ graphs to the number of ‘good’ graphs within each
group by showing that there are not many ‘bad’ ones (Lemmas 4.2 and 4.3), while
there are many ‘good’ ones (Lemma 4.5). There might be an overcounting issue
due to overlaps among groups. This is taken care of by Lemma 4.4.

DEFINITION 4.1. Fix a vertex partition V = X ∪ Y , a perfect matching M on the
vertex set X (when |X | is odd, M is an almost perfect matching covering all but
one vertex of X ), and nonnegative integers r , s and t .

(1) Denote by B(X, Y,M, s, t) the class of maximal triangle-free graphs G with
max-cut X ∪ Y satisfying the following three conditions.

(i) The subgraph G[X ] has a maximum matching M ′ ⊆ M covering all
but at most γ n vertices in X .

(ii) The size of a largest family of vertex-disjoint P3s in S := G[X ] is s.

(iii) The size of a maximum matching in T := G[Y ] is t .

(2) Denote by B(X, Y,M, r) ⊆ B(X, Y,M, 0, 0) the subclass consisting of all
graphs in B(X, Y,M, 0, 0) with exactly r isolated vertices in G[X ].

(3) When |X | is even, denote by G(X, Y,M) the class of all maximal triangle-
free graphs G with max-cut X ∪ Y , G[X ] = M , and Y an independent set.

(4) When |X | is even, denote by H(X, Y,M) the class of maximal triangle-free
graphs G that are constructed as follows.
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The typical structure of maximal triangle-free graphs 13

(P1) Add M to X .

(P2) For every edge x1x2 ∈ M and every vertex y ∈ Y , add either the edge
x1 y or x2 y.

(P3) Extend each of the 2|X ||Y |/2 resulting graphs to a maximal triangle-free
graph by adding edges in X and/or Y .

By Lemmas 3.1, 3.5 and Claim 3.7, throughout the rest of the proof, we may
only consider maximal triangle-free graphs in

⋃
X,Y,M,s,t B(X, Y,M, s, t) that are

βn2-close to bipartite, |X |, |Y | > n/2 − βn, and ∆(X),∆(Y ) 6 βn. We may
further assume from the proof of Lemma 3.1 that s, t 6 βn.

Notice that graphs from G(X, Y,M) = B(X, Y,M, 0) are precisely those with
the desired structure. We will show that the number of graphs without the desired
structure is exponentially smaller. The set of ‘bad’ graphs consists of the following
two types.

(i) When |X | is even,
⋃

s,t B(X, Y,M, s, t)− B(X, Y,M, 0).

(ii) When |X | is odd,
⋃

s,t B(X, Y,M, s, t).

Fix an arbitrary choice of (X, Y,M). For simplicity, let B(s, t) := B(X, Y,M,
s, t) and B(r) := B(X, Y,M, r). Let A be the complete bipartite graph with parts
X and Y .

LEMMA 4.2. If s + t > 1, then |B(s, t)| 6 2|X ||Y |/2−n/200.

Proof. Let s and t be two nonnegative integers, at least one of which is nonzero.
We first bound the number of ways to choose S and T , that is, the number of ways
to add inner edges. The number of ways to choose the vertex set of the s vertex-
disjoint P3s in S and the t matching edges in T is at most

( n
3s
)( n

2t
)
. Recall that, by

the definition of B(s, t), the maximum matching M ′ ⊆ M covers all but at most
γ n vertices of X . So the number of ways to choose the independent vertices in
X is at most

( n
γ n
)
. Since ∆(X),∆(Y ) 6 βn, each of the 3s + 2t chosen vertices

has inner degree at most βn. Therefore, the number of ways to choose their inner
neighbors is at most(

n
βn

)3s+2t

6

((
en
βn

)βn)3s+2t

6 2β log(e/β)·(3s+2t)n.

The number of ways to add the [X, Y ]-edges is MIS(L S∪T (A)). We claim that
the link graph L := L S∪T (A) = S� T has at least (s + t)n/5 vertex-disjoint P3s.
Indeed, recall that |S| = |T | > n/2 − βn and s, t 6 βn; thus, in S� T (see
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Figure 3. (a) The number of vertex-disjoint P3s in S� T is at least sn/3 + tn/5
(Lemma 4.2). (b) MIS(S� T ) 6 2(|X |−r)|Y |/2 if s = t = 0 and X has r isolated
vertices (Lemma 4.3).

Figure 3a), we have at least s(|T | − 2t) > sn/3 vertex-disjoint P3s coming from
s vertex-disjoint P3s in S, and at least 1

2 (|S| − βn − 3s) · t > tn/5 vertex-disjoint
P3s coming from the Cartesian product of a matching in S and a matching in T .
So, by Lemma 2.4,

MIS(L) 6 2|X ||Y |/2−(s+t)n/125.

Since s + t > 1 and γ and β are sufficiently small,

|B(s, t)| 6
(

n
3s

)(
n
2t

)(
n
γ n

)
· 2β log(e/β)·(3s+2t)n · 2|X ||Y |/2−(s+t)n/125

6 2|X ||Y |/2−n/200.

LEMMA 4.3. If s = t = 0 and r ∈ Z+, then |B(r)| 6 2|X ||Y |/2−n/6.

Proof. By the definition of B(r), X consists of r isolated vertices and a matching
of size (|X | − r)/2, and Y is an independent set. Hence the graph L S∪T (A) =
S� T consists of a matching of size (|X | − r)|Y |/2 and isolated vertices (see
Figure 3b). There are at most

(n
r

)
ways to pick the isolated vertices in X , and at

most MIS(L S∪T (A))ways to choose the [X, Y ]-edges. Recall that |Y |> n/2−βn.
Thus we have

|B(r)| 6
(

n
r

)
· 2(|X |−r)|Y |/2 6 2|X ||Y |/2+r log n−rn/5

6 2|X ||Y |/2−rn/6 6 2|X ||Y |/2−n/6.

Case 1: |X | is even.
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Figure 4. (X ′, Y ′,M ′) is uniquely determined after choosing xy ∈ M ′

(Lemma 4.4).

LEMMA 4.4. A maximal triangle-free graph G on [n] is in at most n2 different
classes G(X, Y,M).

Proof. Let G ∈ G(X, Y,M). Recall that G[X ] = M and Y is an independent set.
Thus G can be in a different class G(X ′, Y ′,M ′) if and only if X ′ 6= X , Y ′ 6= Y
and M ′ 6= M . Since M ′ 6= M and Y is an independent set, there exists an edge xy
in M ′ with x ∈ X and y ∈ Y . There are at most n2 ways to choose such an edge.
We claim that, once we pick the edge xy ∈ M ′, the sets X ′ and Y ′ (and thus also
M ′ = G[X ′]) are already decided. Recall that, since G is a maximal triangle-free
graph, every vertex in Y is adjacent to exactly one vertex from each edge in M .

Observe that the neighbor x∗ of x in X has to be in Y ′, since otherwise there
would be a path x∗xy in G[X ′] (see Figure 4). Let vv∗ ∈ M − {xx∗} such that
vy ∈ E(G). Then v ∈ Y ′, since otherwise there would be a path vyx in X ′. The set
Y ′ is independent, and so v∗ ∈ X ′. It remains to decide whether w ∈ X ′ or w ∈ Y ′

for every vertex w ∈ Y − {y}. If xw ∈ E(G), then w ∈ Y ′, since otherwise we
would have a path wxy in G[X ′]. Otherwise x∗w ∈ E(G), and so w ∈ X ′, since
otherwise there would be an edge wx∗ in G[Y ′].

By Lemma 4.4, it is sufficient to show that, for any choice of (X, Y,M) with
|X | even,

|⋃s,t B(X, Y,M, s, t)− B(X, Y,M, 0)|
|G(X, Y,M)| 6 2−n/300. (4)

For simplicity, let G := G(X, Y,M) and H := H(X, Y,M).

LEMMA 4.5. We have |G| > (1+ o(1))2|X ||Y |/2.
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Proof. Recall that |X |, |Y | > n/2−βn, and therefore |H| = 2|X ||Y |/2 � 2n2/8−βn2 .
Running the same proof as that of Lemma 3.5 (start the proof by invoking
Theorem 2.1 with δ2.2(β), and replace ε′ by β and ε by γ 3) implies that almost all
graphs in H are 2γ 3n2-close to bipartite. Let H′ ⊆H be the subfamily consisting
of all those that are 2γ 3n2-close to bipartite. Then it is sufficient to show that
|H′ − G| = o(2|X ||Y |/2). There are two types of graph in H′ − G.

(i) H1: those that are not maximal after (P2).

(ii) H2: those that are maximal after (P2), but X ∪ Y is not one of its max-cuts.

We first bound the number of graphs in H1. For any graph G ∈ H1, some
inner edges were added in (P3). Suppose that [X, Y ]-edges added in (P2) were
chosen randomly (each of x1 y and x2 y with probability 1/2). Clearly, uv can be
added in (P3) if and only if u and v have no common neighbor. Consider the case
when u, v ∈ X , and let uu ′, vv′ be the corresponding edges in M (see Figure 5a).
Every y ∈ Y is adjacent to exactly one of u, u ′ and exactly one of v, v′. Thus the
probability that y is a common neighbor of u and v is 1/4, which implies that
uv can be added with probability (3/4)|Y |. Let now u, v ∈ Y . Then u and v have
no common neighbor if and only if, for every x1x2 ∈ M , u and v chose different
neighbors among x1 and x2. So in this case we can add u, v with probability
(1/2)|X |/2. Summing over all possible outcomes of (P2) and all possible choices
for uv implies that

|H1| 6 2|X ||Y |/2 ·
(

n
2

)
·
((

1
2

)|X |/2
+
(

3
4

)|Y |)
� 2|X ||Y |/2−n/5.

We can bound |H2| in a similar way. It suffices to show that, if the [X, Y ]-edges
added in (P2) were chosen uniformly at random, then the probability that X ∪ Y
is not a max-cut is o(1). Let X ′ ∪ Y ′ be a different vertex cut, where we may
assume that |X ′ ∩ X | > |Y ′ ∩ X | (see Figure 5b). Then |X ′ ∩ X | > |X |/2 > n/5.
Let MX ′,Y ′ be the event that X ′ ∪ Y ′ is a cut greater than X ∪ Y , and let a :=
|X ′ ∩ Y | and b := |Y ′ ∩ X |. Recall that the number of inner edges of X ∪ Y is
e(G[X ]) = |X |/2 < n/3. If a > 200, then the expected number of edges in G[X ′]
is at least E[e([X ′ ∩ X, X ′ ∩ Y ])] > 1

2 · |X ′ ∩ X |/2 · a > 10n. Therefore, by the
Chernoff bound, P[MX ′,Y ′] 6 P[e(G[X ′]) < n/3] = o(2−n). We may thus assume
that a 6 200, which implies that |Y ′ ∩ Y | = |Y | − a > n/5. If b > 200, then
E[e(G[Y ′])] > 1

2 ·b/2 · |Y ′∩Y | > 10n, and so P[MX ′,Y ′] 6 P[e(G[Y ′]) < n/3] =
o(2−n). Hence, we may further assume that b 6 200. Note now that both X ′ ∩ X
and Y ′∩Y have size at least n/2−βn−200 > n/2−2βn. Since X ′∪Y ′ 6= X∪Y ,
we have a + b > 1. Hence, the expected number of inner edges of X ′ ∪ Y ′ is at
least
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Figure 5. (a) Two examples of uv that cannot be added when forming a graph
from H1. (b) Bounding |H2|: the probability that e(X ′, Y ′) > e(X, Y ) is o(1).
Bounding the number of graphs in H1 and H2 in Lemma 4.5.

E[e([X ′ ∩ X, X ′ ∩ Y ])] + E[e(G[Y ′])] + e(G[X ′ ∩ X ])
>

1
2
· |X

′ ∩ X |
2

· a + 1
2
· b

2
· |Y ′ ∩ Y | + (e(G[X ])− b)

>
1
4
· (a + b) ·

(
n
2
− 2βn

)
+ |X |

2
− b >

3n
8
− 300βn.

Thus, by the Chernoff bound, P[MX ′,Y ′] 6 P[e(G[X ′]) + e(G[Y ′]) < n/3] 6
2−n/1000. The number of X ′∪Y ′ with a, b 6 200 is only at most

( n
200

)2
6 n400.

Since s, t, r 6 n, Lemmas 4.2, 4.3 and 4.5 imply (4):∣∣⋃
s,t B(s, t)− B(0)

∣∣
|G| =

∑
s+t>1 |B(s, t)| +∑r>1 |B(r)|

|G|
6
(n2 + n) · 2|X ||Y |/2−n/200

(1+ o(1))2|X ||Y |/2
6 2−n/300.

Case 2: |X | is odd.
Fix an arbitrary choice of X, Y,M with |X | odd, and let x ∈ X be the vertex

not covered by M . By Lemmas 4.2 and 4.3,∣∣∣∣⋃
s,t

B(X, Y,M, s, t)
∣∣∣∣ 6 ∑

s,t :s+t>1

|B(X, Y,M, s, t)| +
∑
r>1

|B(X, Y,M, r)|

6 2|X ||Y |/2−n/300.
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Pick an arbitrary vertex y ∈ Y , and define X0 = X ∪ {y}, Y0 = Y − {y}, and
M0 = M ∪ {xy}. Then, by Lemma 4.5, we have

|G(X0, Y0,M0)| > (1+ o(1))2|X0||Y0|/2 > 2|X ||Y |/2−(|X |−|Y |)/2−1 > 2|X ||Y |/2−2βn,

since |X | − |Y | 6 2βn. Notice that any (X0, Y0,M0) with |X0| even can be
obtained from at most n different triples (X, Y,M) with |X | odd in this way.
Together with Lemma 4.4, it is sufficient to show that

⋃
s,t B(X, Y,M, s, t) is

negligible compared to G(X0, Y0,M0):∣∣⋃
s,t B(X, Y,M, s, t)

∣∣
|G(X0, Y0,M0)| 6

2|X ||Y |/2−n/300

2|X ||Y |/2−2βn
6 2−n/400.

This completes the proof of Theorem 1.1.
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