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Abstract. The cornerstone of any algorithm computing all repetitions in a string of
length n in O(n) time is the fact that the number of runs (or maximal repetitions) is
O(n). We give a simple proof of this result. As a consequence of our approach, the
stronger result concerning the linearity of the sum of exponents of all runs follows easily.

1. Introduction

Repetitions in strings constitute one of the most fundamental areas of string combina-
torics with very important applications to text algorithms, data compression, or analysis
of biological sequences. One of the most important problems in this area was finding an
algorithm for computing all repetitions in linear time. A major obstacle was encoding all
repetitions in linear space because there can be Θ(n log n) occurrences of squares in a string
of length n (see [1]). All repetitions are encoded in runs (that is, maximal repetitions)
and Main [9] used the s-factorization of Crochemore [1] to give a linear-time algorithm for
finding all leftmost occurrences of runs. What was essentially missing to have a linear-time
algorithm for computing all repetitions, was proving that there are at most linearly many
runs in a string. Iliopoulos et al. [4] showed that this property is true for Fibonacci words.
The general result was achieved by Kolpakov and Kucherov [7] who gave a linear-time
algorithm for locating all runs in [6].

Kolpakov and Kucherov proved that the number of runs in a string of length n is at
most cn but could not provide any value for the constant c. Recently, Rytter [10] proved
that c ≤ 5. The conjecture in [7] is that c = 1 for binary alphabets, as supported by
computations for string lengths up to 31. Using the technique of this note, we have proved
[2] that it is smaller than 1.6, which is the best value so far.
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Both proofs in [6] and [10] are very intricate and our contribution is a simple proof
of the linearity. On the one hand, the search for a simple proof is motivated by the very
importance of the result – this is the core of the analysis of any optimal algorithm computing
all repetitions in strings. None of the above-mentioned proofs can be included in a textbook.
We believe that the simple proof shows very clearly why the number of runs is linear. On
the other hand, a better understanding of the structure of runs could pave the way for
simpler linear-time algorithms for finding all repetitions. For the algorithm of [6] (and [9]),
relatively complicated and space-consuming data structures are needed, such as suffix trees.

The technical contribution of the paper is based on the notion of δ-close runs (runs
having close centers), which is an improvement on the notion of neighbors (runs having
close starting positions) introduced by Rytter [10].

On top of that, our approach enables us to derive easily the stronger result concerning
the linearity of the sum of exponents of all runs of a string. Clearly this result implies the
first one, but the converse is not obvious. The second result was given another long proof
in [7]; it follows also from [10].

Finally, we strongly believe that our ideas in this paper can be further refined to improve
significantly the upper bound on the number of runs, if not to prove the conjecture. The
latest refinements and computations (December 2007) show a 1.084n bound.

2. Definitions

Let A be an alphabet and A∗ the set of all finite strings over A. We denote by |w| the
length of a string w, by w[i] its ith letter, and by w[i . . j] its factor w[i]w[i + 1] · · ·w[j]. We
say that w has period p iff w[i] = w[i + p], for all 1 ≤ i ≤ |w| − p. The smallest period of w

is called the period of w and the ratio between the length and the period of w is called the
exponent of w.

For a positive integer n, the nth power of w is defined inductively by w1 = w, wn =
wn−1w. A string is primitive if it cannot be written as a proper integer (two or more) power
of another string. Any nonempty string can be uniquely written as an integer power of a
primitive string, called its primitive root. It can also be uniquely written in the form uev

where |u| is its (smallest) period, e is the integral part of its exponent, and v is a proper
prefix of u.

The following well-known synchronization property will be useful: If w is primitive,
then w appears as a factor of ww only as a prefix and as a suffix (not in-between). Another
property we use is Fine and Wilf ’s periodicity lemma: If w has periods p and q and |w| ≥
p+ q, then w has also period gcd(p, q). (This is a bit weaker than the original lemma which
works as soon as |w| ≥ p + q − gcd(p, q), but it is good enough for our purpose.) We refer
the reader to [8] for all concepts used here.

For a string w = w[1 . . n], a run1 (or maximal repetition) is an interval [i . . j], 1 ≤
i < j ≤ n, such that (i) the factor w[i . . j] is periodic (its exponent is 2 at least) and (ii)
both w[i − 1 . . j] and w[i . . j + 1], if defined, have a strictly higher (smallest) period. As
an example, consider w = abbababbaba; [3 . . 7] is a run with period 2 and exponent 2.5; we
have w[3 . . 7] = babab = (ba)2.5. Other runs are [2 . . 3], [7 . . 8], [8 . . 11], [5 . . 10] and [1 . . 11].
For a run starting at i and having period |x| = p, we shall call w[i . . i + 2p − 1] = x2 the
square of the run (this is the only part of a run we can count on). Note that x is primitive

1Runs were introduced in [9] under the name maximal periodicities; the are called m-repetitions in [7] and
runs in [4].
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and the square of a run cannot be extended to the left (with the same period) but may be
extendable to the right. The center of the run is the position c = i + p. We shall denote
the beginning of the run by ix = i, the end of its square by ex = ix + 2p − 1, and its center

by cx = ix + p.

3. Linear number of runs

We describe in this section our proof of the linear number of runs. The idea is to
partition the runs by grouping together those having close centers and similar periods. To
this aim, for any δ > 0, we say that two runs having squares x2 and y2 are δ-close if (i)
|cx − cy| ≤ δ and (ii) 2δ ≤ |x|, |y| ≤ 3δ. We prove that there cannot be more than three
mutually δ-close runs. (There is one exception to this rule – case (vi) below – but then, even
fewer runs are obtained.) This means that the number of runs with the periods between 2δ

and 3δ in a string of length n is at most 3n
δ

. Summing up for values δi = 1

2

(

3

2

)i
, i ≥ 0, all

periods are considered and we obtain that the number of runs is at most
∞

∑

i=0

3n

δi
=

∞
∑

i=0

3n
1

2
(3

2
)i

= 18n. (3.1)

For this purpose, we start investigating what happens when three runs in a string w are
δ-close. Let us denote their squares by x2, y2, z2, their periods by |x| = p, |y| = q, |z| = r,
and assume p ≤ q ≤ r. We discuss below all the ways in which x2 and y2 can be positioned
relative to each other and see that long factors of both runs have small periods which z2

has to synchronize. This will restrict the beginning of z2 to only one choice as otherwise
some run would be left extendable. Then a fourth run δ-close to the previous three cannot
exist.

Notice that, for cases (i)-(v) we assume the centers of the runs are different; the case
when they coincide is covered by (vi).

(i) (iy < ix <)cy < cx < ex ≤ ey. Then x and the suffix of length ey − cx of y have
period q − p; see Fig. 1(i). We may assume the string corresponding to this period is a
primitive string as otherwise we can make the same reasoning with its primitive root.

Since z2 is δ-close to both x2 and y2, it must be that cz ∈ [cx − δ . . cy + δ]. Consider
the interval of length q − p that ends at the leftmost possible position for cz, that is,
I = [cx − δ− (q−p) . . cx − δ−1]. It is included in the first period of z2, that is, [iz . . cz −1],
and in [ix . . cy]. Thus w[I] is primitive and equal, due to z2, to w[I + r] which is a factor of
w[cx . . ey]. Therefore, the periods inside the former must synchronize with the ones in the
latter. It follows, in the case iz > ix − (q − p), that w[iz − 1] = w[cz − 1], that is, z2 is left
extendable, a contradiction. If iz < ix−(q−p), then w[cx−1] = w[ix−(q−p)−1] = w[ix−1],
that is, x2 is left extendable, a contradiction. The only possibility is that iz = ix−(q−p) and
r equals q plus a multiple of q − p. Here is an example: w = baabababaababababaab, x2 =
w[5 . . 14] = (ababa)2, y2 = w[1 . . 14] = (baababa)2, and z2 = w[3 . . 20] = (abababaab)2.

We have already, due to z2, that x = ρℓρ′, where |ρ| = q − p and ρ′ a prefix of ρ. A
fourth run δ-close to the previous three would have to have the same beginning as z2 and
the length of its period would have to be also q plus a multiple of q − p. This would imply
an equation of the form ρmρ′ = ρ′ρm and then ρ and ρ′ are powers of the same string, a
contradiction with the primitivity of x.

(ii) (iy < ix <)cy < cx < ey ≤ ex; this is similar with (i); see Fig. 1(ii). Here the prefix
of length ey − cx of x is a suffix of y and has period q − p.
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Figure 1: Relative position of x2 and y2.

(iii) iy < ix < cx < cy(< ex < ey). Here x and the prefix of length cx − iy of y have
period q − p; see Fig. 1(iii). As above, a third δ-close run z2 would have to share the same
beginning with y2, otherwise one of y2 or z2 would be left extendable. A fourth δ-close run
would have to start at the same place and, because of the three-prefix-square lemma2 of [3],
since p is primitive, it would have a period at least q + r, which is impossible.

(iv) ix < iy(< cx < cy < ex < ey); this is similar with (iii); see Fig. 1(iv). A third run
would begin at the same position as y2 and there is no fourth run.

(v) ix = iy; see Fig. 1(v). Here not even a third δ-close run exists because of the
three-square lemma that implies r ≥ p + q.

(vi) cx = cy. This case is significantly different from the other ones, as we can have
many δ-close runs here. However, the existence of many runs with the same center implies
very strong periodicity properties of the string which allow us to count the runs globally
and obtain even fewer runs than before.

In this case both x and y have the same small period ℓ = q−p; see Fig. 1(vi). If we note
c = cy then we have h runs x

αj

j , 1 ≤ j ≤ h, beginning at positions ixj
= c − ((j − 1)ℓ + ℓ′),

where ℓ′ is the length of the suffix of x that is a prefix of the period.
We show that in this case we have less runs than as counted in the sum (3.1). For h ≤ 9

there is nothing to prove as no four of our x
αj

j runs are counted for the same δ. Assume

h ≥ 10. There exists δi such that ℓ
2
≤ δi ≤

3ℓ
4
, that is, this δi is considered in (3.1). Then

it is not difficult to see that there is no run in w with period between ℓ and 9

4
ℓ and center

inside J = [c + ℓ + 1 . . c + (h − 2)ℓ + ℓ′]. But ℓ ≤ 2δi < 3δi ≤ 9

4
ℓ and the length of J is

2For three words u, v, w, it states that if uu is a prefix of vv, vv is a prefix of ww, and u is primitive, then
|u| + |v| ≤ |w|.
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(h − 3)ℓ + ℓ′ ≥ (h + 1)δi. This means that at least h intervals of length δi in the sum (3.1)
are covered by J and therefore at least 3h runs in (3.1) are replaced by our h runs.

We need also mention that these h intervals of length δi are not reused by a different
center with multiple runs since such centers cannot be close to each other. Indeed, if we
have two centers cj with the above parameters hj , ℓj , j = 1, 2, then, as soon as the longest
runs overlap over ℓ1 + ℓ2 positions, we have ℓ1 = ℓ2, due to Fine and Wilf’s lemma. Then,
the closest positions of J1 and J2 cannot be closer than ℓ1 = ℓ2 ≥ δi as this would make
some of the runs non-primitive, a contradiction. Thus the bound in (3.1) still holds and we
proved

Theorem 3.1. The number of runs in a string of length n is O(n).

4. The sum of exponents

Using the above approach, we show in this section that the sum of exponents of all
runs is also linear. The idea is to prove that the sum of exponents of all runs with the
centers in an interval of length δ and periods between 2δ and 3δ is less than 8. (As in the
previous proof, there are exceptions to this rule, but in those cases we get a smaller sum
of exponents.) Then a computation similar to (3.1) gives that the sum of exponents is at
most 48n.

To start with, Fine and Wilf’s periodicity lemma can be rephrased as follows: For two
primitive strings x and y, any powers xα and yβ cannot have a common factor longer than
|x| + |y| as such a factor would have also period gcd(|x|, |y|), contradicting the primitivity
of x and y.

Next consider two δ-close runs, xα and yβ, α, β ∈ Q. It cannot be that both α and β

are 2.5 or larger, as this would imply an overlap of length at least |x|+ |y| between the two
runs, which is forbidden by Fine and Wilf’s lemma since x and y are primitive. Therefore,
in case we have three mutually δ-close runs, two of them must have their exponents smaller
than 2.5. If the exponent of the third run is less than 3, we obtain the total of 8 we were
looking for. However, the third run, say zγ , γ ∈ Q, may have a larger exponent. If it does,
that affects the runs in the neighboring intervals of length δ. More precisely, if γ ≥ 3, then
there cannot be any center of run with period between 2δ and 3δ in the next (to the right)
interval of length δ. Indeed, the overlap between any such run and zγ would imply, as above,
that their roots are not primitive, a contradiction. In general, the following ⌊2(γ − 2.5)⌋
intervals of length δ cannot contain any center of such runs. Thus, we obtain a smaller sum
of exponents when this situation is met.

The second exception is given by case (vi) in the previous proof, that is, when many
runs share the same center; we use the same notation as in (vi). We need to be aware of the
exponent of the run xα1

1
, with the smallest period, as α1 can be as large as ℓ (and unrelated

to h, the number of runs with the same center). We shall count α1 into the appropriate
interval of length δi; notice that xα1

1
and xα2

2
are never δ-close, for any δ, because |x2| > 2|x1|.

For 2 ≤ j ≤ h− 1, the period |xj| cannot be extended by more than ℓ positions to the right

past the end of the initial square, and thus αj ≤ 2 + 1

j
. Therefore, their contribution to the

sum of exponents is less than 3(h− 2). They replace the exponents of the runs with centers
in the interval J and periods between ℓ and 9

4
ℓ which otherwise would contribute at least

6h to the sum of exponents. The run with the longest period, x
αh

h , can have an arbitrarily
high exponent but the replaced runs in J need to account only for a fraction (3 units) of it
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since αh ≥ 3 implies new centers with multiple runs and hence new J intervals (precisely
⌊αh − 2⌋) that account for the rest. We proved

Theorem 4.1. The sum of exponents of the runs in a string of length n is O(n).
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