214 research outputs found

    Shorter tours and longer detours: Uniform covers and a bit beyond

    Get PDF
    Motivated by the well known four-thirds conjecture for the traveling salesman problem (TSP), we study the problem of {\em uniform covers}. A graph G=(V,E)G=(V,E) has an α\alpha-uniform cover for TSP (2EC, respectively) if the everywhere α\alpha vector (i.e. {α}E\{\alpha\}^{E}) dominates a convex combination of incidence vectors of tours (2-edge-connected spanning multigraphs, respectively). The polyhedral analysis of Christofides' algorithm directly implies that a 3-edge-connected, cubic graph has a 1-uniform cover for TSP. Seb\H{o} asked if such graphs have (1ϵ)(1-\epsilon)-uniform covers for TSP for some ϵ>0\epsilon > 0. Indeed, the four-thirds conjecture implies that such graphs have 8/9-uniform covers. We show that these graphs have 18/19-uniform covers for TSP. We also study uniform covers for 2EC and show that the everywhere 15/17 vector can be efficiently written as a convex combination of 2-edge-connected spanning multigraphs. For a weighted, 3-edge-connected, cubic graph, our results show that if the everywhere 2/3 vector is an optimal solution for the subtour linear programming relaxation, then a tour with weight at most 27/19 times that of an optimal tour can be found efficiently. Node-weighted, 3-edge-connected, cubic graphs fall into this category. In this special case, we can apply our tools to obtain an even better approximation guarantee. To extend our approach to input graphs that are 2-edge-connected, we present a procedure to decompose an optimal solution for the subtour relaxation for TSP into spanning, connected multigraphs that cover each 2-edge cut an even number of times. Using this decomposition, we obtain a 17/12-approximation algorithm for minimum weight 2-edge-connected spanning subgraphs on subcubic, node-weighted graphs

    On the minimum leaf number of cubic graphs

    Full text link
    The \emph{minimum leaf number} ml(G)\hbox{ml} (G) of a connected graph GG is defined as the minimum number of leaves of the spanning trees of GG. We present new results concerning the minimum leaf number of cubic graphs: we show that if GG is a connected cubic graph of order nn, then ml(G)n6+13\mathrm{ml}(G) \leq \frac{n}6 + \frac13, improving on the best known result in [Inf. Process. Lett. 105 (2008) 164-169] and proving the conjecture in [Electron. J. Graph Theory and Applications 5 (2017) 207-211]. We further prove that if GG is also 2-connected, then ml(G)n6.53\mathrm{ml}(G) \leq \frac{n}{6.53}, improving on the best known bound in [Math. Program., Ser. A 144 (2014) 227-245]. We also present new conjectures concerning the minimum leaf number of several types of cubic graphs and examples showing that the bounds of the conjectures are best possible.Comment: 17 page

    Graphs with large palette index

    Full text link
    Given an edge-coloring of a graph, the palette of a vertex is defined as the set of colors of the edges which are incident with it. We define the palette index of a graph as the minimum number of distinct palettes, taken over all edge-colorings, occurring among the vertices of the graph. Several results about the palette index of some specific classes of graphs are known. In this paper we propose a different approach that leads to new and more general results on the palette index. Our main theorem gives a sufficient condition for a graph to have palette index larger than its minimum degree. In the second part of the paper, by using such a result, we answer to two open problems on this topic. First, for every rr odd, we construct a family of rr-regular graphs with palette index reaching the maximum admissible value. After that, we construct the first known family of simple graphs whose palette index grows quadratically with respect to their maximum degree.Comment: 7 pages, 1 figur

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page
    corecore