4,036 research outputs found

    On the maximal sum of exponents of runs in a string

    Get PDF
    A run is an inclusion maximal occurrence in a string (as a subinterval) of a repetition vv with a period pp such that 2pv2p \le |v|. The exponent of a run is defined as v/p|v|/p and is 2\ge 2. We show new bounds on the maximal sum of exponents of runs in a string of length nn. Our upper bound of 4.1n4.1n is better than the best previously known proven bound of 5.6n5.6n by Crochemore & Ilie (2008). The lower bound of 2.035n2.035n, obtained using a family of binary words, contradicts the conjecture of Kolpakov & Kucherov (1999) that the maximal sum of exponents of runs in a string of length nn is smaller than 2n2nComment: 7 pages, 1 figur

    Understanding maximal repetitions in strings

    Get PDF
    The cornerstone of any algorithm computing all repetitions in a string of length n in O(n) time is the fact that the number of runs (or maximal repetitions) is O(n). We give a simple proof of this result. As a consequence of our approach, the stronger result concerning the linearity of the sum of exponents of all runs follows easily

    Lempel-Ziv Factorization May Be Harder Than Computing All Runs

    Get PDF
    The complexity of computing the Lempel-Ziv factorization and the set of all runs (= maximal repetitions) is studied in the decision tree model of computation over ordered alphabet. It is known that both these problems can be solved by RAM algorithms in O(nlogσ)O(n\log\sigma) time, where nn is the length of the input string and σ\sigma is the number of distinct letters in it. We prove an Ω(nlogσ)\Omega(n\log\sigma) lower bound on the number of comparisons required to construct the Lempel-Ziv factorization and thereby conclude that a popular technique of computation of runs using the Lempel-Ziv factorization cannot achieve an o(nlogσ)o(n\log\sigma) time bound. In contrast with this, we exhibit an O(n)O(n) decision tree algorithm finding all runs in a string. Therefore, in the decision tree model the runs problem is easier than the Lempel-Ziv factorization. Thus we support the conjecture that there is a linear RAM algorithm finding all runs.Comment: 12 pages, 3 figures, submitte

    A Faster Implementation of Online Run-Length Burrows-Wheeler Transform

    Full text link
    Run-length encoding Burrows-Wheeler Transformed strings, resulting in Run-Length BWT (RLBWT), is a powerful tool for processing highly repetitive strings. We propose a new algorithm for online RLBWT working in run-compressed space, which runs in O(nlgr)O(n\lg r) time and O(rlgn)O(r\lg n) bits of space, where nn is the length of input string SS received so far and rr is the number of runs in the BWT of the reversed SS. We improve the state-of-the-art algorithm for online RLBWT in terms of empirical construction time. Adopting the dynamic list for maintaining a total order, we can replace rank queries in a dynamic wavelet tree on a run-length compressed string by the direct comparison of labels in a dynamic list. The empirical result for various benchmarks show the efficiency of our algorithm, especially for highly repetitive strings.Comment: In Proc. IWOCA201

    Two Ising Models Coupled to 2-Dimensional Gravity

    Full text link
    To investigate the properties of c=1c=1 matter coupled to 22d{--}gravity we have performed large-scale simulations of two copies of the Ising Model on a dynamical lattice. We measure spin susceptibility and percolation critical exponents using finite-size scaling. We show explicitly how logarithmic corrections are needed for a proper comparison with theoretical exponents. We also exhibit correlations, mediated by gravity, between the energy and magnetic properties of the two Ising species. The prospects for extending this work beyond c=1c=1 are addressed.Comment: revised version w/ typos corrected; standard latex w/ epsf and 9 figure
    corecore