25,706 research outputs found

    Lattice polytopes in coding theory

    Get PDF
    In this paper we discuss combinatorial questions about lattice polytopes motivated by recent results on minimum distance estimation for toric codes. We also prove a new inductive bound for the minimum distance of generalized toric codes. As an application, we give new formulas for the minimum distance of generalized toric codes for special lattice point configurations.Comment: 11 pages, 3 figure

    On the minimum distance of combinatorial codes

    Full text link

    On the minimum distance of elliptic curve codes

    Full text link
    Computing the minimum distance of a linear code is one of the fundamental problems in algorithmic coding theory. Vardy [14] showed that it is an \np-hard problem for general linear codes. In practice, one often uses codes with additional mathematical structure, such as AG codes. For AG codes of genus 00 (generalized Reed-Solomon codes), the minimum distance has a simple explicit formula. An interesting result of Cheng [3] says that the minimum distance problem is already \np-hard (under \rp-reduction) for general elliptic curve codes (ECAG codes, or AG codes of genus 11). In this paper, we show that the minimum distance of ECAG codes also has a simple explicit formula if the evaluation set is suitably large (at least 2/32/3 of the group order). Our method is purely combinatorial and based on a new sieving technique from the first two authors [8]. This method also proves a significantly stronger version of the MDS (maximum distance separable) conjecture for ECAG codes.Comment: 13 page

    Classification of large partial plane spreads in PG(6,2)PG(6,2) and related combinatorial objects

    Get PDF
    In this article, the partial plane spreads in PG(6,2)PG(6,2) of maximum possible size 1717 and of size 1616 are classified. Based on this result, we obtain the classification of the following closely related combinatorial objects: Vector space partitions of PG(6,2)PG(6,2) of type (31641)(3^{16} 4^1), binary 3×43\times 4 MRD codes of minimum rank distance 33, and subspace codes with parameters (7,17,6)2(7,17,6)_2 and (7,34,5)2(7,34,5)_2.Comment: 31 pages, 9 table

    Coding-Theoretic Methods for Sparse Recovery

    Full text link
    We review connections between coding-theoretic objects and sparse learning problems. In particular, we show how seemingly different combinatorial objects such as error-correcting codes, combinatorial designs, spherical codes, compressed sensing matrices and group testing designs can be obtained from one another. The reductions enable one to translate upper and lower bounds on the parameters attainable by one object to another. We survey some of the well-known reductions in a unified presentation, and bring some existing gaps to attention. New reductions are also introduced; in particular, we bring up the notion of minimum "L-wise distance" of codes and show that this notion closely captures the combinatorial structure of RIP-2 matrices. Moreover, we show how this weaker variation of the minimum distance is related to combinatorial list-decoding properties of codes.Comment: Added Lemma 34 in the first revision. Original version in Proceedings of the Allerton Conference on Communication, Control and Computing, September 201
    corecore